the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

Size: px
Start display at page:

Download "the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit"

Transcription

1 .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te cain rule 3 ( x x exp 4 ( surf t t π αt 4α e first derivative of te complimentary error function is [ ] exp( u For te given temperature profile of erfc ( surf ( x x exp 4 ( surf t t 4απ αt e second derivative wit respect to position x is obtained from ( x exp 4 ( surf x π αt 4αt erefore ( x x exp 4 ( surf x π αt 4αt 4 αt ( x x α exp x 4απ 4 αt 3 t ( ( α t x 3 ( surf x x x x exp ( surf t exp ( surf t 4απ 4αt 4απ 4αt wic cecks as a solution to te eat equation. 3 3 b In part (a we ave sown tat te given temperature profile satisfies te eat equation. In order tat tis temperature profile apply specifically to a semi-infe slab it must also satisfy te two boundary conditions and te ial condition. Initial Condition: I.C. ( x,0 0 x ( x,0 erfc erfc 4α 0 ( note erfc 0 ( x,0 0 First Boundary Condition: B.C. (0, t Second Boundary Condition: ( ( ( surf surf surf ( ( ( (0, t erfc 0 surf surf

2 B.C. (, t 0 ( ( (, t erfc 0 surf c e eat flux at te surface of te slab, x0, is obtain by using Fourier s aw. ( x qxt (, k k exp 4 ( surf x x π αt 4α t ( surf k x qxt (, exp 4 αt k q(0, t ( surf d Wen two semi-infe solids are brougt into termal contact, te interface temperature must be te same and te eat flux leaving one solid must be equal to te eat flux going into te second solid. In te problem statement we are told to assume tat tere is no interfacial termal resistance between te solid. For tis reason, tere cannot be a temperature difference between te two interfaces. Secondly, since tere is no work transfer at te interface, te First aw applied to a differential piece of te interface tells us tat te flux leaving one solid must be equal to te flux going into te oter solid. k surf surf ( ( k x x e negative sign is needed in te flux equation since te coordinate systems of te two slabs are different. e Find te expression for te interface temperature. k surf surf surf ( ( k x x x 0 x 0 ( surf ( surf k k πα t πα t surf k α + k k α + k α f Using te termopysical properties given in te problem, we can calculate surf, for te tree different blocks. Copper Block: surf 0.7 C Stainless Steel Block: surf.98 C VC Block: surf 30.9 C e copper block feels coldest to te touc. g Recall from part c tat te expression for te eat flux at te surface is α k q(0, t ( surf as units of lengt. is expression can be tougt of as te penetration dept, e expression i.e., te dept into te solid tat as experienced a cange in temperature from its ial condition. is expression is often used in eat transfer analysis to obtain a scale fore te time it takes an entire solid (or a part of a solid to respond to a temperature cange at its interface.

3 In te case of cooking a burger, we can use tis lengt scale to obtain an approximate value for te time it takes to cook te burger. If we assume tat te tickness of te burger is 5 mm and te termal diffusivity of te burger is tat of water, we can calculate a cooking time scale of l t 9sec min 7 πα π (.5 0 (We used alf te tickness of te burger as our lengt scale, since eat diffuses in from bot te top and bottom surfaces. roblem e rain keeps te surface of te aspalt at a constant 0 C. et s model te aspalt as a semi-infe solid, wit an ial temperature of 50 C. From equation 6.08 in te course reader (also derived in class, te eat flux into te aspalt at a given k( s i k time is: q& s ( t were α ρc We integrate wit respect to t to get te total eat transfer per unit area into te aspalt, remembering tat 30 minutes is 800 seconds : Q k 30 min 0 q ( t dt ( πα s s i 5 J/m t t 30 min And of course, since we want te eat transferred from te aspalt, we take te negative of te value above: Q J/m out roblem 3 CV CV a Applying te First aw to CV gives us an expression for Q & du dt Since te system is at steady state and tere is no work transfer, 0 A q& Q& + A( Q& Aq& A ( 0 air Q & ( air Q& W& c e efficiency of a reversible engine operating between termal reservoirs is η max

4 erefore te efficiency of tis Stirling engine is η SE 0. c W& Q& Combining tis result wit te expression for Q & given above, we get an expression relating te power output of te Stirling engine to te temperature of te solar collector. c c W& 0. Q 0. ( Aq A( air & & ( o maximise te work, we take te derivative of te power wit respect to and set it equal to zero. dw& d c 0. air A q& + ( ( + c Aq& A 0. ( 0 ( c cair q& c + air 339. K b e power output of te generator at tis operating condition is determined by plugging in te value of into equation (. We get W &.4 W W&.4 c e efficiency for solar to electric power conversion is η total & roblem 4 Aq 0 0 Below is one possible realisation of te Ericsson cycle. (You may ave oter designs tat run te same termodynamic cycle.

