Introduction to Laplace Transform Techniques in Circuit Analysis

Size: px
Start display at page:

Download "Introduction to Laplace Transform Techniques in Circuit Analysis"

Transcription

1 Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found in Chapter 12 of the text. The Laplace Tranform of any time function, ay f(t), which you have encountered in a co-requiite math coure will be ymbolized in thee note a L{f(t)} = 0 f(t)e t dt = F (). Thi mathematical contruct will allow the converion of many of the differential equation encountered in circuit analyi into algebraic equation. The latter may generally olved with relative eae and an invere Laplace Tranform, L 1 {F ()} = f(t), may be ued to determine the time-domain olution of the original equation. 6.1 Circuit Element To model a circuit element in the -domain we imply Laplace tranform the voltage current equation for the element terminal in the time domain. Thi give the - domain relationhip between the voltage and the current which may be modelled by an appropriate circuit. The tranformation of a voltage and current from the time domain reult in dimenion of volt-econd and ampere-econd in the -domain. Impedance i till meaured in ohm in the -domain. We will ue the paive ign convention in our -domain model. Alo, we ll ue V and I to mean V () and I(), 1

2 repectively. Reitor in the -Domain In the time domain Time Domain Model v = ir. Since R i a contant, in the -domain, -Domain Model V = RI (6.1) where V = L{v} and I = L{i}. Inductor in the -Domain In the time domain Time Domain Model v = L di dt (In thi model I 0 i the initial current in the inductor.) (6.2) Uing equation for differentiation when Laplace tranforming (ee Table), equation (6.2) become V = L [I I 0 ] = LI LI 0 (6.3) where I 0 = i(0 ). Of coure, if there i no initial current, I 0 = 0. We note that equation (6.3) may alo be written a I = V L + I 0 (6.4) While the inductor may be modelled in variou equivalent way in the -domain, the lat two equation immediately ugget two of thee: Serie Model Equation (6.3): 2

3 (L) i the -domain impedance. LI 0 i like a contant voltage whoe value depend on the initial condition. Parallel Model Equation (6.4): Thi time, I 0 / i like an independent (contant)current ource depending on initial condition. Of coure, if i(0 ) = 0, both of the above reduce to: i.e. the inductor tranform to an impedance (L). Capacitor in the -Domain In the time domain Time Domain Model i = C dv dt (6.5) (In thi model V 0 allow for the poibility of an initial voltage acro the capacitor.) Converting (6.5) via Laplace tranformation give I = C [V V 0 ] = CV CV 0 (6.6) where V 0 = v(0 ). Of coure, if there i no initial voltage, V 0 = 0. We note that equation (6.6) may alo be written a V = ( ) 1 C I + V 0 (6.7) While the capacitor may be modelled in variou equivalent way in the -domain, the lat two equation immediatly ugget two of thee: Serie Model Equation (6.7): 1/(C) i the -domain impedance. V 0 / i like a contant voltage whoe value depend on the initial condition. Parallel Model Equation (6.6): 3

4 Thi time, CV 0 i like an independent (contant)current ource depending on initial condition. Of coure, if v(0 ) = 0, both of the above reduce to: i.e. the capacitor tranform to an impedance (1/(C)) Domain Circuit Analyi 1. General In the -domain, if no energy i tored in the inductor or capacitor, the relationhip between V and I for each paive element of impedance Z i till V = IZ (6.8) In thi domain, Z R = R, Z L = L and Z C = 1/(C). Technique involving Kirchhoff Law (KVL and KCL), Node-Voltage, Meh-Current, Delta-Wye Tranformation, Thévenin, etc., etc. till hold! If there i initially tored energy, equation (6.8) may be modified by adding the appropriate independent ource in erie or parallel with the element impedance a depicted in the previou ection. 2. Application 1 Natural Repone of an RC Circuit In the circuit hown below on the left, the capacitor ha an initial voltage of V 0, and we wih to find the time-domain expreion for i and v. Method 1: Time Domain -Domain Uing KVL on the -domain circuit, we get V 0 + IZ c + IZ R = 0 = V 0 = V 0 4 = IZ c + IZ R = I C + IR.

