Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Size: px
Start display at page:

Download "Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction"

Transcription

1 Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x r r r x T T u r x r r r Unifr Surface Heat Flux Integrating twice 1 T u dt r r 1 r r r dx r u dt r r Trx (, ) Clnr C 4 dx 4 16r 1 The teperature reain finite at r 0 iplie C 1 0.

2 C u dt 3r T ( x) dx 16 Subtituting int T u r u r 4u T ( x) u r ur T ( x) T ( x) fr Eq. () 4 ur dt 3 1 r 1 r Trx (, ) T () x dx r0 4 r0 r u 1 r 8 ur T ( x) r 8 ur T ( x) r r 0 r u( x, r) T ( x, r) rdr dt dx T ( x, r) rdr ur dt dx dt dx ur dt dx dt dx dt dx 8 r r 3 1 r r r r r r r r 1 r 4 r 3 r 16 r 1 r 4 r r 16 r r dr 1 r 4 r q P c p q P u A c c p q u c 11 ur dt T( x) T( x) 48 dx p / u /4 4q 48 uc 11 q 48 c 11 q 48 k p p dr

3 11 ur dt T( x) T( x) 48 dx 11 q 48 k Since q h( T T ) r 48 k h 11 h 4.36 fr q cntant k independent f Re, Pr and axial lcatin.

4 1. Fully evelped Flw Lainar Flw in a Circular Tube: The lcal elt nuber i a cntant thrughut the fully develped regin, but it value depend n the urface theral cnditin. Unifr Surface Heat Flux ( q ): h k 4.36 Unifr Surface Teperature ( T ): h 3.66 k Turbulent Flw in a Circular Tube: Fr a th urface and fully turbulent cnditin ( Re 10, 000 ), the ittu Belter equatin ay be ued a a firt apprxiatin: n 0.03Re Pr 0.3 T n T n0.4 T T Pr 160 Re 10,000 L 10 The effect f wall rughne and tranitinal flw cnditin Re 3000 crrelatin: ay be cnidered by uing the Gnielinki Sth urface: f 8 Re 1000 Pr Pr f

5 6 f (0.790ln Re 1.64) 3000 Re 510 Surface f rughne >0 : f Figure8.3 Nncircular Tube: Ue f hydraulic diaeter a characteritic length: h 4A c P Since the lcal cnvectin cefficient varie arund the periphery f a tube, appraching zer at it crner, crrelatin fr the fully develped regin are aciated with cnvectin cefficient averaged ver the periphery f the tube. Lainar Flw: The lcal elt nuber i a cntant whe value (Table 8.1) depend n the urface theral cnditin ( T r q ) and the duct apect rati. Turbulent Flw: A a firt apprxiatin, the ittu-belter r Gnielinki crrelatin ay be ued with the hydraulic diaeter, irrepective f the urface theral cnditin.. Effect f the Entry Regin The anner in which the elt decay fr inlet t fully develped cnditin fr lainar flw depend n the nature f theral and velcity bundary layer develpent in the entry regin, a well a the urface theral cnditin. Lainar flw in a circular tube

6 Cbined Entry Length: Theral and velcity bundary layer develp cncurrently fr unifr prfile at the inlet. Theral Entry Length: Velcity prfile i fully develped at the inlet, and bundary layer develpent in the entry regin i retricted t theral effect. Such a cnditin ay al be aued t be a gd apprxiatin fr a unifr inlet velcity prfile if Pr 1.Why? Graetz Prble Average elt ber fr Lainar Flw in a Circular Tube with Unifr Surface Teperature: Cbined Entry Length: RePr L :

7 13 Re Pr 1.86 L RePr L : 3.66 Theral Entry Length: LRe Pr L Re Pr Average elt ber fr Turbulent Flw in a Circular Tube : Effect f entry and urface theral cnditin are le prnunced fr turbulent flw and can be neglected. Fr lng tube L 60 : 3, fd Fr hrt tubel 60 :, fd C C L Nncircular Tube: Lainar Flw: h depend trngly n apect rati, a well a entry regin and urface theral cnditin. See reference 11 and 1. Turbulent Flw: A a firt apprxiatin, crrelatin fr a circular tube ay be ued with replaced by h.

