Conduction Heat transfer: Unsteady state

Size: px
Start display at page:

Download "Conduction Heat transfer: Unsteady state"

Transcription

1 Conduction Heat tranfer: Unteady tate

2 Chapter Objective For olving the ituation that Where temperature do not change with poition. In a imple lab geometry where temperature vary alo with poition. Near the urface of a large body (emi infinite region)

3 Keyword Internal reitance External reitance Biot number Lumped parameter anayi 1D and multi dimenional heat conduction Heiler chart Semi infinite region

4 1 Lumped Parameter Analyi r=r r=0 r=0.5r Surr Figure 1. Several temperature in the ytem. In tranient, r=r = r=0.5r = r=0?

5 Lumped Parameter Analyi Figure. A olid with convection over it urface. mc p Δ ha( )Δt (1)

6 Lumped Parameter Analyi mc p Δ ha( )ΔΔ (1) M : Ma C p : Specific heat h : Convective heat tranfer coefficient A : Surface area : Bulk fluid temperature ()

7 Lumped Parameter Analyi (3)

8 (4) (5)

9 Biot Number r=r r=0 r=0.5r Surr Figure 3. Several temperature in the ytem. So, when can we apply r=r = r=0.5r = r=0?

10 Biot Number Bi (Biot Number) : Deciding whether internal reitance can be ignored. (6) (7)

11 Characteritic Length Characteritic length V/A Path of leat thermal reitance Characteric length = emperature can be changed in hort time (8) Figure 4. Characteritic length for heat conduction in variou geometrie.

12 Example 1 What i the temperature of the egg after 60min? Figure 5. Schematic for Example 1. Known: Initial temperature of an egg Find: emperature of the egg after 60min. Given data: i = 0 air = 38 h = 5. W/m ㆍ K ρ = 1035 kg/m 3 C p = 3350 J/kgㆍK k = 0.6 W/mㆍK

13 Aumption: 1. Egg i approximately pherical.. Surface heat tranfer coefficient provided i an average value. 3. Lumped parameter analyi. Bi (Biot Number) = hv / Ak = 0.07 < 0.1 Being Bi <0.1, lumped analyi can be applied! Uing (Eqn. 5), hen, = 9.1

14 Aumption: 1. Egg i approximately pherical.. Surface heat tranfer coefficient provided i an average value. 3. Lumped parameter analyi. Bi (Biot Number) = hv / Ak = 0.07 < 0.1 Being Bi <0.1, lumped analyi can be applied! Uing (Eqn.5), hen, = 9.1

15 3 When Internal Reitance I Not Negligible r=r r=0 r=0.5r Surr Figure 1: Several temperature in the ytem. he ituation, r=r r=0.5r r=0 (i.e. Bi 0.1)

16 When Internal Reitance I Not Negligible Figure 6. Schematic of a lab howing the line of ymmetry at x = 0 and the two urfcae at x = L and at x = L maintained at temperature S. he material i very large (extend to infinity) in the other two direction.

17 When Internal Reitance I Not Negligible (9) Boundary condition (10) (11)

18 When Internal Reitance I Not Negligible Initial condition (1) (13) α (hermal diffuivity) = k/ρc p

19 How emperature Change with ime For viualizing emperature v. Poition and ime, infinite erie hould be implified Figure 7. he term in the erie (n = 0, 1,... in Equation 5.13) drop off rapidly for value of time. Calculation are for F O = at 30 and F O = at 600 for a thickne of L = 0.03 m and a typical α = 1.44 x 10 7m/ for bio material.

20 How emperature Change with ime Comparing different term at each time(t= 30, t= 600), Contribution decay Gradually at t= 30 Rapidly at t= 600 (15) (16)

21 emperature Change with Poition and Spatial Average We can ee that temperature varie a a coine function herefore, we need to define patial average temperature (15) (16) t L i e L x co 4 t L L x i co 4 ln ln

22 Spatial average temperature av 1 L 0 L dx (17) Applying (5.17) to (5.16) give ln av i 8 ln L t (18)

23 emperature Change with Size t L 4 ln 8 av i (19)

24 Chart Developed from the Solution: heir Ue and Limitation. It can be een that temperature i a function of x/l and αt/l Chart are developed becaue of the complexity of the calculation of erie. (0) co L t n n n i e L x n n

25 Chart are developed with the condition of n=0. In other word, it i a plot of Eqn. 5 And it i alo called Heiler chart. here are ome aumption for the development of the chart. hee are: 1. Uniform initial temperature. Contant boundary fluid temperature 3. Perfect lab, cylinder or phere 4. Far from edge 5. No heat generation (Q=0) 6. Contant thermal propertie (k, α, c p are contant) 7. ypically for time long after initial time, given by αt/l >0.

