å Q d = 0 T dq =0 ò T reversible processes 1

Size: px
Start display at page:

Download "å Q d = 0 T dq =0 ò T reversible processes 1"

Transcription

1 δ reeribe ree d

2 Caiu Inequaity fr an Irreeribe Cye eeribe Cye fr a

3 CaiuInequaity fr a yemed f a reeribe andan irreeribe re irre re Entry Definitin and Cange DEFINE A POPEY S S re irre S S S ENOPY reeribe irreeribe d irre irre d d irre d d reeribe internay reeribe re

4 taentry Cange,S,fr an iatedytem Fr a Fr an reeribe ytem, irreeribe ytem, S S > 4

5 Cmetey eeribe Pre - Sytem and urrunding returned t te rigina tate Internay eeribe - Sytem returned t te rigina tate. Externay eeribe - Surrunding returned t te rigina tate. 5

6 Heat tranfer ar a temerature differene i an irreeribe re. b/e f team i ndened at 65 C by -4a biing at 6 C. m S S S 4 a 4 a 4a team 4a m 45.4 J/e 9. J/g m ISOLAED SYSEM team 4 a team m S m 4 a fg 6 ( ) g/e ( ) ( ) 6.86 g/e ( ) 4a team S 65 C 6.86 g/e fg team C g/e 45.4 J/g J/g J/g 7.44 J/g Ke Ke Ke 6

7 Heat tranfer ar a temerature differene i a reeribe ( an a imibe) re. b/e f team i ndened at 6 C by -4a biing at 6 C. Fr ideaized eat tranfer at a ntant 6 C m S S S 4a 4a 4a team 4a m 57.7 J/e 9.J/g m ISOLAED SYSEM team 4a team m 4a S m fg 6 ( ) g/e ( ) ( ) g/e ( ) 4a team S 6 C g/e fg team C g/e 57.7 J/g J/g J/g 7.87 J/g K e K e K e 7

8 emerature Entry Prerty Diagram ds fr ntant, ds ntant S W in ut net HS L S in ut ( )S H L 8

9 emerature Entry Prerty Diagram Water 9

10 Entry Cange f an Idea Ga Law Send d δq Law Firt δw du δq d d d d du Fr an ideaga: d du d d du d d d d d d d d Fr an idea ga, d d d d - d d d d d d d d du d Subtituting int d d d du d d du d u

11 Oxygen at.8 ubi meter/g and 5 C i mreed in a itn yinder t. ubi meter/g and 87 C. Wat i te entry ange f te xygen? 87 C 5 C.m /g.8 m /g J.69 g K J.5 g K 7.5 K K 5 C.59 C J g K.m /g.8 m /g 6-6

12 Steam at C and Pa ndene in a iter ed radiatr wit bt te inet and exit ae ed t a temerature f 8 C.Determine te entry ange f te P 8 V x f.849 m g 7.58J/g.9 V f fg C f x m g, C.45 m g fg g Ced, ed team radiatr m S S S V S S S 8 C m C Pa Vnt. m.849 m /g ( ) ( ) J K.85 g 6-

13 Ientri Adiabati Pre IdeaGa Ientri, Adiabati ntant ntant integrating d _ d d d d d d d d d, ga an idea fr d d W du Adiabati re Law Firt W du ( ) ( ) ( ) ( ) i a ntant entry ntant adiabati re, ubtitute frm ntant

14 U W d ubitiuting, d ubitiuting, d d fr d d d dw du du dw d d ds dv d du d u d d Firt Law du d d Send Law Bundary Wr u rerty definitin rerty definitin, i an exat differentia d d d d w Exame: water umed frm ia t ia ( ) ( ia 5 ia) 44 f/i w 6.4b/ft bf 6 ft - bf w ft 4.6, (ft f fuid) bm 6.4 bm ft ft ft bf BU w BU/b b 778 ft b m Exame: water umed frm Pa t C w w.86 ( ) ( ) w.4 m g Pa, f J/g 4 m

15 Exanin Pre Atua Wr Ientri Wr w w atua ientri a 5

16 g/e f team exand in an 9 % effiient turbine frm 8 MPa, 5 C t Pa. Determine te exit temerature and wer f te turbine. Pt ' C C 8 MPa Pa Pa W ( W.9 ' ' f J/g W W x x ( ) W atura reereibe i e tan aturatin fg ' ) g fg g Pa 69.9 C 9. J/g tw ae Pwer m W g/e 9.J/g 57 KW