8 When deterining fr any tube geetry r flw cnditin, all prpertie are t be evaluated at T T T i,, Why d lutin t internal flw prble ften require iteratin? 3. The Cncentric Tube Annulu Fluid flw thrugh regin fred by cncentric tube. Cnvectin heat tranfer ay be fr r t inner urface f uter tube and uter urface f inner tube. Surface theral cnditin ay be characterized by unifr teperaturet, T r unifr heat flux q, q. i, i, Cnvectin cefficient are aciated with each urface, where q h T T i i, i q h T T, h h i k k i h h h i

9 Fully evelped Lainar Flw elt nuber depend n i / and urface theral cnditin (Table 8., 8.3) Fully evelped Turbulent Flw Crrelatin fr a circular tube ay be ued with replaced by h.

10 Prble 8.43 Fr an air paage ued t cl a ga turbine vane, calculate the air utlet teperature and heat reved fr the vane. KNOWN: iaeter and length f cpper tubing. Teperature f cllectr plate t which tubing i ldered. Water inlet teperature and flw rate. FIN: (a) Outlet teperature f the air clant fr the precribed cnditin and (b) Cpute and plt the air utlet teperature T, a a functin f flw rate, kg/h. Cpare thi reult with the fr vane having paage diaeter f and 4. ASSUMPTIONS: (1) Steady-tate cnditin, () Ideal ga with negligible vicu diipatin and preure variatin. PROPERTIES: Table A.4, Air (aue T = 780 K, 1 at): c p = 1094 J/kgK, k = W/K, = N/, Pr = 0.706; (T = 650C = 93 K, 1 at): = N/. ANALYSIS: (a) Fr cntant wall teperature heating, fr Eq. 8.41b, T T, PLh exp T T,i cp where P =. Fr flw in a circular paage, (1)

11 kg h h Re N The flw i lainar, and ince L/ = 75 /3 = 5, the Sieder-Tate crrelatin including cbined entry length yield 1/ h Re Pr 1.86 k L 1/ W K h W K Hence, the air utlet teperature i 650 T, W K exp C kg 1094J kg K T, 578 C (b) Uing the IHT Crrelatin Tl, Internal Flw, fr Lainar Flw with cbined entry length, alng with the energy balance and rate equatin abve, the utlet teperature T, wa calculated a a functin f flw rate fr diaeter f =, 3 and 4. The plt belw hw that T, decreae nearly linearly with increaing flw rate, but i independent f paage diaeter. () (3) 650 Outlet teperature, T (C) Flw rate, dt (kg/h)

12 Baed upn the calculatin fr T, = 578 C, T = 775 K which i in gd agreeent with ur auptin t evaluate the therphyical prpertie. Why i T, independent f? Fr Eq. (3), nte that h i inverely prprtinal t, h ~ -1. Fr Eq. (1), nte that n the right-hand ide the prduct P h will be independent f. Hence, T, will depend nly n. Thi i, f cure, a cnequence f the lainar flw cnditin and will nt be the ae fr turbulent flw.

13 Prble 8.5 eterine effect f abient air teperature and wind velcity n teperature at which ven gae are dicharged fr a tack. KNOWN: Thin-walled, tall tack dicharging exhaut gae fr an ven int the envirnent. FIN: (a) Outlet ga and tack urface teperature, T, and T,, fr V=5 / and T 4 C; (b) Effect f wind teperature and velcity n T,. ASSUMPTIONS: (1) Steady-tate cnditin, () Negligible wall theral reitance, (3) Exhaut ga prpertie apprxiately the f atpheric air, (4) Negligible radiative exchange with urrunding, (5) Ideal ga with negligible vicu diipatin and preure variatin, (6) Fully develped