5 For rocess -, te reversible constant pressure cooling at, W dv mr mr dv ( V V mr( mr( (In te above equation, we used te fact tat te pressure stays constant over te process -, and is equal to From te st aw, Q W + ( U U W + mcv ( W + mcv ( Q mr( + mcv ( mc p ( is eat transfer is negative, wic means tat eat leaves te ideal gas and goes into te regenerator. For rocess -3, te reversible isotermal eat transfer at, e analysis proceeds in te same way as for rocess 4-. In tis case, W Q 3 3 mr Since <, te eat transfer and work transfer are negative eat leaves te system and work enters te system. For rocess 3-4, te reversible constant pressure eating at, e analysis proceeds in te same way as for rocess -. In tis case, W mr( and Q mc ( p Note tat te eat and work transfers in tis case are equal and opposite to te eat and work transfers in process -. All te eat tat was transferred to te regenerator in process - is transferred back to te gas in process 3-4. o find te cycle efficiency, we need to find te net work output and te eat input. e net work output is W net W4 + W + W 3 + W3 4 W net mr( mr + mr( + mr + mr( e eat input occurs in process 4-. (eat is rejected to te low temperature reservoir in process -3. As sown previously, te eat transfers in processes - and 3-4 are equal and opposite: tere is no net eat transfer to te regenerator. Q in Q4 mr

6 e efficiency of te cycle is defined as In tis case, it is calculated to be W η Q net mr( η mr in is is te same as tat of a Carnot engine. is is not surprising, since any reversible engine operating between te same fixed temperature reservoirs and will ave te same efficiency. d e eat absorbed at is Q in J / cycle e eat rejected at is Q out Q J / cycle 00 e net work transfer is W net ( J / cycle e termal efficiency of te cycle is roblem 5 a Since System (as sown in te figure below is reversible and adiabatic, te entropy of te system does not cange from te ial state to te final state (by te Second aw. erefore, we ave A, VA, B, VB, S + A + S B ma cv + R mb cv + R 0 A, VA, B, VB, System System We are told tat te final volumes of A and B are te same. Note tat all times, te pressures in A and B must be same, because of te frictionless, massless piston. Since te masses of gases in A and B are also te same, te final temperatures of A and B must also be te same (tis just follows from te ideal gas law. et tis final temperature be We are not given te volumes of A and B, but we only require te volume ratios in te Second aw equation. et te ial volume of A be V A,. Since te mass and ial pressure of A and B are te same, ma,r mb,r VA, VB, VA, 50 V 550 A, B, V B, B, VA,. V A, A, A, B, erefore, te total ial volume is V A, + V B, 3.V A,. Since te final volumes are equal, and te total volume remains te same, we ave V A, V B,.6V A,. B,

7 VA, VB,.6 erefore,. 6 and V V. A, B, lugging tis back into te Second aw equation, we get m A c v + R.6 + mb cv + R Since te masses are equal, tey drop out of te equation. Combining terms, we get c v + R ( R / cv ( b e total work extracted from te cylinder is found by applying te First aw to System : U A + U B Q W ere is no eat transfer from te system (Q A and Q B are internal to te system. erefore, W ( U + U ( m c + m c ( 9. kj A B A v ( A, B v B, 8 K c If te eat engine is not allowed to communicate wit any oter termal reservoir wic is at a temperature different from te final temperature of gases A and B ten te maximum amount of work as been extracted from te cylinder consisting of gas A and B. No more positive work can be extracted from te eat engine. d e process witin System (sown in te figure is also reversible and adiabatic. If we apply te Second aw to tis system, we get S C + S C block D 0 C, C, + C block D, D, 0 D, C, D, Using tis result and applying te First aw to System, we can solve for C, : U C + U D Q W ere is no eat transfer to tis system; we are told tat te work transfer is W J C + C ( ( block ( C, C, block D, D, ( C C, + ( D, D, C 400 C, D, 300 K C,D, C, C, C,, 800C, is equation as two solutions, C, K and C, K For C, K, we get D, K For C, K, we get D, K Since we are told tat C is te colder block, D, K and C, K roblem 6 A reversible cycle executes te cycle sown, between a maximum temperature of 800 K and a minimum temperature of 600 K. is cycle is different from te two eat-reservoir cycles we discussed in class C,

