CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

Size: px
Start display at page:

Download "CHAPTER 13 FILTERS AND TUNED AMPLIFIERS"

Transcription

1 HAPTE FILTES AND TUNED AMPLIFIES hapter Outline. Filter Traniion, Type and Specification. The Filter Tranfer Function. Butterworth and hebyhev Filter. Firt Order and Second Order Filter Function.5 The Second Order L eonator.6 Second Order Active Filter Baed on Inductor eplaceent.7 Second Order Active Filter Baed on the Two Integrator Loop Topology.8 Single Aplifier Biquadratic Active Filter.9 Senitivity. Tranconductance Filter. Switched apacitor Filter NTUEE Electronic L. H. Lu

2 . Filter Traniion, Type and Specification Filter Tranfer Function A filter i a linear two port network repreented by the ratio of the output to input voltage Tranfer function T o / i Traniion : evaluating T for phyical frequency = j Tj = Tj e j Gain: log Tj db Attenuation: log Tj db Output frequency pectru : o = T i Type of Filter NTUEE Electronic L. H. Lu

3 Filter Specification Paband edge : p Maxiu allowed variation in paband traniion : A ax Stopband edge : Miniu required topband attenuation : A in Low Pa Filter Band Pa Filter The firt tep of filter deign i to deterine the filter pecification Then find a tranfer function T whoe agnitude Tj eet the pecification The proce of obtaining a tranfer function that eet given pecification i called filter approxiation NTUEE Electronic L. H. Lu

4 Tranfer Function. Filter Tranfer Function The filter tranfer function i written a the ratio of two polynoial: M am a T N b M M N N... a... b The degree of the denoinator filter order To enure the tability of the filter N M The coefficient a i and b j are real nuber The tranfer function can be factored and expreed a: am z z... zm T p p... p N Zero: z, z,, z M and NM zero at infinity Pole: p, p,, p N Zero and pole can be either a real or a coplex nuber oplex zero and pole ut occur in conjugate pair The pole have to be on the LHP of plane NTUEE Electronic L. H. Lu

5 The Butterworth Filter. Butterworth and hebyhev Filter Butterworth filter exhibit onotonically decreaing traniion with all zero at = Maxially flat repone degree of paband flatne increae a the order N i increaed Higher order filter ha a harp cutoff in the tranition band The agnitude function of the Butterworth filter i: T j / p N equired tranfer function can be defined baed on filter pecification A ax, A in, p, T p NTUEE Electronic L. H. Lu 5

6 Natural Mode of the Butterworth Filter The natural ode pole locate on a circle / N The radiu of the circle i p / Equal angle pace T p p K p N... p N N K / N where p/ p... pn NTUEE Electronic L. H. Lu 6

7 Deign Procedure of the Butterworth Filter Deign Specification A ax, A in, p, Deign Procedure. Deterine fro A ax Aax / T j p Aax[ db] log. Deterine the required filter order N fro p,, A in Attenuation. Deterine the N natural ode pole with p, p,... A [ db] log[/ p N / p N ] log[ / / N p / p N ] A in. Deterine T K T p p N / N where p /... pn NTUEE Electronic L. H. Lu 7

8 acade Filter Deign. Firt Order and Second Order Filter Function Firt order and econd order filter can be cacaded to realize high order filter acade deign i one of the ot popular ethod for the deign of active filter acading doe not change the tranfer function of individual block if the output reitance i low Firt Order Filter Bilinear tranfer function a a T b a a NTUEE Electronic L. H. Lu 8

9 Firt Order Filter ont d NTUEE Electronic L. H. Lu 9

10 NTUEE Electronic L. H. Lu Second Order Filter Biquadratic tranfer function Pole frequency: Pole quality factor: Q Pole: Bandwidth: / Q a a a T, Q j Q p p Q BW

11 Second Order Filter ont d NTUEE Electronic L. H. Lu

12 Second Order Filter ont d NTUEE Electronic L. H. Lu

13 The eonator Natural Mode.5 The Second Order L eonator Parallel eonator urrent Excitation oltage Excitation urrent Excitation I o i Y / L / / / / L / L oltage Excitation o i / / L / L / / L Q The L reonator can be excited by either current or voltage ource The excitation hould be applied without change the natural tructure of the circuit The natural ode of the circuit are identical will not be changed by the excitation ethod The iilar characteritic alo applie to erie L reonator NTUEE Electronic L. H. Lu

14 ealization of Traniion Zero alue of at which Z = and Z Z behave a a hort alue of at which Z = and Z Z behave a an open ealization of Filter Function Low Pa Filter High Pa Filter Bandpa Filter o T i / L / / L o T i / / L o T i / / / L NTUEE Electronic L. H. Lu