14 flw, (7) Cntant prpertie. PROPERTIES: Table A.4, air (aue T, = 773 K, T = 83 K, 1 at): c p = 1104 J/kgK, = N/, k = W/K, Pr = 0.71; Table A.4, air (aue T = 53 K, T = 4C = 77 K, T f = 400 K, 1 at): = /, k = W/ K, Pr = ANALYSIS: (a) Fr Eq. 8.45a, PL T, T T T,i exp U c p U1 1 1 hi h where h and h are average cefficient fr internal and external flw, repectively. i Internal flw: With a Reynld nuber f kg Re 33,87 i N The flw i turbulent, and auing fully develped cnditin thrughut the tack, the ittu-belter crrelatin ay be ued t deterine h i. h i 4/ Re Pr k i W K 4/5 0.3 h i , W K 0.5 External flw: Wrking with the Churchill/Berntein crrelatin and Hence, V Re 94, /5 0.6Re 1/ 1/3 5/8 Pr Re /3 1/4 8, Pr

15 h W K W K The utlet ga teperature i then T, 4 C C exp W K 543 C 0.5 kg 1104 J kg K The utlet tack urface teperature can be deterined fr a lcal urface energy balance f the fr, which yield, T, h T, T h T i ht i, ht W T, 3 C h i h W K b) The effect f the air teperature and velcity are a fllw 560 Ga utlet teperature, T(C) Freetrea velcity, V(/) Tinf = 35 C Tinf = 5 C Tinf = -5C ue t the elevated teperature f the ga, the variatin in abient teperature ha nly a all effect n the ga exit teperature. Hwever, the effect f the freetrea velcity i re prnunced. icharge teperature f apprxiately 530 and 560C wuld be repreentative f cld/windy and war/till atpheric cnditin, repectively.

16 COMMENTS: If there are cntituent in the ga dicharge that cndene r precipitate ut at teperature belw T,, related perating cnditin huld be avided.

7-84. Chapter 7 External Forced Convection

7-84. Chapter 7 External Forced Convection Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit.

More information

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION ME 315 Exa edneday, Nveber 11, 015 Thi i a cled-bk, cled-nte exainatin. There i a frula heet rvided. Yu are al allwed t bring yur wn ne-age letter ize, dubleided crib heet. Yu ut turn ff all cunicatin

More information

CONVECTION IN MICROCHANNELS

CONVECTION IN MICROCHANNELS CAPER. Intrductin CONVECION IN MICROCANNELS.. Cntinuu and hernaic ythei. Previu chater are baed n tw fundaental autin: () Cntinuu: Navier-Stke equatin, and the energy equatin are alicable () hernaic equilibriu:

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR)

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR) he 47 Fall 2005 LEURE 7 NONISOHERML OPERION OF IDEL REORS ntinuu Flw Stirred ank Reactr (SR) F, Q V F r F, Q V F Figure : Scheatic f SR with acket and cil uptin: Hgeneu yte a) Single Reactin υ 0 b) Steady

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions: NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flw Reactr T T T T F j, Q F j T m,q m T m T m T m Aumptin: 1. Hmgeneu Sytem 2. Single Reactin 3. Steady State Tw type f prblem: 1. Given deired prductin rate,

More information

3. Internal Flow General Concepts:

3. Internal Flow General Concepts: 3. Internal Flow General Concet: ρ u u 4 & Re Re, cr 2300 μ ν π μ Re < 2300 lainar 2300 < Re < 4000 tranitional Flow Regie : Re > 4000 turbulent Re > 10,000 fully turbulent (d) 1 (e) Figure 1 Boundary

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

THE INFLUENCE OF SURFACE INCLINATION ON THE CALIBRATION OF SURFACE TEMPERATURE SENSORS

THE INFLUENCE OF SURFACE INCLINATION ON THE CALIBRATION OF SURFACE TEMPERATURE SENSORS Prceeding, XVII IMEKO Wrld Cngre, June 22 27, 2003, Dubrvnik, Cratia Prceeding, XVII IMEKO Wrld Cngre, June 22 27, 2003, Dubrvnik, Cratia XVII IMEKO Wrld Cngre Metrlgy in the 3 rd Millennium June 22 27,