5 From thi I = CV RC. Dividing by RC in the numerator and denominator on the right put I into a recognizable form for invere Laplace tranformation: I = V 0/R + 1 RC. The form i obviouly K + a and L 1 {I} = i = V 0 R e t/rc u(t) (6.9) Then, v = ir = V 0 e t/rc u(t) (6.10) [Remembering that u(t) = 1 for t 0 +, thi i the ame a we had before.] Method 2: We may alo find v before finding i by employing the parallel model for the capacitor a follow: Redraw the original time-domain circuit a Uing node-voltage at A: CV 0 + V 1/C + V R = 0 = V = CV 0 C + 1/R = V 0 + 1/RC. Then, v = L 1 {V } = V 0 e t/rc u(t) a in equation (6.10). 5

6 Application 2 Step Repone of a Parallel RLC Circuit Aumed that there i no energy tored in the circuit hown below when the witch i opened at time t = 0. We wih to find i L (t). Note that Iource = i dc u(t) and L{i dc u(t)} = I dc /. Becaue there i no initial tored energy (i.e. i L (0 ) = 0 and v C (0 ) = 0, the general form of the -domain circuit i Uing KCL at the top node, Thi implie from which V = I dc + I C + I R + I L = 0. I dc = CV + V R + V L I dc [C R L ] /C /C I dc C V = [ ] (A). 1 RC LC However, I L = V/L o that from (A) we have I dc LC I L = [ 2 + ( ) ( 1 RC + 1 )] (B). LC Subtituting the value of R, L and C into (B) reult in I L = ( , ). Factoring the denominator allow u to expand I L uing partial fraction: I L = ( + 32, 000 j24000)( + 32, j24000) = K 1 + K 2 ( + 32, 000 j24000) + K 2 ( + 32, j24000). 6

7 Now, Alo, K 1 = I L =0 = (32, ) = K 2 = I L ( j24000) = 32,000+j24000 = ( 32, j24000)(j48, 000) = which immediately give K 2 = Now, L 1 {K 1 /} = L 1 {0.024/} = 0.024u(t). On from the tranform Table, it i een that the (ditinct) complex conjugate pair tranform to 2 K e αt co(βt + θ)u(t) where here K = K 2 = ; α = 32, 000 ; β = 24, 000 and θ = Therefore, i L = [ e 32,000t co(24, 000t ) ] u(t) A. Again, note that the multiplier u(t) account for t 0. Note that i L (0) = 0 and i L ( ) = A, a hould be the cae. 7

8 Application 3 Multiple Mehe (Tranient) Step Repone Example While multiple node-voltage or meh-current analyi lead to imultaneou differential equation in the time domain, Laplace tranform allow u to replace thee equation with imultaneou algebraic ytem in the -domain. Thi i illutrated with an example below: In the following circuit, the dc current and voltage ource are applied at the ame time. There i no initially tored energy in any of the circuit component. (a) Derive the -domain expreion for V 1 and V 2. (b) For t > 0, derive the time domain expreion for v 1 and v 2. (c) Determine v 1 (0 + ) and v 2 (0 + ). (d) Find the teady-tate value of v 1 and v 2. (a) Firt, repreent the circuit in the -domain. Next, apply the node-voltage technique to node 1 and 2: Node 1: V 1 V 2 + V 1 5 = 0 ; Node 2: V 2 V 1 + V V 2 (15/) 15 = 0 Solving for V 1 and V 2, we get V 1 = 5( + 3) ( ) and V 2 = 2.5(2 + 6) ( ). (b) Partial fraction expanion give V 1 = 15 50/ /3 + 2 and V 2 = / /3 + 2 Now, the 1/ and 1/( + a) form are readily recognizable from the tranform table 8