15 Notch Filter Low Pa Notch Filter High Pa Notch Filter NTUEE Electronic L. H. Lu 5

16 .6 Second Order Active Filter Inductor eplaceent Second Order Active Filter by Op Ap ircuit Inductor are not uitable for I ipleentation Ue op ap circuit to replace the inductor Second order filter function baed on L reonator The Antoniou Inductance Siulation ircuit Inductor are realized by op ap circuit with negative feedback The equivalent inductance i given by Z L in eq I / / 5 5 L eq NTUEE Electronic L. H. Lu 6

17 The Op Ap eonator The inductor i replaced by the Antoniou circuit The pole frequency and the quality factor are given by / 6 5 / Q A iplified cae where = = = 5 = and = 6 = / Q / 6 NTUEE Electronic L. H. Lu 7

18 Filter ealization Low Pa Filter High Pa Filter Bandpa Filter Notch Filter NTUEE Electronic L. H. Lu 8

19 LPN Filter HPN Filter All Pa Filter NTUEE Electronic L. H. Lu 9

20 NTUEE Electronic L. H. Lu.7 Second Order Active Filter Two Integrator Loop Derivation of the Two Integrator Loop Biquad High pa ipleentation: Band pa ipleentation: Low pa ipleentation: / Q K T Q K hp hp hp i hp / Q K T hp bp / Q K T hp lp

21 NTUEE Electronic L. H. Lu ircuit Ipleentation I High pa tranfer function: Band pa tranfer function: Low pa tranfer function: Notch and all pa tranfer function: Q K Q f hp f hp f i f hp ] / [ ] / [ T i hp hp ] / [ ] / [ T i bp bp ] / [ ] / [ T i bp bp ] / [ / / / T L F B F H F i o

22 ircuit Ipleentation II Tow Thoa Biquad Ue an additional inverter to ake all the coefficient of the uer the ae ign All op ap are in ingle ended ode The high pa function i no longer available It i known a the Tow Thoa biquad An econoical feedforward chee can be eployed with the Tow Thoa circuit T o i r Q NTUEE Electronic L. H. Lu

23 .8 Single Aplifier Biquadratic Active Filter haracteritic of the SAB ircuit Only one op ap i required to ipleent biquad circuit Exhibit greater dependence on the liited gain and bandwidth of the op ap More enitive to the unavoidable tolerance in the value of reitor and capacitor Liited to le tringent filter pecification with pole Q factor le than Synthei of the SAB ircuit Ue feedback to ove the pole of an circuit fro the negative real axi to the coplex conjugate location to provide elective filter repone Step of SAB ynthei: Synthei of a feedback loop that realize a pair of coplex conjugate pole characterized by and Q Injecting the input ignal in a way that realize the deired traniion zero Natural ode of the filter: t N / D L At AN / D The cloed loop characteritic equation: L t / A P The pole of the cloed loop yte are identical to the zero of the network NTUEE Electronic L. H. Lu

24 NTUEE Electronic L. H. Lu Network with coplex traniion zero haracteritic Equation of the Filter t Q t Q Let = =, =, = / Q / Q

25 NTUEE Electronic L. H. Lu Injection the Input Signal The ethod of injection the input ignal into the feedback loop through the grounded node A coponent with a ground node can be connected to the input ource The filter traniion zero depend on where the input ignal i injected / i o 5

26 Generation of Equivalent Feedback Loop a b t a c t Equivalent Loop haracteritic Equation: haracteritic Equation: L At A t At A NTUEE Electronic L. H. Lu 6

27 Generation of Equivalent Feedback Loop ont d NTUEE Electronic L. H. Lu 7

28 Filter Senitivity.9 Senitivity Deviation in filter repone due to the tolerance in coponent value Epecially for coponent value and aplifier gain laical Senitivity Function Definition: For all change: S S y x y x y / y li x x / x y x x y S y x y / y x / x NTUEE Electronic L. H. Lu 8

29 . Tranconductance Filter Liitation of Op Ap ircuit Suitable for audio frequency filter uing dicrete op ap, reitor and capacitor High frequency application liited by the relatively low bandwidth of general purpoe op ap Ipractical for I ipleentation due to: The need for large capacitor and reitor increae the I cot The need for very precie value of tie contant require expenive triing/tuning The need for op ap that can drive reitive and large capacitive load Method for I Filter Ipleentation Tranconductance filter: Utilize tranconductance aplifier or tranconductor together with capacitor for filter High quality and high frequency tranconductor can be eaily realized in MOS technology Ha been widely ued for ediu/high frequency application up to hundred of MHz MOSFET filter: eplace reitor with MOSFET in linear region Technique have been evolved to obtain linear operation with large input ignal Switched capacitor filter: eplace the required reitor by witching a capacitor at a relatively high frequency The reulting filter are dicrete tie circuit a oppoed to the continuou tie one I ideally uited for ipleentation low frequency filter in I for uing MOS technology NTUEE Electronic L. H. Lu 9