17 Wat i te wr dne by g/e f nitrgen exanded frm 9 Pa, 5 C t Pa at an 85% effiieny. 9 Pa 5 C i i i i W W O 7.4 K Watua.85 W atua atua ( 5 7)(.58) ientri.85 g/e J O ( K 7.4 K) i Pa 7

18 Cmrein Pre Ientri Wr Atua Wr W ientri W atua a 8

19 @ Pa, V Pt i. ubi meter/e f -4a i mreed at 8% effiieny frm aturated ar at Pa t Ma. Wat i te diarge temerature and wr? g g g J/g 5 6./ entry rati J/g.6m /g g/e K C i a) b) 6.97 ( )/ J/g by interatin i ( O i W m.8 C by interatin ( ) ) /.8 W.8 g/e i ( ) W.65 J/e.65 KW MPa Pa 9 6-

20 Air i mreed frm 5 ia, 6 F t ia at 85% effiieny. Wat i te atua diarge temerature? i ia.857 i 5 i 5.9 i 6.9 ( i ) ( ) F O 654. η 85% 5 ia, 6 F

21 W Exanin Pre Steady Fw Energy Equatin H ntant atua ientri a V V atua V V a ientri

22 AI ABLE - abe A-, A-E a) ariabe u eifi ( ) ( ) d d d eat fr u, and. d Setin.7, Setin age 6.., abe bae age F, C b) de te,, (tabe (tabe r r ) ) auatin wit ariabe Setin 6.7., age 56 fr an ientri re ( tabe (tabe r ) ) r

23 temerature, K, K, , ( ) K ntant aue, 9 ariabe eifi eat, r Air underge an adiabati, ientri exanin frm 9 Ka, K t Pa. r r r r r ( ) , idea Figure abe A 7 r ga 56 aue, K K K Figure 4-4 abe A -7 Uing Idea Ga Law r r.78 m /g 56.66m /g, aw gie a gd 9 Pa Pa m /g Pa r r r m /g.86. 9Pa (amt n differene. Idea ga ume etimate)

The Second Law implies:

The Second Law implies: e Send Law ilie: ) Heat Engine η W in H H L H L H, H H ) Ablute eerature H H L L Sale, L L W ) Fr a yle H H L L H 4) Fr an Ideal Ga Cyle H H L L L δ reerible ree d Claiu Inequality δ eerible Cyle fr a

More information

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft SIMPLE RANKINE CYCLE um boiler exander condener Steady Flow, Oen Sytem - region ace Steady Flow Energy Equation for Procee m (u Pum Proce,, Boiler Proce,, V ρg) 0, 0, Exanion Proce,, 0, Condener Proce,,

More information

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

NEWCOMEN ATMOSPHERIC ENGINE

NEWCOMEN ATMOSPHERIC ENGINE NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m F 7 stroke 5 sia steam 8 50 F water NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m 5 sia steam 8 F 50 F water 7

More information

P=1 atm. vapor. liquid

P=1 atm. vapor. liquid P1 atm ar liqid Q Gien and P Ser Heat Regin i, P < P sat > sat Cmressed Liqid Regin i, P > P sat < sat SEAM PRESUE AND EMPERAURE ABLES Satrated Liqid Line Satrated Var Line s s g g g g ree ables emeratre

More information

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known. PROBLEM.7 A hown in Fig. P.7, 0 ft of air at T = 00 o R, 00 lbf/in. undergoe a polytropic expanion to a final preure of 5.4 lbf/in. The proce follow pv. = contant. The work i W = 94.4 Btu. Auming ideal

More information

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK Thermdynamics EAS 204 Spring 2004 Class Mnth Day Chapter Tpic Reading Due 1 January 12 M Intrductin 2 14 W Chapter 1 Cncepts Chapter 1 19 M MLK Hliday n class 3 21 W Chapter 2 Prperties Chapter 2 PS1 4

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance EAPORATION Roert eorator Balance equation Material alance (total) S S=Solution =aor =Steam K=Steam condenate S Comonent alance S S Heat alance S S v Merkel lot can e ued for otaining entaly data Heat ower