9 o that [ v 1 (t) = L 1 {V 1 } = e 0.5t + 5 ] 3 e 2t u(t) V [ v 2 (t) = L 1 {V 2 } = e 0.5t + 25 ] 3 e 2t u(t) V (c) From part (b), v 1 (0 + ) = = 0; v 2(0 + ) = = 2.5. [Note, from the initial value theorem, v 1 (0 + ) = lim V 1 () = = 0 and imilarly for v 2 (0 + ).] (d) Here, again, we may find v 1 ( ) and v 2 ( ) from part (b) or we may ue the final value theorem: v 1 ( ) = lim V 1 () = = 15 V 0 v 2 ( ) = lim V 2 () = = 15 V 0 which i what we would get uing the reult in part (b) alo. 9

10 Application 4 Thévenin Equivalent in the -domain (a) Given the following circuit, find the -domain Thévenin equivalent with repect to the terminal a and b. There i no initial charge on the capacitor. Firt, ketch the -domain equivalent to the left of the a-b terminal. With no load acro the a-b terminal, there i no current in the 5 Ω reitor (thi i the tricky obervation here) o that V x = (1) Now, determine V Th by applying the node-voltage rule at node 1: Uing equation (1) and implifying give V Th = 20( + 2.4) ( + 2)... (2) 10

11 Next, we eek Z Th : The Thévenin equivalent impedance (in the -domain) may be found by applying a tet ource acro the a-b terminal while horting the independent power upply.: Apply node-voltage at node 2 while noting V x = 5I T... (3) Thu, the node-voltage technique, incorporating tet voltage V T, give: I T + V T V x 2/ + V T 0.2V x V x 1 = 0... (4) Simplifying (4) give Z Th = V T I T = 5( + 2.8) ( + 2)... (5) The Thévenin equivalent circuit i hown below (to the left of terminal a-b). The -domain load i alo hown. (b) Find I ab in the -domain for the given load. Clearly, I ab = Uing equation (2) and (5), V Th Z Th + Z L where Z L = 2 +. I ab = 20( + 2.4) [( + 6)( + 3)]. For practice uing the Laplace tranform table, you hould find the time-domain current correponding to the lat expreion. 11

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

online learning Unit Workbook 4 RLC Transients

online learning Unit Workbook 4 RLC Transients online learning Pearon BTC Higher National in lectrical and lectronic ngineering (QCF) Unit 5: lectrical & lectronic Principle Unit Workbook 4 in a erie of 4 for thi unit Learning Outcome: RLC Tranient

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

1. /25 2. /30 3. /25 4. /20 Total /100

1. /25 2. /30 3. /25 4. /20 Total /100 Circuit Exam 2 Spring 206. /25 2. /30 3. /25 4. /20 Total /00 Name Pleae write your name at the top of every page! Note: ) If you are tuck on one part of the problem, chooe reaonable value on the following

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION ECE-202 Final, Fall 16 1 ECE-202 FINAL December 13, 2016 Name: (Pleae print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 8:30-9:30 Talavage-9:30-10:30 2021 2022 INSTRUCTIONS There are 35 multiple

More information

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses 5--4 EECS Electric Circuit Chapter 6 R Circuit Natural and Step Repone Objective Determine the repone form of the circuit Natural repone parallel R circuit Natural repone erie R circuit Step repone of

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

NOTE: The items d) and e) of Question 4 gave you bonus marks.