8 because te eat input takes place over a range of temperatures (600 K 800 K. is engine interacts wit several ig-temperature reservoirs and one low-temperature reservoir (at 600 K. 800 K rocess 600 K rocess 400 kj/k 800 kj/k (a and (c Determine te direction in wic te engine executes te cycle, and indicate te pat along wic eat is rejected. Since tis cycle is a eat engine, i.e. a power-producing system, it must take eat (and entropy from ig temperature reservoirs and dump te entropy (along wit some of te eat to te low temperature reservoir, extracting some useful work in te process. So te eat transfer in must be at a iger temperature tan te eat transfer out (in contrast to a refrigerator, were te eat transfer in is at a low temperature, and te eat transfer out is at a ig temperature. o figure out weter eat is entering or leaving a system during a reversible process, we look at te entropy. From te second law for a reversible process,, a positive eat transfer must increase te entropy of te system. A negative eat transfer decreases te entropy of te system. We can break te cycle into two processes te semi-circular arc (process and te straigt line (process. o produce power, te eat transfer must be positive during process. erefore, te entropy of te system must increase during process. Similarly, te eat transfer must be out of te system during process, and terefore, te entropy of te system must decrease during process. So te engine executes a clockwise cycle and eat is rejected in process (te straigt-line part of te cycle. (b e net work For a cycle, te st aw is e cyclic integral of eat for a reversible process is (from te nd aw, wic is just te area under te -S grap. Since tis region is semi-circular, its area can be calculated as te radius is 00. erefore, te cyclic integral of eat, work. (d e termodynamic efficiency e efficiency for an engine is defined as, were, is 683 kj, wic is also equal to te net We found W in part (b; we now ave to find Q. o do tis, we apply te nd aw to process, te eat input process. e eat input is given by, wic is te area under te curve for process. is is te sum of te areas of te semi-circle, and te rectangle between (400 kj/k to 800 kj/k and (0 K to 600 K. is total area is kj. So te efficiency is W/Q 683/ % (e e Carnot efficiency for a cycle running between 600 K and 800 K. 5%. is is iger tan te efficiency of te reversible cycle we calculated. is is not an inconsistency te cycle we ave analysed does not operate between two fixed temperature reservoirs like a Carnot cycle and tus does not ave te same efficiency as te Carnot cycle, even toug it is completely reversible.

9 e irreversible engine We now take a look at an irreversible cycle wit W irrev 0.9W rev kj. e eat input is still 3083 kj. e entropy transferred during te eat input is still te same as tat in te reversible case. We know tat Q,rev Q W rev kj. is is transferred to te (fixed low temperature reservoir at 600 K. e entropy transferred to te low temperature reservoir in te reversible cycle is 40000/ kj/k. erefore, te entropy transferred in must also be 400 kj/k. A muc easier way of seeing tis is looking at process. e entropy cange in process (te eat input process is 400 kj/k (from te cycle plot. Since tis process is reversible, all te entropy cange must be due to entropy transfer. (f and (g Calculate, and is Q,rev greater tan, less tan, or equal to Q,irrev? Applying te st aw to te reversible cycle, Q Q,rev W rev Q,rev Q - W rev kj Applying te st aw to te irreversible cycle, Q Q,irrev W irrev Q,irrev Q - W irrev kj Q,rev is smaller tan Q,irrev. is is expected less work is extracted in te irreversible cycle. is is due to entropy generation in te irreversible engine. Because te entropy being transferred to te 600 K reservoir is te sum of te entropy transferred in during process and te entropy generated, te Q required is greater in te irreversible case. o find te entropy generation in one cycle, apply te nd aw to te irreversible engine over a complete cycle. is te entropy transferred in during te eat input process, wic we calculated to be 400 kj/k. simplifies to negative lugging tese values in,, wic is -4683/ kj/k (Q leaves te system and is 0.47 kj/k

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Thermal-Fluids Engineering I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Thermal-Fluids Engineering I MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.005 Thermal-Fluids Engineering I PROBLEM SET #8, Fall Term 2008 Issued: Thursday, October 23, 2008 Due: Thursday, October 30,

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

3 Minority carrier profiles (the hyperbolic functions) Consider a

3 Minority carrier profiles (the hyperbolic functions) Consider a Microelectronic Devices and Circuits October 9, 013 - Homework #3 Due Nov 9, 013 1 Te pn junction Consider an abrupt Si pn + junction tat as 10 15 acceptors cm -3 on te p-side and 10 19 donors on te n-side.

