CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

Size: px
Start display at page:

Download "CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh"

Transcription

1 Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October 0, 010 Intruction: rite your nae on each page Cloed-boo exa a lit of equation i given Pleae write legibly and how all wor for your own benefit. ide of the page only. Keep all page in order rite on one You are aed to write your auption and anwer to ub-proble in deignated area. Only the wor in it deignated area will be graded. Perforance Total 100

2 Proble 1 [35 pt] Nae: A phere of diaeter 18 ha theral conductivity of 10 /-K, denity of 7800 g/ 3, and pecific heat of 400 J/g-K. Initially the phere i at a unifor teperature of 7C. The phere i expoed to air at T = 000C with convective heat tranfer coefficient h conv = 100 / -K. The eiivity of the phere urface (conidered to be gray) i 0.8. The wall of the furnace are at T urr = 000C and can be conidered large relative to the ize of the phere. (a) Neglecting radiation effect, calculate the tie required (econd) for the teperature of the phere to reach 500C. (b) Now conider that radiation fro the furnace wall cannot be neglected. How uch tie (econd) i required to reach 500C at the center of the phere? Coent on the tie to reach 500C in part (a) and (b). In part (b), aue that radiation can be treated linearly and that the radiative heat tranfer coefficient can be calculated baed on initial teperature of the phere, neglecting the variation of radiative heat tranfer coefficient with changing urface teperature. Lit your auption here [3 pt]: One-dienional radial conduction in the phere Contant propertie Unifor radiative heat tranfer coefficient (reain contant) on the urface Start your anwer to part (a) here [1 pt]: hconvl c -K 1000 V D Biot nuber: Bi 0.03; Lc olid 10 A 6 -K luped capacitance approach i valid (Bi < 0.1) T T Teperature ditribution through the phere: expbifo Ti T t exp0.03fo Solving we get: Fo L Theral diffuivity: C p 6 Therefore, the tie required to reach 500C: t 5.7 econd c

3 Proble 1 - cont. Nae: Start your anwer to part (b) here [0 pt]: h T T T T Radiative heat tranfer coefficient: rad urr urr 8 h rad K K K -K Convection and radiative effect are additive at the urface: htotal K Biot nuber: htotall c -K 1000 V D Bi ; Lc olid 10 A 6 -K luped capacitance approach i not valid (Bi > 0.1) T T T T Non-dienional teperature at the center of the phere: * o o C1exp 1 Fo htotalr o -K 1000 Uing Table 5.1: C and for Bi olid 10 -K t 1.85exp Fo Solving we get: Fo ro Therefore, the tie required to reach 500C at the center of the phere: t 6.6 econd Since total rate of heat tranfer to the phere increae when conidering radiation fro the furnace wall in addition to convection fro the abient air, le tie i required to attain the ae teperature of 500C at the center of the phere. i

4 Proble [30 pt] Nae: Conider a two-dienional unifor eh with cell width x = y hown below. The olid ha theral conductivity, theral diffuivity, and generate heat at a unifor voluetric rate of q. You need to develop the tranient nodal equation for a corner node (, n) uing energy balance ethod. The top boundary i perfectly inulated, while the inclined boundary i expoed to a fluid at T with a convective heat tranfer coefficient h. (a) Uing the explicit ethod derive an 1 expreion for T p p in ter of T and the teperature of the relevant urrounding node a well a the teperature of abient fluid. Expre your anwer in ter of the finite difference Biot nuber (Bi) the finite difference Fourier nuber (Fo) a well a any other given paraeter. (b) Derive the tability criterion for the nodal equation developed in (a). Start you anwer to part (a) here [0 pt]: Conidering energy balance for the control volue hown, we have: E E E E in out gen t E P P in qe q q where y T1, n T, n P P nw qe qcond1 1 T 1, n T, n x P P T T x q qcond x T 1 Tn, y 1 x y x y E 1 3 gen qv q q x 8 P1 P dt dt 3 Tn, T E t Cp VCp x Cp dt dt 8 t Subtituting in the energy balance, we have: P1 P P P P P hx P P 3 3 Tn, T T1, nt T 1 T T T q x x Cp 8 8 t Dividing throughout by /, we get: 1 P P P P 1 and qnw qconv h 1 T T, n x hx 3 q 3 C T T T T T T x 4 4 t T T hx t where Bi,, and Fo C x P P P P P P p P 1 P 1, n 1 p

5 Proble - cont. Nae: Re-arrangeent of the equation give: q 4 T FoT FoT BiT Fo x 1 BiFo 4Fo T P1 P P P P 1, n 1 Start your anwer to part (b) here [10 pt]: 4 For tability, we ut have: 1 BiFo 4Fo i.e. 1 Bi Fo 3. Thi will give the required liitation on the tie tep to enure 4 tability in explicit ethod.