NOTE: The items d) and e) of Question 4 gave you bonus marks. MAE 40 Linear ircuit Summer 2007 Final Solution NOTE: The item d) and e) of Quetion 4 gave you bonu mark. Quetion [Equivalent irciut] [4 mark] Find the equivalent impedance between terminal A and B in

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information

S.E. Sem. III [EXTC] Circuits and Transmission Lines

S.E. Sem. III [EXTC] Circuits and Transmission Lines S.E. Sem. III [EXTC] Circuit and Tranmiion Line Time : Hr.] Prelim Quetion Paper Solution [Mark : 80 Q.(a) Tet whether P() = 5 4 45 60 44 48 i Hurwitz polynomial. (A) P() = 5 4 45 60 44 48 5 45 44 4 60

More information

GATE SOLVED PAPER - EC

GATE SOLVED PAPER - EC 0 ONE MARK Q. Conider a delta connection of reitor and it equivalent tar connection a hown below. If all element of the delta connection are caled by a factor k, k > 0, the element of the correponding

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_B_EC_Network Theory_0098 CLASS TEST (GATE) Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONCS

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_N_A_Network Theory_098 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 NSTRUMENTATON ENGNEERNG Subject

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

5.1 Introduction. 5.2 Definition of Laplace transorm

5.1 Introduction. 5.2 Definition of Laplace transorm 5.1 Introduction In thi chapter, we will introduce Laplace tranform. Thi i an extremely important technique. For a given et of initial condition, it will give the total repone of the circuit compriing

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

Several schematic symbols for a capacitor are shown below. The symbol resembles the two conducting surfaces separated with a dielectric.

Several schematic symbols for a capacitor are shown below. The symbol resembles the two conducting surfaces separated with a dielectric. Capacitor Capacitor are two terminal, paive energy torage device. They tore electrical potential energy in the form of an electric field or charge between two conducting urface eparated by an inulator

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

ECE-202 Exam 1 January 31, Name: (Please print clearly.) CIRCLE YOUR DIVISION DeCarlo DeCarlo 7:30 MWF 1:30 TTH

ECE-202 Exam 1 January 31, Name: (Please print clearly.) CIRCLE YOUR DIVISION DeCarlo DeCarlo 7:30 MWF 1:30 TTH ECE-0 Exam January 3, 08 Name: (Pleae print clearly.) CIRCLE YOUR DIVISION 0 0 DeCarlo DeCarlo 7:30 MWF :30 TTH INSTRUCTIONS There are multiple choice worth 5 point each and workout problem worth 40 point.

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

No-load And Blocked Rotor Test On An Induction Machine

No-load And Blocked Rotor Test On An Induction Machine No-load And Blocked Rotor Tet On An Induction Machine Aim To etimate magnetization and leakage impedance parameter of induction machine uing no-load and blocked rotor tet Theory An induction machine in

More information

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st Math 46, Profeor David Levermore Anwer to Quetion for Dicuion Friday, 7 October 7 Firt Set of Quetion ( Ue the definition of the Laplace tranform to compute Lf]( for the function f(t = u(t t, where u i

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fall 5 Microelectronic Device and ircuit Lecture 9 Second-Order ircuit Amplifier Frequency Repone Announcement Homework 8 due tomorrow noon Lab 7 next week Reading: hapter.,.3. Lecture Material Lat

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1 Chapter Homework Solution P.-1,, 5 P.4-1, 3, 5, 6, 7 P.5-1, 3, 5 P.6-, 5 P.7-1, 4 P.8-1 P.9-1 P.-1 An element ha oltage and current i a hown in Figure P.-1a. Value of the current i and correponding oltage

More information

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 12 - Non-isolated DC-DC Buck Converter ecture 12 - Non-iolated DC-DC Buck Converter Step-Down or Buck converter deliver DC power from a higher voltage DC level ( d ) to a lower load voltage o. d o ene ref + o v c Controller Figure 12.1 The

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid Comparion of Hardware Tet with SIMULINK Model of UW Microgrid Introduction Thi report include a detailed dicuion of the microource available on the Univerity- of- Wiconin microgrid. Thi include detail

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Finding the location of switched capacitor banks in distribution systems based on wavelet transform