30 Tranconductor An ideal tranconductor ha infinite input reitance and infinite output reitance The output can be poitive or negative depending the current direction Tranconductor can be ingle ended or fully differential NTUEE Electronic L. H. Lu

31 Baic Building Block Negative tranconductor ued to realize a reitance Tranconductor loaded with a capacitor a an integrator Firt Order G Low Pa Filter o G G i G / G / G NTUEE Electronic L. H. Lu

32 NTUEE Electronic L. H. Lu Second Order G Low Pa Filter / / / / / / G G G G G G G G G G i i G G G Q G G LP dc gain BP center - freq gain G G G G

33 Siplified ircuit G = G = G = = G G Q G Fully Differential ircuit NTUEE Electronic L. H. Lu

34 Baic Principle. Switched apacitor Filter A capacitor witched between two node at a ufficiently high rate i equivalent to a reitor The reitor in the active integrator can be replaced by the capacitor and the witche Equivalent reitor: vi T iav c eq vi i av T c Equivalent tie contant for the integrator = T c / NTUEE Electronic L. H. Lu

35 Practical ircuit an realize both inverting and non inverting integrator Inenitive to tray capacitance Noninverting witched capacitor S integrator Inverting witched capacitor S integrator NTUEE Electronic L. H. Lu 5

36 NTUEE Electronic L. H. Lu Filter Ipleentation ircuit paraeter for the two integrator with the ae tie contant c T c K T K T T c c Q T Q c

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

EE247 Lecture 10. Switched-Capacitor Integrator C

EE247 Lecture 10. Switched-Capacitor Integrator C EE247 Lecture 0 Switched-apacitor Filter Switched-capacitor integrator DDI integrator LDI integrator Effect of paraitic capacitance Bottom-plate integrator topology Reonator Bandpa filter Lowpa filter

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

Active Filters an Introduction

Active Filters an Introduction Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - Active Filter. Continuou-time or Sampled-data. Employ active element (e.g. tranitor, amplifier, op-amp) a. inductor-le (continuou-time)

More information

Active Filters an Introduction

Active Filters an Introduction Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - Active Filter. Continuou-time or Sampled-data. Employ active element (e.g. tranitor, amplifier, op-amp) a. inductor-le (continuou-time)

More information

Follow The Leader Architecture

Follow The Leader Architecture ECE 6(ESS) Follow The Leader Architecture 6 th Order Elliptic andpa Filter A numerical example Objective To deign a 6th order bandpa elliptic filter uing the Follow-the-Leader (FLF) architecture. The pecification

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2018

ECEN620: Network Theory Broadband Circuit Design Fall 2018 ECEN60: Network Theory Broadband Circuit Deign Fall 08 Lecture 6: Loop Filter Circuit Sam Palermo Analog & Mixed-Signal Center Texa A&M Univerity Announcement HW i due Oct Require tranitor-level deign

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS) HIGHER-ORDER FILTERS Cacade of Biquad Filter Follow the Leader Feedbac Filter (FLF) ELEN 6 (ESS) Than for ome of the material to David Hernandez Garduño CASCADE FILTER DESIGN N H ( ) Π H ( ) H ( ) H (

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

Chapter 17 Amplifier Frequency Response

Chapter 17 Amplifier Frequency Response hapter 7 Amplifier Frequency epone Microelectronic ircuit Deign ichard. Jaeger Travi N. Blalock 8/0/0 hap 7- hapter Goal eview tranfer function analyi and dominant-pole approximation of amplifier tranfer

More information

Summary of last lecture

Summary of last lecture EE47 Lecture 0 Switched-capacitor filter Switched-capacitor network electronic noie Switched-capacitor integrator DDI integrator LDI integrator Effect of paraitic capacitance Bottom-plate integrator topology

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design Introduction to CMO F Interated Circuit Dein III. Low Noie Aplifier Introduction to CMO F Interated Circuit Dein Fall 0, Prof. JianJun Zhou III- Outline Fiure of erit Baic tructure Input and output atchin