More information

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK The Characteristics f Wall Cnfluent Jets fr Ventilated Enclsures 9 th Internatinal Cnference n Air Distributin in Rs niversity f Cibra PORTGAL Y.J. Ch **, Hazi Awbi** & Taghi Kariipanah* *) Fresh AB, SWEDEN

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CANKAYA UNIVERSITY FACUTY OF ENGINEERING MECHANICA ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CHAPTER-3 EXAMPES 1) Cnsider a slab f thicness as illustrated in figure belw. A fluid at temperature T 1 with

More information

7.0 Heat Transfer in an External Laminar Boundary Layer

7.0 Heat Transfer in an External Laminar Boundary Layer 7.0 Heat ransfer in an Eternal Laminar Bundary Layer 7. Intrductin In this chapter, we will assume: ) hat the fluid prperties are cnstant and unaffected by temperature variatins. ) he thermal & mmentum

More information

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where 6.55 Given: An inulated cylinder i initially divided int halve y a itn. On either ide the itn i a ga at a knwn tate. The itn i releaed and equiliriu i attained. Find: Deterine the inal reure, inal teerature,

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel,

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel, Cheical Reactins 14-14 rpane is burned wi 75 percent excess during a cbustin prcess. The AF rati is t be deterined. Assuptins 1 Cbustin is cplete. The cbustin prducts cntain CO, H O, O, and N nly. rperties

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Diclaier: Thi lab write-up i nt t be cpied, in whle r in part, unle a prper reference i ade a t the urce. (It i trngly recended that yu ue thi dcuent nly t generate idea, r a a reference t explain cplex

More information

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Internal Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction Pipe circular cross section. Duct noncircular cross section. Tubes small-diameter

More information

Sediment transport mechanisms 1. Bed-load transport

Sediment transport mechanisms 1. Bed-load transport 10 Sediment tranprt mechanim 1. Bed-lad tranprt 10.1 Intrductin When the bed hear tre exceed a critical value, ediment are tranprted in the frm f bed-lad and upended lad. Fr bed-lad tranprt, the baic mde

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

Nonisothermal Chemical Reactors

Nonisothermal Chemical Reactors he 471 Fall 2014 LEUE 7a Nnithermal hemical eactr S far we have dealt with ithermal chemical reactr and were able, by ug nly a many pecie ma balance a there are dependent react t relate reactr ize, let

More information

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K Practice rblems fr Cnvective Heat Transfer 1. Water at 0 C flws ver a flat late 1m 1m at 10 C with a free stream velcity f 4 m/s. Determine the thickness f bndary layers, lcal and average vale f drag cefficient

More information

Time varying fields and Maxwell's equations Chapter 9

Time varying fields and Maxwell's equations Chapter 9 Tie varying fields and Maxwell's equatins hapter 9 Dr. Naser Abu-Zaid Page 9/7/202 FARADAY LAW OF ELETROMAGNETI INDUTION A tie varying agnetic field prduces (induces) a current in a clsed lp f wire. The

More information

Chapter 5: Diffusion (2)

Chapter 5: Diffusion (2) Chapter 5: Diffusin () ISSUES TO ADDRESS... Nn-steady state diffusin and Fick s nd Law Hw des diffusin depend n structure? Chapter 5-1 Class Eercise (1) Put a sugar cube inside a cup f pure water, rughly

More information

HEAT CONDUCTION IN CONVECTIVELY COOLED ECCENTRIC SPHERICAL ANNULI A Boundary Integral Moment Method

HEAT CONDUCTION IN CONVECTIVELY COOLED ECCENTRIC SPHERICAL ANNULI A Boundary Integral Moment Method Yilazer, A., et al.: Heat Cnductin in Cnvectively Cled Eccentric... THERMAL SCIENCE, Year 017, Vl. 1, N. 5, pp. 55-66 55 Intrductin HEAT CONDUCTION IN CONVECTIVELY COOLED ECCENTRIC SPHERICAL ANNULI A Bundary