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26. CM ROSE-HULMAN INSTITUTE OF TECHNOLOGY Name Circle sectin: 01 [4 th Lui] 02 [5 th Lui] 03 [4 th Thm] 04 [5 th Thm] 05 [4 th Mech] ME301 Applicatins f Thermdynamics Exam 1 Sep 29, 2017 Rules: Clsed bk/ntes

More information

Longitudinal Dispersion

Longitudinal Dispersion Updated: 3 Otber 017 Print verin Leture #10 (River & Stream, nt) Chapra, L14 (nt.) David A. Rekhw CEE 577 #10 1 Lngitudinal Diperin Frm Fiher et al., 1979 m/ m -1 E U B 0 011 HU. * Width (m) Where the

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

Thermodynamics I Chapter 6 Entropy

Thermodynamics I Chapter 6 Entropy hermodynamics I hater 6 Entroy Mohsin Mohd ies Fakulti Keuruteraan Mekanikal, Uniersiti eknologi Malaysia Entroy (Motiation) he referred direction imlied by the nd Law can be better understood and quantified

More information

K E L LY T H O M P S O N

K E L LY T H O M P S O N K E L LY T H O M P S O N S E A O LO G Y C R E ATO R, F O U N D E R, A N D PA R T N E R K e l l y T h o m p s o n i s t h e c r e a t o r, f o u n d e r, a n d p a r t n e r o f S e a o l o g y, a n e x

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

7-84. Chapter 7 External Forced Convection

7-84. Chapter 7 External Forced Convection Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit.

More information

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law Kelv Planck Statement of te Second aw It is imossible to construct an enge wic, oeratg a cycle, will roduce no oter effect tan te extraction of eat from a sgle reservoir and te erformance of an equivalent

More information

Developing Transfer Functions from Heat & Material Balances

Developing Transfer Functions from Heat & Material Balances Colorado Sool of Mine CHEN43 Stirred ank Heater Develoing ranfer untion from Heat & Material Balane Examle ranfer untion Stirred ank Heater,,, A,,,,, We will develo te tranfer funtion for a tirred tank

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Termodynamics Lecture Series Ideal Ranke Cycle Te Practical Cycle Applied Sciences Education Researc Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@otmail.com ttp://www5.uitm.edu.my/faculties/fsg/drjj1.tml

More information

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law TMOS 5130 Lecture 7 The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Caacity Secial Cases of the First Law Pressure-Volume Work Exanding Volume Pressure δw = f & dx δw = F ds

More information

**YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM**

**YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM** EM 233, Fall 2017 Midterm #2 Ian R. Gould MPLETE TIS SETIN : Up to TW PINTS will be removed for incorrect/missing information! PRINTED FIRST PRINTED LAST Person on your LEFT (or Empty or Aisle) Person

More information

REVIEW SHEET 1 SOLUTIONS ( ) ( ) ( ) x 2 ( ) t + 2. t x +1. ( x 2 + x +1 + x 2 # x ) 2 +1 x ( 1 +1 x +1 x #1 x ) = 2 2 = 1

REVIEW SHEET 1 SOLUTIONS ( ) ( ) ( ) x 2 ( ) t + 2. t x +1. ( x 2 + x +1 + x 2 # x ) 2 +1 x ( 1 +1 x +1 x #1 x ) = 2 2 = 1 REVIEW SHEET SOLUTIONS Limit Concepts and Problems + + + e sin t + t t + + + + + e sin t + t t e cos t + + t + + + + + + + + + + + + + t + + t + t t t + + + + + + + + + + + + + + + + t + + a b c - d DNE

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps EDSA PROGRAMME 5 urbmacines (nit 3) Axial flw cmressrs and ums Axial flw cmressrs and ums are wer absrbing turbmacines. ese macines absrb external wer and tereby increase te entaly f te flwing fluid. Axial

More information

"NEET / AIIMS " SOLUTION (6) Avail Video Lectures of Experienced Faculty.