More information

S E V E N. Steady-State Errors SOLUTIONS TO CASE STUDIES CHALLENGES

S E V E N. Steady-State Errors SOLUTIONS TO CASE STUDIES CHALLENGES S E V E N Steady-State Error SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Steady-State Error Deign via Gain 76.39 a. G( (50)(.3). Syte i Type. Step input: e( ) 0; Rap input: e( ) v 76.39.59 ;

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fall 5 Microelectronic Device and ircuit Lecture 9 Second-Order ircuit Amplifier Frequency Repone Announcement Homework 8 due tomorrow noon Lab 7 next week Reading: hapter.,.3. Lecture Material Lat

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Deign Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Science Univerity of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t Sening

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Proceing IIR Filter Deign Manar Mohaien Office: F8 Email: manar.ubhi@kut.ac.kr School of IT Engineering Review of the Precedent Lecture Propertie of FIR Filter Application of FIR Filter

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5 EE4 Lec 13 Filter and eonance Pro. Nathan Cheung 1/13/9 eading: Hambley Chapter 6.6-6.8 Chapter 14.1,14.5 Slide 1 Common Filter Traner Function v. Freq H ( ) H( ) Low Pa High Pa Frequency H ( ) H ( ) Frequency

More information

General Topology of a single stage microwave amplifier

General Topology of a single stage microwave amplifier General Topology of a ingle tage microwave amplifier Tak of MATCH network (in and out): To preent at the active device uitable impedance Z and Z S Deign Step The deign of a mall ignal microwave amplifier

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters Linearteam tech paper The analyi of fourth-order tate variable filter and it application to Linkwitz- iley filter Janne honen 5.. TBLE OF CONTENTS. NTOCTON.... FOTH-OE LNWTZ-LEY (L TNSFE FNCTON.... TNSFE

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTE 4 SIGNA GENEATS AN WAEFM-SHAPING CICUITS Chapter utline 4. Baic Principle o Sinuoidal cillator 4. p Amp-C cillator 4. C and Crytal cillator 4.4 Bitable Multiibrator 4.5 Generation o Square and Triangular

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Flat Paband/Stopband Filter T j T j Lowpa Bandpa T j T j Highpa Bandreject Review from Lat

More information

Control of industrial robots. Decentralized control

Control of industrial robots. Decentralized control Control of indutrial robot Decentralized control Prof Paolo Rocco (paolorocco@poliiit) Politecnico di Milano Dipartiento di Elettronica, Inforazione e Bioingegneria Introduction Once the deired otion of

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY DIGITAL SIGNAL PROCESSING DEPT./SEM.: CSE /VII DIGITAL FILTER DESIGN-IIR & FIR FILTER DESIGN PART-A. Lit the different type of tructure for realiation of IIR ytem? AUC APR 09 The different type of tructure

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

The Extended Balanced Truncation Algorithm

The Extended Balanced Truncation Algorithm International Journal of Coputing and Optiization Vol. 3, 2016, no. 1, 71-82 HIKARI Ltd, www.-hikari.co http://dx.doi.org/10.12988/ijco.2016.635 The Extended Balanced Truncation Algorith Cong Huu Nguyen

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

Liquid cooling

Liquid cooling SKiiPPACK no. 3 4 [ 1- exp (-t/ τ )] + [( P + P )/P ] R [ 1- exp (-t/ τ )] Z tha tot3 = R ν ν tot1 tot tot3 thaa-3 aa 3 ν= 1 3.3.6. Liquid cooling The following table contain the characteritic R ν and

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia Part A: Signal Proceing Chapter 5: Digital Filter Deign 5. Chooing between FIR and IIR filter 5. Deign Technique 5.3 IIR filter Deign 5.3. Impule Invariant Method 5.3. Bilinear Tranformation 5.3.3 Digital

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 12 - Non-isolated DC-DC Buck Converter ecture 12 - Non-iolated DC-DC Buck Converter Step-Down or Buck converter deliver DC power from a higher voltage DC level ( d ) to a lower load voltage o. d o ene ref + o v c Controller Figure 12.1 The

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair Frequency epone of Aplifier General onideration Miller Effect Aociation of Pole with Node oon ource tage ource Follower ifferential Pair Haan Abouhady Univerity of Pari I eference B. azavi, eign of Analog

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc.

ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc. ELECTRONIC FILTERS Celo Joé Faria de Araújo, M.Sc. A Ideal Electronic Filter allow ditortionle tranmiion of a certain band of frequencie and ure all the remaining frequencie of the ectrum of the inut ignal.