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

PHY 140Y FOUNDATIONS OF PHYSICS Problem Set #2

PHY 140Y FOUNDATIONS OF PHYSICS Problem Set #2 PHY 140Y FOUNDATIONS OF PHYSICS 2001-2002 Prble Set #2 HANDED OUT: DUE: Friday, Octber 5, 2001 (in cla) 5:00 PM, Thurday, Octber 18, 2001 in the apprpriate bx, labeled by tutrial grup, in the baeent at

More information

Modeling Crystallization in CMSMPR: Results of Validation Study on Population Balance Modeling in FLUENT

Modeling Crystallization in CMSMPR: Results of Validation Study on Population Balance Modeling in FLUENT Mdeling Crystallizatin in CMSMPR: Results f Validatin Study n Ppulatin Balance Mdeling in FLUENT Bin Wan and Terry A. Ring Dept. Cheical Engineering Uniersity f Utah Salt Lake City, UT 84 and Kuar M. Dhanasekharan

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 6.5 Natural Cnvectin in Enclsures Enclsures are finite spaces bunded by walls and filled with fluid. Natural cnvectin in enclsures, als knwn as internal cnvectin, takes place in rms and buildings, furnaces,

More information

GEOTHERMAL DEICING IN A MINE TUNNEL

GEOTHERMAL DEICING IN A MINE TUNNEL POCEEDINGS, Thirty-Sith rkhp n Getheral eervir Engineering Stanfrd Univerity, Stanfrd, Califrnia, January - February, 0 SGP-T-9 GEOTHEMAL DEICING IN A MINE TUNNEL Anik Tth Univerity f Miklc Miklc-Egyetevar,

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o. ecture 13 - Bt C-C Cnverter Pwer Electrnic Step-Up r Bt cnverter eliver C pwer frm a lwer vltage C level ( ) t a higher la vltage. i i i + v i c T C (a) + R (a) v 0 0 i 0 R1 t n t ff + t T i n T t ff =

More information

The Journal of Supercritical Fluids

The Journal of Supercritical Fluids J. f Supercritical Fluids 7 (212) 75 89 ntents lists available at SciVerse ScienceDirect The Jurnal f Supercritical Fluids ju rn al h m epage: www.elsevier.cm/lcate/supflu Flw and heat transfer characteristics

More information

HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF A HORIZONTAL ANNULAR PASSAGE IN THE TRANSITIONAL FLOW REGIME

HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF A HORIZONTAL ANNULAR PASSAGE IN THE TRANSITIONAL FLOW REGIME HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF A HORIZONTAL ANNULAR PASSAGE IN THE TRANSITIONAL FLOW REGIME Ndenguma D.D., Dirker J.* and Meyer J.P. *Authr fr crrespndence Department f Mechanical and

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes BRINKMANN, E.A. and KING, R.P. A kinetic del fraewrk fr cbined diffuin and adrptin prcee. APCOM 87. Prceeding f the Twentieth Internatinal Sypiu n the Applicatin f Cputer and Matheatic in the Mineral Indutrie.

More information

Aircraft Performance - Drag

Aircraft Performance - Drag Aircraft Perfrmance - Drag Classificatin f Drag Ntes: Drag Frce and Drag Cefficient Drag is the enemy f flight and its cst. One f the primary functins f aerdynamicists and aircraft designers is t reduce

More information

bulk velocity through orifice,

bulk velocity through orifice, 150A Review Sessin Other Frictin Lsses Bernulli hf accunts fr all types f drag: is drag due t skin frictin is drag due t fittings (tabulated fractin f the velcity head) is drag due t units (a given r calculated

More information

Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions Abdenour Bourabaa, Malika Fekih, Mohamed Saighi

Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions Abdenour Bourabaa, Malika Fekih, Mohamed Saighi Study n the Heat Tranfer Perfrmance f the Annular Fin under Cndening Cnditin Adenur Buraaa, Malika Fekih, Mhamed Saighi Atract A numerical invetigatin f the fin efficiency and temperature ditriutin f an