NEET / AIIMS  SOLUTION (6) Avail Video Lectures of Experienced Faculty. 07 NEET EXAMINATION SOLUTION (6) Avail Vide Lectures f Exerienced Faculty Page Sl. The lean exressin which satisfies the utut f this lgic gate is C = A., Whichindicates fr AND gate. We can see, utut C

More information

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26 Conservation of Energy for a Closed System Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-, Bangladesh zahurul@me.buet.ac.bd

More information

3. Construct a perpendicular at point B, then bisect the right angle that is formed. 45 o

3. Construct a perpendicular at point B, then bisect the right angle that is formed. 45 o Unit 1, Tpic 1 1. pint, line, and plane. angle bisectr cnstructin 3. Cnstruct a perpendicular at pint B, then bisect the right angle that is frmed. B 45 4. Draw a line thrugh pint H, then cpy the angle

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Semester Exam Review Answers. 3. Construct a perpendicular at point B, then bisect the right angle that is formed. 45 o

Semester Exam Review Answers. 3. Construct a perpendicular at point B, then bisect the right angle that is formed. 45 o Unit 1, Tpic 1 1. pint, line, and plane 2. angle bisectr cnstructin 3. Cnstruct a perpendicular at pint B, then bisect the right angle that is frmed. B 45 4. Draw a line thrugh pint H, then cpy the angle

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x

More information

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response. Due: Mnday Marh 4, 6 at the beginning f la ECE-: Linear Cntrl Sytem Hmewrk ) Fr the fllwing tranfer funtin, determine bth the imule rene and the unit te rene. Srambled Anwer: H ( ) H ( ) ( )( ) ( )( )

More information

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1 Hat Exangr April 8, 007 Hat Exangr Larry artt Manial Engrg 375 Hat ranfr April 8, 007 Outl Bai ida f at xangr Ovrall at tranfr ffiint Lg-man tmpratur diffrn mtd Efftivn NU mtd ratial nidratin Hat Exangr

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011 Excluive Technlgy Feature Eliminate The Guewrk When Selecting Primary Switch DD aacitr by Ed Wenzel, STMicrelectrnic, Schaumburg, ll. SSUE: May 2011 A rimary witch, ued fr ff-line alicatin, ften cntain

More information

2-18. (a) For mercury, (b) For water,

2-18. (a) For mercury, (b) For water, -8-5 CD EES Bt a gage and a manmeter are attaced t a gas t measure its pressure. Fr a specified reading f gage pressure, te difference between te fluid levels f te tw arms f te manmeter is t be determined

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

π (sinπ ) + cos π + C = C = 0 C = 1

π (sinπ ) + cos π + C = C = 0 C = 1 National Mu Alpha Theta Diff EQ page Mississippi, 00 Differential Equations Topic Test: Complete Solutions Note: For each problem, where there is no choice (e), assume (e) none of the above.. State the

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19 Department of Mecanical Engineering ME Mecanical Engineering ermodynamics Calculation of Entropy Canges Lecture 9 e Gibbs Equations How are entropy alues calculated? Clausius found tat, dq dq m re re ds

More information

Exercises for lectures 20 Digital Control

Exercises for lectures 20 Digital Control Exercie for lecture 0 Digital Control Micael Šebek Automatic control 06-4- Sampling: and z relationip for complex pole Continuou ignal Laplace tranform wit pole Dicrete ignal z-tranform, t y( t) e in t,

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process Outline roperty diagrams involving entropy What is entropy? T-ds relations Entropy change of substances ure substances (near wet dome) Solids and liquids Ideal gases roperty diagrams involving entropy

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Ciil ngeerg Applied Mechanics McGill Uniersity, Mntreal, Quebec Canada CI 90 THRMODYNAMICS HAT TRANSFR Assignment #4 SOLUTIONS. A 68-kg man whse aerage bdy temperature is 9 C drks L f cld

More information

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42 Light in ne medium (n =.) enunters a bundary t a send medium (with n =. 8) where part f the light is transmitted int the send media and part is refleted bak int the first media. The inident angle is =

More information

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0.

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0. (SP 9) N-butane (C4H1) i burned with 85 percent theoretical air, and the product of combution, an equilibrium mixture containing only O, CO, CO, H, HO, N, and NO, exit from a combution chamber at K,. MPa.

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0. - - A team poer plant operate on an ideal regenerative anke cycle it to open feedater eater. e poer put of te poer plant and te termal efficiency of te cycle are to be determed. Aumption Steady operatg

More information

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1 In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

More information

Lecture 10 Adiabatic Processes

Lecture 10 Adiabatic Processes ASME231 Atmsheri hermdynamis NC A& State U Deartment f Physis Dr. Yuh-Lang Lin htt://meslab.rg ylin@nat.edu Leture 10 Adiabati Presses (Se.3.5 f Hess) [Classial equatin editr: 0 dq ] Definitin: If a thermdynami

More information

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are . A team poer plant operate on a imple ideal Ranke cycle beteen te peciied preure limit. e termal eiciency o te cycle, te ma lo rate o te team, and te temperature rie o te coolg ater are to be determed.