26 Figure 8. Unteady tate diffuion in a large lab

27 Example. emperature Reached During Food Sterilization Figure 9. A cylindrical can containing food to be terilized. Surface temperature of a lab of tuna i uddenly increaed Find the temperature at the center of the lab after 30 min

28 Given data: 1. hickne of lab = 5 mm. hermal diffuivity of the lab, 3. Initial temperature = Surface temperature = ime of heating = m / Aumption 1. Heating from the ide i ignored. hermal diffuivity i contant

29 n L x m k hl 0 F t L 10 7 m / m 0.3 i So the temperature = after 30 minute of heating

30 Convective Boundary Condition We have conidered a negligible external fluid reitance to heat tranfer. But if we conider external fluid reitance in addition to internal fluid reitance,

31 At the urface, Figure 10. In convective boundary condition, urface temperature i not the ame a the bulk fluid temperature,, ignifying additional fluid reitance. k x he olution i generalized form of Eqn and you can refer to Heiler chart a well. h

32 Numerical Method a Alternative to the Chart In practice, however, uch condition dealt with above are not that imple Limitation of the analytical olution can be overcome uing numerical, computer baed olution

33 4 ranient Heat ranfer in a Finite Geometry Multi Dimenional Problem We hould conider the ituation two and three dimenional effect yield A finite geometry i conidered a the interection of two or three infinite geometrie (1) z lab inite i t z lab y inite i t y lab x inite i t x i t xyz inf, inf, inf,,

34 Figure 11. A finite cylinder can be conidered a an interec tion of an infinite cylinder and a lab lab inite i t z cylinder inite i t r i t z r inf, inf,,, ()

35 5 ranient Heat ranfer in a Semiinfinite Region A emi infinite region extend to infinity in two direction and a ingle identifiable urface in the other direction You can ee Fig extend to infinity in the y and z direction and ha an identifiable urface at x=0 Figure 1. Schematic of a emi-infinite region howing only one identifiable urface.

36 It can be ued practically in heat tranfer for a relatively hort time and/or in a relatively thick material he governing equation with no bulk flow and no heat generation i he boundary condition are he initial condition i t x t 0 i x 0 x i (3) (4) (5) (6)

37 he olution i t x erf i i 1 (7) he function erf(η) i called error function and given by t x 0 ) ( d e erf And here,

38 Figure 13. Comparion of the complementary error function (1-erf(η)) with an exponential e-η

39 Heat flux at the urface of the emi infinite region can be calculated with chain rule 0 0 " x x dx d d d k dx d k q t k t e k i i 1 0 (8)

40 he ituation we can approximate emi infinite region x t x 4 t (9) Figure 14. Plot of Eqn. 9, illutrating the minimum thickne of a material for which error function olution can be ued.

41 Other boundary condition 1. Convective boundary condition h x k urface urface he olution i k t h t x erf e t x erf k t h k hx i i 1 1 (30)

42 . Specified urface heat flux boundary condition " " urface q q (31) t x erf k x q e t q k t x i 1 " 4 " (3) he olution i

43 Example 3 Analyi of Skin Burn Figure 15. Section of a kin with degree of burn uperimpoed on it. A thermal burn occur a a reult of an elevation in tiue temperature above a threhold value for a finite period of time he intenity of thermal burn i divided into four degree

44 6 Chapter Summary ranient Heat Conduction No Internal Reitance, Lumped Parameter 1. he thermal reitance of the olid can be ignored if a Biot number i le than A thermal reitance are ignored, temperature i a function of time only.