6 Proble 3 [35 pt] Nae: An open wiing pool of area A = 10 5 i expoed to dry abient air which flow with a velocity u = 10 / at T = 30 o C. The condition at the urface of the pool ay be aued to be aturated. Approxiate thi configuration a flow of air over a flat plate and ue 4/5 1/3 Nu L ReL Pr to calculate the Nuelt nuber. Conider that the water in the pool i to be aintained at a teperature of T = 7 o C and aue that the heat-a tranfer analogy i valid for the given condition. Aue the binary diffuion coefficient of water vapor in air i D AB = /. All other propertie hould be obtained fro the table provided. (a) Calculate the average heat tranfer coefficient (/ -K) and the convective heat tranfer rate (). (b) hat i the rate of evaporation of water (g/) fro the pool? (c) Should the pool be refrigerated or heated in order to aintain it urface teperature at T = 7 o C? Calculate the external power () provided to/withdrawn fro the pool. T =30 o C, φ = 0.0 U =10/ T =7 o C L=10 Lit your auption here [3 pt]: Steady tate Contant propertie Negligible radiation Heat and a tranfer analogy valid Boundary layer auption Lit the propertie ued and clearly ention the teperature for each property [5 pt]: All air propertie at the fil teperature: T K ; 0.06 ; Pr ;.7 10 (Table A-4) -K All water vapor propertie at the urface teperature: T 300 K 1 1 g J ; hfg 438 (Table A-6) g at, 3 vg fil Proble 3 - cont.

7 Nae: Start you anwer to part (a) here [10 pt]: ul 6 Reynold nuber: Re L /5 1/3 hl Average Nuelt nuber: NuL 0.037ReL Pr Average heat tranfer coefficient: h 3.4 -K Convective heat tranfer rate fro the abient air to the pool urface: qconv hat T K qconv 3,510 -K Start you anwer to part (b) here [7 pt]: h Applying heat and a tranfer analogy: h ; Le /3 DABLe DAB Average a tranfer coefficient: h 0.04 Rate of evaporation of water vapor fro the pool urface to the abient air: h A h A g A, A, at, at, 3 g Start your anwer to part (c) here [10 pt]: Heat tranfer aociated with evaporation of water vapor: g J q h q 69, 76.8 evap fg g evap Conidering energy balance at the pool urface, heat leaving the urface (due to evaporation) i higher than heat entering the urface (due to convection) the pool ut be heated in order to aintain it urface at contant teperature of 7C. The external power provided to the pool: Pe qevap qconv P 66,16.8 e

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2 4.5 Evaporation and Diffuion 4.5.4 Evaporation and Diffuion through Quiecent Air (page 86) z bul otion of air and j z diffuion of air (a) diffuion of containant (j) y a,, y j, or P a,, P j, z 1 volatile

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

PROBLEM 7.2 1/3. (b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 1/2 1/3

PROBLEM 7.2 1/3. (b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 1/2 1/3 PROBEM 7. KNOWN: Teperature and velocity of engine oil. Teperature and length of flat plate. FIN: (a) Velocity and theral boundary layer thickness at trailing edge, (b) Heat flux and surface shear stress

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

3. Internal Flow General Concepts:

3. Internal Flow General Concepts: 3. Internal Flow General Concet: ρ u u 4 & Re Re, cr 2300 μ ν π μ Re < 2300 lainar 2300 < Re < 4000 tranitional Flow Regie : Re > 4000 turbulent Re > 10,000 fully turbulent (d) 1 (e) Figure 1 Boundary

More information

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 009 This is a closed-book, closed-notes examination. There is a formula sheet at the back. You must turn off all communications devices before

More information

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer Suppleental Material for Tranport Proce and Separation Proce Principle hapter 7 Principle of Unteady - State and onvective Ma Tranfer Thi chapter cover different ituation where a tranfer i taking place,

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh CICLE YOU DIVISION: Div. (9:30 am) Div. (:30 am) Div. 3 (:30 pm) Prof. uan Prof. Naik Mr. Singh School of Mechanical Engineering Purdue University ME35 Heat and Mass ransfer Exam # ednesday, September,