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

RaneNote BESSEL FILTER CROSSOVER

RaneNote BESSEL FILTER CROSSOVER RaneNote BESSEL FILTER CROSSOVER A Beel Filter Croover, and It Relation to Other Croover Beel Function Phae Shift Group Delay Beel, 3dB Down Introduction One of the way that a croover may be contructed

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function ECSE CP7 olution Spring 5 ) Bode plot/tranfer function a. Draw magnitude and phae bode plot for the tranfer function H( ). ( ) ( E4) In your magnitude plot, indicate correction at the pole and zero. Step

More information

Behavioral Modeling of Transmission Line Channels via Linear Transformations

Behavioral Modeling of Transmission Line Channels via Linear Transformations Behavioral Modeling of Tranmiion Line Channel via Linear Tranformation Albert Vareljian albertv@ieeeorg Member, IEEE, Canada Abtract An approach baed on the linear tranformation of network port variable

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Operational transconductance amplifier based voltage-mode universal filter

Operational transconductance amplifier based voltage-mode universal filter Indian Journal of Pure & Alied Phyic ol. 4, etember 005,. 74-79 Oerational tranconductance amlifier baed voltage-mode univeral filter Naeem Ahmad & M R Khan Deartment of Electronic and Communication Engineering,

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

Lecture 28. Passive HP Filter Design

Lecture 28. Passive HP Filter Design Lecture 28. Paive HP Filter Deign STRATEGY: Convert HP pec to Equivalent NLP pec. Deign an appropriate 3dB NLP tranfer function. Realize the 3dB NLP tranfer function a a circuit. Convert the 3dB NLP circuit

More information

The Operational Amplifier

The Operational Amplifier The Operational Amplifier The operational amplifier i a building block of modern electronic intrumentation. Therefore, matery of operational amplifier fundamental i paramount to any practical application

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_N_A_Network Theory_098 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 NSTRUMENTATON ENGNEERNG Subject

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS_B_EC_Network Theory_0098 CLASS TEST (GATE) Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONCS

More information

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION ECE-202 Final, Fall 16 1 ECE-202 FINAL December 13, 2016 Name: (Pleae print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 8:30-9:30 Talavage-9:30-10:30 2021 2022 INSTRUCTIONS There are 35 multiple

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Low Noie Aplifier» Φώτης Πλέσσας fplea@e-ce.uth.r F eceiver Antenna BPF LNA BPF Mixer BPF3 IF Ap Deodulator F front end LO LNA De Conideration

More information

Designing Circuits Synthesis - Lego

Designing Circuits Synthesis - Lego Deigning Circuit Synthei Lego Port a pair of terminal to a cct Oneport cct; meaure I and at ame port I Drivingpoint impedance input impedance equiv impedance Twoport Tranfer function; meaure input at one

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

Chapter 4 Interconnection of LTI Systems

Chapter 4 Interconnection of LTI Systems Chapter 4 Interconnection of LTI Sytem 4. INTRODUCTION Block diagram and ignal flow graph are commonly ued to decribe a large feedback control ytem. Each block in the ytem i repreented by a tranfer function,

More information

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with : 376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD Therefore by applying the lead compenator with ome gain adjutment : D() =.12 4.5 +1 9 +1 we get the compenated ytem with : PM =65, ω c = 22 rad/ec, o

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

EECS240 Spring Lecture 13: Settling. Lingkai Kong Dept. of EECS

EECS240 Spring Lecture 13: Settling. Lingkai Kong Dept. of EECS EES240 Spring 203 Lecture 3: Settling Lingkai Kong Dept. of EES Settling Why intereted in ettling? Ocillocope: track input waveform without ringing AD (witchedcap amplifier): gain a ignal up by a precie

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response. EE202 HOMEWORK PROBLEMS SPRING 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on the web. Quote for your Parent' Partie: 1. Only with nodal analyi i the ret of the emeter a poibility. Ray DeCarlo 2. (The need

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1 Chapter Homework Solution P.-1,, 5 P.4-1, 3, 5, 6, 7 P.5-1, 3, 5 P.6-, 5 P.7-1, 4 P.8-1 P.9-1 P.-1 An element ha oltage and current i a hown in Figure P.-1a. Value of the current i and correponding oltage

More information

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu Chapter 4: Application of Fourier Repreentation Chih-Wei Liu Outline Introduction Fourier ranform of Periodic Signal Convolution/Multiplication with Non-Periodic Signal Fourier ranform of Dicrete-ime Signal

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES ABCM Sympoium Serie in Mechatronic - Vol. 3 - pp.87-96 Copyright c 8 by ABCM A PLC BASE MIMO PI CONOLLE FO MULIVAIABLE INUSIAL POCESSES Joé Maria Galvez, jmgalvez@ufmg.br epartment of Mechanical Engineering

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information