45 Internal Reitance i Significant 1. When internal reitance i ignificant (Bi>0.1), temperature i a function of both poition and time. For an infinite lab, infinite cylinder and pherical geometry, the olution are given a Heiler chart. You can find it on page 37~ For finite lab and finite cylinder, the olution are interection of the infinite lab and cylinder. 4. Material with thickne L 4 t are conidered effectively emi infinite

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model. Excerpt from the Proceeding of the COMSOL Conference 2010 Boton Modeling of Tranport and Reaction in a Catalytic Bed Uing a Catalyt Particle Model. F. Allain *,1, A.G. Dixon 1 1 Worceter Polytechnic Intitute

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Mass Transfer (Stoffaustausch) Fall Semester 2014

Mass Transfer (Stoffaustausch) Fall Semester 2014 Ma Tranfer (Stoffautauch) Fall Semeter 4 Tet 5 Noember 4 Name: Legi-Nr.: Tet Duration: 45 minute Permitted material: NOT permitted: calculator copy of Culer book Diffuion ( nd or rd edition) printout of

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

Radiation Heat Transfer

Radiation Heat Transfer CM30 ranport I Part II: Heat ranfer Radiation Heat ranfer Profeor Faith Morrion Department of Chemical Engineering Michigan echnological Univerity CM30 ranport Procee and Unit Operation I Part : Heat ranfer

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Fundamental Physics of Force and Energy/Work:

Fundamental Physics of Force and Energy/Work: Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0 Lecture Part 1 Copyright by Hongyun Wang, UCSC Prandtl boundary layer Navier-Stoke equation: Conervation of ma: ρ t + ( ρ u) = Balance of momentum: u ρ t + u = p+ µδ u + ( λ + µ ) u where µ i the firt

More information

Q.1. x A =0.8, ε A =δ A *y A = 0.8*5=4 (because feed contains 80 mol% A, y A = 0.8, δ A =((6-1)/1)=5) k= 0.3 hr -1. So, θ = hr Q.

Q.1. x A =0.8, ε A =δ A *y A = 0.8*5=4 (because feed contains 80 mol% A, y A = 0.8, δ A =((6-1)/1)=5) k= 0.3 hr -1. So, θ = hr Q. Q.1 k [ 1 ln(1 x)] x x =.8, ε =δ *y =.8*5=4 (becaue feed contain 8 mol%, y =.8, δ =((6-1)/1)=5) k=. hr -1 So, θ = 16.157 hr Q.2 Q.2 Continue (c) V PFR

More information

Lecture 7 Grain boundary grooving

Lecture 7 Grain boundary grooving Lecture 7 Grain oundary grooving The phenomenon. A polihed polycrytal ha a flat urface. At room temperature, the urface remain flat for a long time. At an elevated temperature atom move. The urface grow

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

Faculty of Environmental Sciences, Institute of Waste Management and Contaminated Site Treatment. The Simulation Software.

Faculty of Environmental Sciences, Institute of Waste Management and Contaminated Site Treatment. The Simulation Software. Faculty of Environmental Science, Intitute of Wate Management and Contaminated Site Treatment The Simulation Software PCSiWaPro Overview 1. Modelling in the unaturated oil zone 2. The oftware PCSiWaPro

More information

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity Chapter 1 Baic Decription of Laer Diode Dynamic by Spatially Averaged Rate Equation: Condition of Validity A laer diode i a device in which an electric current input i converted to an output of photon.

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Jump condition at the boundary between a porous catalyst and a homogeneous fluid

Jump condition at the boundary between a porous catalyst and a homogeneous fluid From the SelectedWork of Francico J. Valde-Parada 2005 Jump condition at the boundary between a porou catalyt and a homogeneou fluid Francico J. Valde-Parada J. Alberto Ochoa-Tapia Available at: http://work.bepre.com/francico_j_valde_parada/12/

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

2.7 Aerosols and coagulation

2.7 Aerosols and coagulation 1 Note on 1.63 Advanced Environmental Fluid Mechanic Intructor: C. C. Mei, 1 ccmei@mit.edu, 1 617 53 994 December 1,.7 Aerool and coagulation [Ref]: Preent, Kinetic Theory of Gae Fuch, Mechanic of Aerool