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

Concept of Reynolds Number, Re

Concept of Reynolds Number, Re Concept of Reynold Nuber, Re Ignore Corioli and Buoyancy and forcing Acceleration Advection Preure Gradient Friction I II III IV u u 1 p i i u ( f u ) b + u t x x x j i i i i i i U U U? U L L If IV <

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

Types of Heat Transfer

Types of Heat Transfer Type of Heat Tranfer Dv Dt x = k dt dx v T S 2 * * ( v GrT * z = + z H vap lat uject in the coure conduction (Fourier Law forced convection (due to flow ource term free convection (fluid motion due to

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body Chapter 1 Radiation Heat ranfer Special opic: Heat ranfer from the Human Body 1-7C Ye, roughly one-third of the metabolic heat generated by a peron who i reting or doing light work i diipated to the environment

More information

Types of Heat Transfer

Types of Heat Transfer ype of Heat ranfer * Dvz Dt x k d dx v S * * v Gr z HH vap lat uject in the coure conduction (Fourier Law) forced convection (due to flow) ource term free convection (fluid motion due to denity variation

More information

Conduction Heat transfer: Unsteady state

Conduction Heat transfer: Unsteady state Conduction Heat tranfer: Unteady tate Chapter Objective For olving the ituation that Where temperature do not change with poition. In a imple lab geometry where temperature vary alo with poition. Near

More information

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle. ENSC 61 Tutorial, eek#8 Ga Refrigeration Cycle A refrigeration yte ug a the workg fluid, conit of an ideal Brayton cycle run revere with a teperature and preure at the let of the copreor of 37C and 100

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Markov Processes. Fundamentals (1) State graph. Fundamentals (2) IEA Automation 2018

Markov Processes. Fundamentals (1) State graph. Fundamentals (2) IEA Automation 2018 Fundaental () Markov Procee Dr Ulf Jeppon Div of Indutrial Electrical Engineering and Autoation (IEA) Dept of Bioedical Engineering (BME) Faculty of Engineering (LTH), Lund Univerity Ulf.Jeppon@iea.lth.e

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

Radiation Heat Transfer

Radiation Heat Transfer CM30 ranport I Part II: Heat ranfer Radiation Heat ranfer Profeor Faith Morrion Department of Chemical Engineering Michigan echnological Univerity CM30 ranport Procee and Unit Operation I Part : Heat ranfer

More information

7-84. Chapter 7 External Forced Convection

7-84. Chapter 7 External Forced Convection Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit.

More information

2.7 Aerosols and coagulation

2.7 Aerosols and coagulation 1 Note on 1.63 Advanced Environmental Fluid Mechanic Intructor: C. C. Mei, 1 ccmei@mit.edu, 1 617 53 994 December 1,.7 Aerool and coagulation [Ref]: Preent, Kinetic Theory of Gae Fuch, Mechanic of Aerool

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Related Rates section 3.9

Related Rates section 3.9 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip

More information

_10_EE394J_2_Spring12_Inertia_Calculation.doc. Procedure for Estimating Grid Inertia H from Frequency Droop Measurements

_10_EE394J_2_Spring12_Inertia_Calculation.doc. Procedure for Estimating Grid Inertia H from Frequency Droop Measurements Procedure or Etiating Grid Inertia ro Frequency Droop Meaureent While the exion or inertia and requency droop are well known, it i prudent to rederive the here. Treating all the grid generator a one large

More information

Turbomachinery. Turbines

Turbomachinery. Turbines Turboachinery Turbines Turboachinery -40 Copyright 04,05 by Jerry M. Seitan. ll rights reserved. Turbine Overview Configurations (aial, radial, ied), analysis and other issues siilar to copressors Copared

More information

ME 315 Exam 1 Thursday, October 1, 2015 CIRCLE YOUR DIVISION

ME 315 Exam 1 Thursday, October 1, 2015 CIRCLE YOUR DIVISION ME 5 Exam Thursday, October, 05 This is a closed-book, closed-notes examination. There is a formula sheet provided. You are also allowed to bring your own one-page letter size, doublesided crib sheet.