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

C. Kranenburg \ VERVALL~\J \ Internal Report No Laboratory of Fluid Mechanics. Department of Civil Engineering. Delft University of Technology

C. Kranenburg \ VERVALL~\J \ Internal Report No Laboratory of Fluid Mechanics. Department of Civil Engineering. Delft University of Technology A I {ple diffuin-cntrled del f ixing acr a tabie denity interface C. Kranenburg \ VERVALL~\J \ Internal Reprt N. 2-79 Labratry f Fluid Mechanic Departent f Civil Engineering Delft Univerity f Technlgy

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Concept of Reynolds Number, Re

Concept of Reynolds Number, Re Concept of Reynold Nuber, Re Ignore Corioli and Buoyancy and forcing Acceleration Advection Preure Gradient Friction I II III IV u u 1 p i i u ( f u ) b + u t x x x j i i i i i i U U U? U L L If IV <

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Frequency Response of Amplifiers

Frequency Response of Amplifiers 類比電路設計 (3349-004 Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Conservation of Momentum

Conservation of Momentum Cnervatin f Mmentum PES 1150 Prelab Quetin Name: Lab Statin: 003 ** Diclaimer: Thi re-lab i nt t be cied, in whle r in art, unle a rer reference i made a t the urce. (It i trngly recmmended that yu ue

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected.

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected. 1 HW #3: Cnservatin f Linear Mmentum, Cnservatin f Energy, Cnservatin f Angular Mmentum and Turbmachines, Bernulli s Equatin, Dimensinal Analysis, and Pipe Flws Prblem 1. Cnservatins f Mass and Linear

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

An Experimental Study for Mixed Convection through a Circular Tube Filled with Porous Media and Fixed Horizontally and Inclined

An Experimental Study for Mixed Convection through a Circular Tube Filled with Porous Media and Fixed Horizontally and Inclined www.ccenet.rg/ma Mdern Applied Science Vl., N. ; April 0 An Experimental Study fr Mixed Cnvectin thrugh a Circular Tube Filled with Pru Media and Fixed Hrizntally and Inclined Taheen Ahmad Taheen Mechanical

More information

h = 0 km for your table in (a)], and for T0 = 316 K. Then obtain a Homework 1 AERE355 Fall 2017 Due 9/1(F)

h = 0 km for your table in (a)], and for T0 = 316 K. Then obtain a Homework 1 AERE355 Fall 2017 Due 9/1(F) 1 Herk 1 AERE355 Fall 17 Due 9/1(F) SOLUION NOE: If yur slutin des nt adhere t the frat described in the syllabus, it ill be grade as zer Prble 1(5pts) In the altitude regin < h < 1k, e have the flling

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support. ecture 6 Mderately arge Deflectin Thery f Beams Prblem 6-1: Part A: The department f Highways and Public Wrks f the state f Califrnia is in the prcess f imprving the design f bridge verpasses t meet earthquake

More information

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed- a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555

More information

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2 4.5 Evaporation and Diffuion 4.5.4 Evaporation and Diffuion through Quiecent Air (page 86) z bul otion of air and j z diffuion of air (a) diffuion of containant (j) y a,, y j, or P a,, P j, z 1 volatile

More information

MECHANICS OF SOLIDS TORSION TUTORIAL 2 TORSION OF THIN WALLED SECTIONS AND THIN STRIPS

MECHANICS OF SOLIDS TORSION TUTORIAL 2 TORSION OF THIN WALLED SECTIONS AND THIN STRIPS MECHANICS OF SOLIDS ORSION UORIAL ORSION OF HIN WALLED SECIONS AND HIN SRIPS Yu shuld judge yur prgress by cmpleting the self assessment exercises. On cmpletin f this tutrial yu shuld be able t d the fllwing.