More information

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas 2 State of a Sytem Motly chap 1 and 2 of Kittel &Kroemer 2.1 State / Configuration 2.2 Probabilitie of State Fundamental aumption Entropy 2.3 Counting State 2.4 Entropy of an ideal ga Phyic 112 (S2012)

More information

Module 1: Learning objectives

Module 1: Learning objectives Heat and Ma Tranfer Module 1: Learning objective Overview: Although much of the material of thi module will be dicued in greater detail, the objective of thi module i to give you a reaonable overview of

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model Thermal Contact Reitance of Non-Conforming Rough Surface Part 2: Thermal Model M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider Department of Mechanical Engineering Microelectronic Heat Tranfer

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

Rao Transforms: A New Approach to Integral and Differential Equations

Rao Transforms: A New Approach to Integral and Differential Equations Rao Tranform: A New Approach to Integral and Differential Equation Dr. Muralidhara SubbaRao (Rao) SUNY at Stony Brook, murali@ece.unyb.edu,, rao@integralreearch.net Rao Tranform (RT) provide a brand new

More information

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer Suppleental Material for Tranport Proce and Separation Proce Principle hapter 7 Principle of Unteady - State and onvective Ma Tranfer Thi chapter cover different ituation where a tranfer i taking place,

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Chapter 3: Transient Heat Conduction

Chapter 3: Transient Heat Conduction 3-1 Lumped System Analysis 3- Nondimensional Heat Conduction Equation 3-3 Transient Heat Conduction in Semi-Infinite Solids 3-4 Periodic Heating Y.C. Shih Spring 009 3-1 Lumped System Analysis (1) In heat

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages.

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages. MOSFET Model The baic MOSFET model conit of: junction capacitance CBS and CB between ource (S) to body (B) and drain to B, repectively. overlap capacitance CGO and CGSO due to gate (G) to S and G to overlap,

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

Lecture 13. Thermodynamic Potentials (Ch. 5)

Lecture 13. Thermodynamic Potentials (Ch. 5) Lecture 13. hermodynamic Potential (Ch. 5) So far we have been uing the total internal energy U and ometime the enthalpy H to characterize variou macrocopic ytem. hee function are called the thermodynamic

More information

NOTE: The items d) and e) of Question 4 gave you bonus marks.

NOTE: The items d) and e) of Question 4 gave you bonus marks. MAE 40 Linear ircuit Summer 2007 Final Solution NOTE: The item d) and e) of Quetion 4 gave you bonu mark. Quetion [Equivalent irciut] [4 mark] Find the equivalent impedance between terminal A and B in

More information

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body Chapter 1 Radiation Heat ranfer Special opic: Heat ranfer from the Human Body 1-7C Ye, roughly one-third of the metabolic heat generated by a peron who i reting or doing light work i diipated to the environment

More information

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment Journal of Multidiciplinary Engineering Science and Technology (JMEST) ISSN: 59- Vol. Iue, January - 5 Advanced D-Partitioning Analyi and it Comparion with the haritonov Theorem Aement amen M. Yanev Profeor,

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Supplementary Figures

Supplementary Figures Supplementary Figure Supplementary Figure S1: Extraction of the SOF. The tandard deviation of meaured V xy at aturated tate (between 2.4 ka/m and 12 ka/m), V 2 d Vxy( H, j, hm ) Vxy( H, j, hm ) 2. The

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY

A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY Volume 8 2007, Iue 3, Article 68, 3 pp. A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY C. L. FRENZEN, E. J. IONASCU, AND P. STĂNICĂ DEPARTMENT OF APPLIED MATHEMATICS NAVAL POSTGRADUATE

More information

GEOMETRIC OPTIMISATION OF CONJUGATE COOLING CHANNELS WITH DIFFERENT CROSS-SECTIONAL SHAPES

GEOMETRIC OPTIMISATION OF CONJUGATE COOLING CHANNELS WITH DIFFERENT CROSS-SECTIONAL SHAPES GEOMETRIC OPTIMISATION OF CONJUGATE COOING CHANNES WITH DIFFERENT CROSS-SECTIONA SHAPES By Olabode Thoma OAKOYEJO Prof. T. Bello Ochende, Prof. J. P. Meyer Department of Mechanical and Aeronautical Engineering,