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

The Laws of Thermodynamics

The Laws of Thermodynamics 1 Te Laws of Termodynamics CLICKER QUESTIONS Question J.01 Description: Relating termodynamic processes to PV curves: isobar. Question A quantity of ideal gas undergoes a termodynamic process. Wic curve

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

Consider the element shown in Figure 2.1. The statement of energy conservation applied to this element in a time period t is that:

Consider the element shown in Figure 2.1. The statement of energy conservation applied to this element in a time period t is that: . Conduction. e General Conduction Equation Conduction occurs in a stationary medium wic is most liely to be a solid, but conduction can also occur in s. Heat is transferred by conduction due to motion

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction Journal of Modern Pysics, 2017, 8, 1795-1808 ttp://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 arnot Factor of a Vapour Power ycle wit Regenerative Extraction Duparquet Alain

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

2011 Fermat Contest (Grade 11)

2011 Fermat Contest (Grade 11) Te CENTRE for EDUCATION in MATHEMATICS and COMPUTING 011 Fermat Contest (Grade 11) Tursday, February 4, 011 Solutions 010 Centre for Education in Matematics and Computing 011 Fermat Contest Solutions Page

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

The Basics of Vacuum Technology

The Basics of Vacuum Technology Te Basics of Vacuum Tecnology Grolik Benno, Kopp Joacim January 2, 2003 Basics Many scientific and industrial processes are so sensitive tat is is necessary to omit te disturbing influence of air. For

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

2016 PRELIM 2 PAPER 2 MARK SCHEME

2016 PRELIM 2 PAPER 2 MARK SCHEME 06 River Valley Hig Scool Prelim Paper Mark Sceme 06 PRELIM PAPER MARK SCHEME (a) V 5.00 X 85. 9V 3 I.7 0 X V I X V I X 0.03 0. 85.9 5.00.7 X 48.3 00 X X 900 00 [A0] Anomalous data can be identified. Systematic

More information

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions Article Engineering Termopysics July 2011 Vol.56 No.19: 2071 2076 doi: 10.1007/s11434-010-4189-x SPECIAL TOPICS: Te entransy dissipation minimization principle under given eat duty and eat transfer area

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Performance analysis of Carbon Nano Tubes

Performance analysis of Carbon Nano Tubes IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 8 (August 2012), PP 54-58 Performance analysis of Carbon Nano Tubes P.S. Raja, R.josep Daniel, Bino. N Dept. of E & I Engineering,

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Announcements. Exam 4 - Review of important concepts

Announcements. Exam 4 - Review of important concepts Announcements 1. Exam 4 starts Friday! a. Available in esting Center from Friday, Dec 7 (opening time), up to Monday, Dec 10 at 4:00 pm. i. Late fee if you start your exam after 4 pm b. Covers C. 9-1 (up

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

= for reversible < for irreversible

= for reversible < for irreversible CHAPER 6 Entropy Copyright he McGraw-Hill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: δ 0 Cyclic integral his inequality is valid for all cycles, reversible

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

Chapter 3 Thermoelectric Coolers

Chapter 3 Thermoelectric Coolers 3- Capter 3 ermoelectric Coolers Contents Capter 3 ermoelectric Coolers... 3- Contents... 3-3. deal Equations... 3-3. Maximum Parameters... 3-7 3.3 Normalized Parameters... 3-8 Example 3. ermoelectric

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set WYSE Academic Callenge 00 State Finals Matematics Solution Set. Answer: c. We ave a sstem of tree equations and tree unknowns. We ave te equations: x + + z 0, x + 6 + 7z 9600, and 7x + + z 90. Wen we solve,

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

Chapter 5. The Second Law of Thermodynamics (continued)

Chapter 5. The Second Law of Thermodynamics (continued) hapter 5 he Second Law of hermodynamics (continued) Second Law of hermodynamics Alternative statements of the second law, lausius Statement of the Second Law It is impossible for any system to operate

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information