More information

Liquid or gas flow through pipes or ducts is commonly used in heating and

Liquid or gas flow through pipes or ducts is commonly used in heating and cen58933_ch08.qxd 9/4/2002 11:29 AM Page 419 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

More information

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18 EE247B/ME218 Intrductin t MEMS Design Lecture 7m1 Lithgraphy, Etching, & Dping Dping f Semicnductrs Semicnductr Dping Semicnductrs are nt intrinsically cnductive T make them cnductive, replace silicn atms

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Modelling of NOLM Demultiplexers Employing Optical Soliton Control Pulse

Modelling of NOLM Demultiplexers Employing Optical Soliton Control Pulse Micwave and Optical Technlgy Letters, Vl. 1, N. 3, 1999. pp. 05-08 Mdelling f NOLM Demultiplexers Emplying Optical Slitn Cntrl Pulse Z. Ghassemly, C. Y. Cheung & A. K. Ray Electrnics Research Grup, Schl

More information

Inertial Mass of Charged Elementary Particles

Inertial Mass of Charged Elementary Particles David L. Bergan 1 Inertial Mass Inertial Mass f Charged Eleentary Particles David L. Bergan Cn Sense Science P.O. Bx 1013 Kennesaw, GA 30144-8013 Inertial ass and its prperty f entu are derived fr electrdynaic

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

MODULE 5 Lecture No: 5 Extraterrestrial Radiation

MODULE 5 Lecture No: 5 Extraterrestrial Radiation 1 P age Principle and Perfrmance f Slar Energy Thermal Sytem: A Web Cure by V.V.Satyamurty MODULE 5 Lecture N: 5 Extraterretrial Radiatin In Mdule 5, Lecture N. 5 deal with 5.1 INTRODUCTION 5. EXTRA TERRESTRIAL

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Chapter 2 Analysis of Power System Stability by Classical Methods

Chapter 2 Analysis of Power System Stability by Classical Methods Chapter Analyi f wer Syte Stability by Claical Methd.1 Claical Mdel A dicued in the previu Chapter, the firt tep in analyzing pwer tability i t repreent the pwer yte cpnent atheatically. The iplet yet

More information

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux Korean Chem. Eng. Res., 52(3), 294-301 (2014) http://dx.doi.org/10.9713/kcer.2014.52.3.294 PISSN 0304-128X, EISSN 2233-9558 Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Design and Analysis of Gas Turbine Blade by Potential Flow Approach

Design and Analysis of Gas Turbine Blade by Potential Flow Approach V. Vijaya kumar et al Int. Jurnal f Engineering Research and Applicatins RESEARCH ARTICLE OPEN ACCESS Design and Analysis f Gas Turbine Blade by Ptential Flw Apprach V. Vijaya Kumar 1, R. Lalitha Narayana

More information

An Empirical Study of Frost Accumulation Effects on Louvered-Fin, Microchannel Heat Exchangers

An Empirical Study of Frost Accumulation Effects on Louvered-Fin, Microchannel Heat Exchangers Purdue Univerity Purdue e-pub Internatinal Refrigeratin and Air Cnditining Cnference Schl f Mechanical Engineering 4 An Empirical Study f Frt Accumulatin Effect n Luvered-Fin, Micrchannel Heat Exchanger

More information

1) p represents the number of holes present. We know that,

1) p represents the number of holes present. We know that, ECE650R : Reliability Physics f Nanelectrnic Devices Lecture 13 : Features f FieldDependent NBTI Degradatin Date : Oct. 11, 2006 Classnte : Saakshi Gangwal Review : Pradeep R. Nair 13.0 Review In the last

More information

Buoyancy Effect on the Fully Developed Air Flow in Concentric Inclined Annulus

Buoyancy Effect on the Fully Developed Air Flow in Concentric Inclined Annulus Internatinal Jurnal f Mechanical & Mechatrnics Engineering IJMME-IJENS Vl:3 N:0 46 Buyancy Effect n the Fully Develped Air Flw in Cncentric Inclined Annulus Asmaa Ali Hussein Lecturer Fundatin Of Technical

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information