More information

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID  TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill M 792: IUO: M D. MZL BDUL WID http://www.fkm.utm.my/~mazlan X: eat ransfer ractical pproach by Yunus. engel Mc Graw ill hapter ransient eat onduction ssoc rof Dr. Mazlan bdul Wahid aculty of Mechanical

More information

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles Study of a Freely Falling Ellipe with a Variety of Apect Ratio and Initial Angle Dedy Zulhidayat Noor*, Ming-Jyh Chern*, Tzyy-Leng Horng** *Department of Mechanical Engineering, National Taiwan Univerity

More information

ESTIMATION OF THE HEAT TRANSFER COEFFICIENT IN THE SPRAY COOLING OF CONTINUOUSLY CAST SLABS

ESTIMATION OF THE HEAT TRANSFER COEFFICIENT IN THE SPRAY COOLING OF CONTINUOUSLY CAST SLABS ESTIMATION OF THE HEAT TRANSFER COEFFICIENT IN THE SPRAY COOLING OF CONTINUOUSLY CAST SLABS Helcio R. B. Orlande and Marcelo J. Colaço Federal Univerity of Rio de Janeiro, UFRJ Department of Mechanical

More information

PI control system design for Electromagnetic Molding Machine based on Linear Programing

PI control system design for Electromagnetic Molding Machine based on Linear Programing PI control ytem deign for Electromagnetic Molding Machine baed on Linear Programing Takayuki Ihizaki, Kenji Kahima, Jun-ichi Imura*, Atuhi Katoh and Hirohi Morita** Abtract In thi paper, we deign a PI

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Parameter Sensitivity Analysis to Improve Material Design for Novel Zn-MnO 2 Batteries with Ionic Liquid Electrolytes

Parameter Sensitivity Analysis to Improve Material Design for Novel Zn-MnO 2 Batteries with Ionic Liquid Electrolytes Parameter Senitivity Analyi to Improve Material Deign for Novel Zn-MnO Batterie with Ionic Liquid Electrolyte Zachary T. Gima & Bernard J. Kim CE 95: Spring 06 Abtract Battery deign at the material level

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress Chemical Engineering Science 56 (21) 5361 5369 www.elevier.com/locate/ce Cake ltration analyi the eect of the relationhip between the pore liquid preure and the cake compreive tre C. Tien, S. K. Teoh,

More information

Modeling of the Fluid Solid Interaction during Seismic Event

Modeling of the Fluid Solid Interaction during Seismic Event Journal o Material cience and Enineerin A 5 (3-4) (015) 171-175 doi: 10.1765/161-613/015.3-4.010 D DAVID PIHING Modelin o the luid olid Interaction durin eimic Event Jan Vachulka * tevenon and Aociate,

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

BACKSCATTER FROM A SPHERICAL INCLUSION WITH COMPLIANT INTERPHASE CHARACTERISTICS. M. Kitahara Tokai University Shimizu, Shizuoka 424, Japan

BACKSCATTER FROM A SPHERICAL INCLUSION WITH COMPLIANT INTERPHASE CHARACTERISTICS. M. Kitahara Tokai University Shimizu, Shizuoka 424, Japan BACKSCATTER FROM A SPHERICAL INCLUSION WITH COMPLIANT INTERPHASE CHARACTERISTICS M. Kitahara Tokai Univerity Shimizu, Shizuoka 424, Japan K. Nakagawa Total Sytem Intitute Shinjuku, Tokyo 162, Japan J.

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Temperature Sensitive Paint Heat Flux Measurements in Hypersonic Tunnels

Temperature Sensitive Paint Heat Flux Measurements in Hypersonic Tunnels Temerature Senitive Paint Heat Flux Meaurement in Hyeronic Tunnel Tianhu Liu, Z. Cai, B. Wang Wetern Michigan Univerity, Kalamazoo, MI 49008 J. Rubal, J. P. Sullivan, S. Schneider Purdue Univerity, Wet

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Similarity of the Temperature Profile formed by Fluid Flow along a Wall

Similarity of the Temperature Profile formed by Fluid Flow along a Wall Similarity of the emperature Profile formed by Fluid Flow along a Wall David Weyburne 1 AFRL/RYDH 2241 Avionic Circle WPAFB OH 45433 ABSRAC A new approach to the tudy of imilarity of temperature profile