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

Potential energy of a spring

Potential energy of a spring PHYS 7: Modern Mechanic Spring 0 Homework: It i expected that a tudent work on a a homework #x hortly after lecture #x, ince HWx i on material of LECx. While the due date for HW are typically et to about

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m. ME 300 Therodynaics II Exa 2 Noveber 3, 202 8:00 p.. 9:00 p.. Nae: Solution Section (Circle One): Sojka Naik :30 a.. :30 p.. Instructions: This is a closed book/notes exa. You ay use a calculator. You

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Moisture transport in concrete during wetting/drying cycles

Moisture transport in concrete during wetting/drying cycles Cheitry and Material Reearch Vol.5 03 Special Iue for International Congre on Material & Structural Stability Rabat Morocco 7-30 Noveber 03 Moiture tranport in concrete during wetting/drying cycle A. Taher

More information

24P 2, where W (measuring tape weight per meter) = 0.32 N m

24P 2, where W (measuring tape weight per meter) = 0.32 N m Ue of a 1W Laer to Verify the Speed of Light David M Verillion PHYS 375 North Carolina Agricultural and Technical State Univerity February 3, 2018 Abtract The lab wa et up to verify the accepted value

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Rubble Mound Breakwater Design Example Given: Design Conditions. γ = 17 kn/m 3 φ = 30 c = 0

Rubble Mound Breakwater Design Example Given: Design Conditions. γ = 17 kn/m 3 φ = 30 c = 0 Rubble Mound Breakwater Deign Exaple Given: Deign Condition Water depth: 5.5 Beach lope: 1:0 Deign high water: 1.7 Deign wave H H 1/10.5 T 8 ec L o 100 Allowable overtopping: 0.4 /ec/ Aror unit: rough

More information

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model. Excerpt from the Proceeding of the COMSOL Conference 2010 Boton Modeling of Tranport and Reaction in a Catalytic Bed Uing a Catalyt Particle Model. F. Allain *,1, A.G. Dixon 1 1 Worceter Polytechnic Intitute

More information

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min SOLUTIONS FOR TUTORIL QUESTIONS COURSE TE 49 ) Maxiu pup diplaceent i c /rev. Motor diplaceent i c /rev. a) t full pup diplaceent: Ideal otor peed 4rev/in x / 4 rev/in The lo in otor peed due to the voluetric

More information

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects.

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects. PROBEM 5.88 KNOWN: Initial temperature of fire clay bric which is cooled by convection. FIND: Center and corner temperatures after 50 minutes of cooling. ASSUMPTIONS: () Homogeneous medium with constant

More information

S E V E N. Steady-State Errors SOLUTIONS TO CASE STUDIES CHALLENGES

S E V E N. Steady-State Errors SOLUTIONS TO CASE STUDIES CHALLENGES S E V E N Steady-State Error SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Steady-State Error Deign via Gain 76.39 a. G( (50)(.3). Syte i Type. Step input: e( ) 0; Rap input: e( ) v 76.39.59 ;

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 Heat and Mass Transfer School of Mechanical Engineering Purdue University

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION ME 315 Exa edneday, Nveber 11, 015 Thi i a cled-bk, cled-nte exainatin. There i a frula heet rvided. Yu are al allwed t bring yur wn ne-age letter ize, dubleided crib heet. Yu ut turn ff all cunicatin

More information

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn 2007 R. C. Hibbeler. Publihed by Pearon Education, Inc., Upper Saddle River, J. All right reerved. Thi aterial i protected under all copyright law a they currently exit. o portion of thi aterial ay be

More information

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS HAPTE FILTES AND TUNED AMPLIFIES hapter Outline. Filter Traniion, Type and Specification. The Filter Tranfer Function. Butterworth and hebyhev Filter. Firt Order and Second Order Filter Function.5 The

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Module 1: Learning objectives

Module 1: Learning objectives Heat and Ma Tranfer Module 1: Learning objective Overview: Although much of the material of thi module will be dicued in greater detail, the objective of thi module i to give you a reaonable overview of

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa 1 Circle your instructor s last nae Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division (9:0): Choi Division

More information

Chemistry I Unit 3 Review Guide: Energy and Electrons

Chemistry I Unit 3 Review Guide: Energy and Electrons Cheitry I Unit 3 Review Guide: Energy and Electron Practice Quetion and Proble 1. Energy i the capacity to do work. With reference to thi definition, decribe how you would deontrate that each of the following

More information

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL =

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL = Our online Tutor are available 4*7 to provide Help with Proce control ytem Homework/Aignment or a long term Graduate/Undergraduate Proce control ytem Project. Our Tutor being experienced and proficient

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

PROBLEM Node 5: ( ) ( ) ( ) ( )

PROBLEM Node 5: ( ) ( ) ( ) ( ) PROBLEM 4.78 KNOWN: Nodal network and boundary conditions for a water-cooled cold plate. FIND: (a) Steady-state temperature distribution for prescribed conditions, (b) Means by which operation may be extended

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Soil Inertia and Shallow Basement Envelope Impact on Cellar Internal Temperature