Finding the location of switched capacitor banks in distribution systems based on wavelet transform UPEC00 3t Aug - 3rd Sept 00 Finding the location of witched capacitor bank in ditribution ytem baed on wavelet tranform Bahram nohad Shahid Chamran Univerity in Ahvaz bahramnohad@yahoo.com Mehrdad keramatzadeh

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

POWER QUALITY AND RELIABILITY SUPPLY IMPROVEMENT USING A POWER CONDITIONING SYSTEM WITH ENERGY STORAGE CAPABILITY

POWER QUALITY AND RELIABILITY SUPPLY IMPROVEMENT USING A POWER CONDITIONING SYSTEM WITH ENERGY STORAGE CAPABILITY POWER QUALITY AND RELIABILITY UPPLY IMPROVEMENT UING A POWER CONDITIONING YTEM WITH ENERGY TORAGAPABILITY Domenico Caadei, Gabriele Grandi, Claudio Roi Department of Electrical Engineering Univerity of

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...4

More information

Dimensional Analysis A Tool for Guiding Mathematical Calculations

Dimensional Analysis A Tool for Guiding Mathematical Calculations Dimenional Analyi A Tool for Guiding Mathematical Calculation Dougla A. Kerr Iue 1 February 6, 2010 ABSTRACT AND INTRODUCTION In converting quantitie from one unit to another, we may know the applicable

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response. EE202 HOMEWORK PROBLEMS SPRING 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on the web. Quote for your Parent' Partie: 1. Only with nodal analyi i the ret of the emeter a poibility. Ray DeCarlo 2. (The need

More information

The Measurement of DC Voltage Signal Using the UTI

The Measurement of DC Voltage Signal Using the UTI he Meaurement of DC Voltage Signal Uing the. INRODUCION can er an interface for many paive ening element, uch a, capacitor, reitor, reitive bridge and reitive potentiometer. By uing ome eternal component,

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Proceeding of IMAC XXXI Conference & Expoition on Structural Dynamic February -4 Garden Grove CA USA THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Yung-Sheng Hu Neil S Ferguon

More information

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 Problem : For each of the following function do the following: (i) Write the function a a piecewie function and ketch it graph, (ii) Write the function a a combination

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Behavioral Modeling of Transmission Line Channels via Linear Transformations

Behavioral Modeling of Transmission Line Channels via Linear Transformations Behavioral Modeling of Tranmiion Line Channel via Linear Tranformation Albert Vareljian albertv@ieeeorg Member, IEEE, Canada Abtract An approach baed on the linear tranformation of network port variable

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

Thermal Resistance Measurements and Thermal Transient Analysis of Power Chip Slug-Up and Slug-Down Mounted on HDI Substrate

Thermal Resistance Measurements and Thermal Transient Analysis of Power Chip Slug-Up and Slug-Down Mounted on HDI Substrate Intl Journal of Microcircuit and Electronic Packaging Thermal Reitance Meaurement and Thermal Tranient Analyi of Power Chip Slug-Up and Slug-Down Mounted on HDI Subtrate Claudio Sartori Magneti Marelli

More information

UNIT 15 RELIABILITY EVALUATION OF k-out-of-n AND STANDBY SYSTEMS

UNIT 15 RELIABILITY EVALUATION OF k-out-of-n AND STANDBY SYSTEMS UNIT 1 RELIABILITY EVALUATION OF k-out-of-n AND STANDBY SYSTEMS Structure 1.1 Introduction Objective 1.2 Redundancy 1.3 Reliability of k-out-of-n Sytem 1.4 Reliability of Standby Sytem 1. Summary 1.6 Solution/Anwer

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

Engineering gapplications. Applications of Laplace Transform

Engineering gapplications. Applications of Laplace Transform Differential Equation and Engineering gapplication ATH 220 Application of Laplace Tranform Introduction to Laplace Tranform /3 For any function ft, it Laplace Tranform i given a: F t e f t dt 0 ft i aid

More information