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Infrared Continental surface emissivity spectra retrieved from hyperspectral sensors. Application to AIRS observations Eric PEQUIGNOT

Infrared Continental surface emissivity spectra retrieved from hyperspectral sensors. Application to AIRS observations Eric PEQUIGNOT Infrared Continental urface emiivity pectra retrieved from hyperpectral enor. Application to AIRS obervation Eric PEQUIGNO Laboratoire de Météorologie Dynamique LMD / IPSL eam «Atmopheric Radiation Analyi»

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Radiation in energy balance models. 1. A hierarchy of climate models. Lecture 25

Radiation in energy balance models. 1. A hierarchy of climate models. Lecture 25 Lecture 5 Radiation in energy balance model Objective: 1. A hierarchy of climate model.. Example of imple energy balance model. Required reading: L0: 8.5 1. A hierarchy of climate model. Climate model

More information

Thermionic Emission Theory

Thermionic Emission Theory hapter 4. PN and Metal-Semiconductor Junction Thermionic Emiion Theory Energy band diagram of a Schottky contact with a forward bia V applied between the metal and the emiconductor. Electron concentration

More information

One Class of Splitting Iterative Schemes

One Class of Splitting Iterative Schemes One Cla of Splitting Iterative Scheme v Ciegi and V. Pakalnytė Vilniu Gedimina Technical Univerity Saulėtekio al. 11, 2054, Vilniu, Lithuania rc@fm.vtu.lt Abtract. Thi paper deal with the tability analyi

More information

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems CHAPTER 3: One-Dimenional Steady-State Conduction one pimay diection in which heat tanfe (geneally the mallet dimenion) imple model good epeentation fo olving engineeing poblem 3. Plane Wall 3.. hot fluid

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

Parametrization of the 511 kev respond in BGO/ LSO Crystals with respect to Spatial Resolution in PETR/CT Scans

Parametrization of the 511 kev respond in BGO/ LSO Crystals with respect to Spatial Resolution in PETR/CT Scans Univerity of Tenneee, Knoxville Trace: Tenneee Reearch and Creative Exchange Univerity of Tenneee Honor Thei Project Univerity of Tenneee Honor Program 3-2005 Parametrization of the 511 kev repond in BGO/

More information

Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver

Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver Modeling and Simulation of Molecular Communication Sytem with a Reverible Adorption Receiver Yanha eng, Member, IEEE, Adam Noel, Member, IEEE, Maged Elkahlan, Member, IEEE, Arumugam Nallanathan, Senior

More information

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter APCOM & ISCM 11-14 th December, 2013, Singapore luid-tructure coupling analyi and imulation of vicoity effect on Corioli ma flowmeter *Luo Rongmo, and Wu Jian National Metrology Centre, A*STAR, 1 Science

More information

A Comparison of Correlations for Heat Transfer from Inclined Pipes

A Comparison of Correlations for Heat Transfer from Inclined Pipes A Comparion of Correlation for Heat Tranfer from Inclined Pipe Krihperad Manohar Department of Mechanical and Manufacturing Engineering The Univerity of the Wet Indie St. Augutine, Trinidad and Tobago

More information

Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace

Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace International Journal of Heat and Ma Tranfer 5 (27) 219 223 Technical Note Numerical analyi of heating characteritic of a lab in a bench cale reheating furnace Sang Heon Han a, *, Seung Wook Baek a, Sang

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Lecture 2 Review of Maxwell s Equations, EM Energy and Power

Lecture 2 Review of Maxwell s Equations, EM Energy and Power Lecture 2 Review of Maxwell Equation, EM Energy and Power Optional Reading: Steer Appendix D, or Pozar Section 1.2,1.6, or any text on Engineering Electromagnetic (e.g., Hayt/Buck) ime-domain Maxwell Equation:

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices EE321 Fall 2015 Semiconductor Phyic and Device November 30, 2015 Weiwen Zou ( 邹卫文 ) Ph.D., Aociate Prof. State Key Lab of advanced optical communication ytem and network, Dept. of Electronic Engineering,

More information