More information

AEROSPACE ENGINEERING GATE 2018 ANSWERS & EXPLANATIONS

AEROSPACE ENGINEERING GATE 2018 ANSWERS & EXPLANATIONS AEROSPACE ENGINEERING GATE 08 ANSWERS & EXPLANATIONS NOTE : Use the same questin aer that is uladed n the fllwing link fr the rret sequene f questins htt://gateathshala.m/resures.html is the first institute

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

Digital Filter Specifications. Digital Filter Specifications. Digital Filter Design. Digital Filter Specifications. Digital Filter Specifications

Digital Filter Specifications. Digital Filter Specifications. Digital Filter Design. Digital Filter Specifications. Digital Filter Specifications Digital Filter Deign Objetive - Determinatin f a realiable tranfer funtin G() arximating a given frequeny rene eifiatin i an imrtant te in the develment f a digital filter If an IIR filter i deired, G()

More information

4F-5 : Performance of an Ideal Gas Cycle 10 pts

4F-5 : Performance of an Ideal Gas Cycle 10 pts 4F-5 : Perfrmance f an Cycle 0 pts An ideal gas, initially at 0 C and 00 kpa, underges an internally reversible, cyclic prcess in a clsed system. The gas is first cmpressed adiabatically t 500 kpa, then

More information

Special Topic: Binary Vapor Cycles

Special Topic: Binary Vapor Cycles 0- Special opic: Bary Vapor ycle 0- Bary poer cycle i a cycle ic i actually a combation o to cycle; one te ig temperature region, and te oter te lo temperature region. It purpoe i to creae termal eiciency.

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is 8-7 8-9 A reverible eat um wit eciied reervoir temerature i conidered. e entroy cange o two reervoir i to be calculated and it i to be determed i ti eat um atiie te creae entroy rcile. Aumtion e eat um

More information

Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1 / 3 F.

Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1 / 3 F. ECSE 10 NAME: Quiz 18 May 011 ID: Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1. Consider the circuit diagram below.

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

**YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM**

**YOU ARE NOT ALLOWED TO TAKE SPARE COPIES OF THIS EXAM FROM THE TESTING ROOM** EM 24, Spring 2017 Midterm #2 Ian R. Gould MPLETE TIS SETIN : Up to TW PINTS will be removed for incorrect/missing information! PRINTED FIRST Answer Key Person on your LEFT (or Empty or Aisle) Person on

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b .6 A upercritical team power plant ha a high preure of 0 Ma and an exit condener temperature of 50 C. he maximum temperature in the boiler i 000 C and the turbine exhaut i aturated vapor here i one open

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D

ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D Annals f te Unversty f Petrşan, Mecancal Engneerng, 10 (2008), 155-160 155 ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D DAN CODRUŢ PETRILEAN 1 Abstract: Te real

More information

Copyright 1967, by the author(s). All rights reserved.

Copyright 1967, by the author(s). All rights reserved. Copyright 1967, by the author(). All right reerved. Permiion to make digital or hard copie of all or part of thi work for peronal or claroom ue i granted without fee provided that copie are not made or

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance DUCTCE 3. Sef nductance Cnsider the circuit shwn in the Figure. S R When the switch is csed the current, and s the magnetic fied, thrugh the circuit increases frm zer t a specific vaue. The increasing

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

Calculus I, Fall Solutions to Review Problems II

Calculus I, Fall Solutions to Review Problems II Calculus I, Fall 202 - Solutions to Review Problems II. Find te following limits. tan a. lim 0. sin 2 b. lim 0 sin 3. tan( + π/4) c. lim 0. cos 2 d. lim 0. a. From tan = sin, we ave cos tan = sin cos =

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

COMPLETE THIS SECTION : Up to TWO POINTS will be removed for incorrect/missing information!

COMPLETE THIS SECTION : Up to TWO POINTS will be removed for incorrect/missing information! M 234, Spring 2019 Midterm #1 Ian R. Gould MPLETE TIS SETIN : Up to TW PINTS will be removed for incorrect/missing information! PRINTED FIRST NAME Answer Key Person on your LEFT (or Empty or Aisle) Person

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information