Soil Inertia and Shallow Basement Envelope Impact on Cellar Internal Temperature Journal of Renewable Energy and Sutainable Developent (RESD) Volue 2, Iue 1, June 2 - ISSN 2356-8569 http://dx.doi.org/1.222/resd.2.2.1.3 Soil Inertia and Shallow Baeent Envelope Ipact on Cellar Internal

More information

THE EFFECTIVE MECHANICAL PROPERTIES OF METAL-GLASS MATERIALS AND COATINGS

THE EFFECTIVE MECHANICAL PROPERTIES OF METAL-GLASS MATERIALS AND COATINGS THE EFFECTIVE MECHANICAL PROPERTIES OF METAL-GLASS MATERIALS AND COATINGS Yuliya azyyrenko Adiral Makarov National Univerity of Shipbuilding, Mykolaiv, Ukraine u.a.kaziirenko@gail.co Received 6-JAN-016;

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

A Comparison of Correlations for Heat Transfer from Inclined Pipes

A Comparison of Correlations for Heat Transfer from Inclined Pipes A Comparion of Correlation for Heat Tranfer from Inclined Pipe Krihperad Manohar Department of Mechanical and Manufacturing Engineering The Univerity of the Wet Indie St. Augutine, Trinidad and Tobago

More information

The Extended Balanced Truncation Algorithm

The Extended Balanced Truncation Algorithm International Journal of Coputing and Optiization Vol. 3, 2016, no. 1, 71-82 HIKARI Ltd, www.-hikari.co http://dx.doi.org/10.12988/ijco.2016.635 The Extended Balanced Truncation Algorith Cong Huu Nguyen

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties. PROBLEM 5.5 KNOWN: Diameter and radial temperature of AISI 00 carbon steel shaft. Convection coefficient and temperature of furnace gases. FIND: me required for shaft centerline to reach a prescribed temperature.

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

8 Pages, 3 Figures, 2 Tables. Table S1: The reagents used for this study, their CAS registry numbers, their sources, and their stated purity levels.

8 Pages, 3 Figures, 2 Tables. Table S1: The reagents used for this study, their CAS registry numbers, their sources, and their stated purity levels. Suleentary Material for The Feaibility of Photoenitized Reaction with Secondary Organic Aerool Particle in the Preence of Volatile Organic Coound Kurti T. Malecha and Sergey A. Nizkorodov* * nizkorod@uci.edu

More information

SIMULATION OF SOIL TEMPERATURE VARIATION FOR GEOTHERMAL APPLICATIONS

SIMULATION OF SOIL TEMPERATURE VARIATION FOR GEOTHERMAL APPLICATIONS International Journal of Mechanical Engineering and Technology (IJMET) Volue 8, Issue 2, February 2017, pp. 167 175 Article ID: IJMET_08_02_020 Available online at http://www.iaee.co/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=2

More information

Periodic Table of Physical Elements

Periodic Table of Physical Elements Periodic Table of Phyical Eleent Periodic Table of Phyical Eleent Author:Zhiqiang Zhang fro Dalian, China Eail: dlxinzhigao@6.co ABSTRACT Thi i one of y original work in phyic to preent periodic table

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

Sample Problems. Lecture Notes Related Rates page 1

Sample Problems. Lecture Notes Related Rates page 1 Lecture Note Related Rate page 1 Sample Problem 1. A city i of a circular hape. The area of the city i growing at a contant rate of mi y year). How fat i the radiu growing when it i exactly 15 mi? (quare

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Midterm Test Nov 10, 2010 Student Number:

Midterm Test Nov 10, 2010 Student Number: Mathematic 265 Section: 03 Verion A Full Name: Midterm Tet Nov 0, 200 Student Number: Intruction: There are 6 page in thi tet (including thi cover page).. Caution: There may (or may not) be more than one

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

=

= Coordinator: Saleem Rao Saturday, December 02, 2017 Page: 1 Q1. Two charge q1 = + 6.00 µc and q2 = 12.0 µc are placed at (2.00 cm, 0) and (4.00 cm, 0), repectively. If a third unknown charge q3 i to be

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Unit 12 Refrigeration and air standard cycles November 30, 2010

Unit 12 Refrigeration and air standard cycles November 30, 2010 Unit Rerigeration and air tandard cycle Noveber 0, 00 Unit Twelve Rerigeration and Air Standard Cycle Mechanical Engineering 70 Therodynaic Larry Caretto Noveber 0, 00 Outline Two oewhat related topic

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information