Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Size: px
Start display at page:

Download "Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k."

Transcription

1 PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model, determine for the air (a) the mass, in kg, (b) final temperature, in K, and (c) the amount of entropy produced, in KJ/K. Schematic and Given Data: Air V = 3 m 3 T 1 = 295 K p 1 = 200 kpa W 12 shaft = kj Given: Three m 3 of air is in a closed system with a paddle wheel. See above figure for given values. Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. Engineering Model: 1. Air is a closed system. 2. For the air, Q = 0, and there are no overall changes in kinetic or potential energy. 3. The air is modeled as an ideal gas, taking into account variations in specific heat. Analysis: a) From Table A-22 at T 1 = 295 K: u 1 = kj/kg Using the ideal gas equation of state: m = p 1V = ( N m 2 ) (3m 3 ) RT 1 ( 8314 N m = ) (295 K) Kg K kg b) An energy balance reduces to ΔU 12 = W 12. Therefore, W 12 = -m (u 2 u 1 ). Rearranging, u 2 = -W 12 /m + u 1 = ( 1546 ) + (210.49) = kj/kg Find corresponding T 2 from Table A-22 with interpolation, T 2 = 311 K c) For an adiabatic process involving an ideal gas taking into account variations in specific volume, Eqs. 6.20a and 6.24 simplify to

2 σ = m (s 2 s 1 R M ln (p 2 p 1 )) Using ideal gas model for the process with fixed m and v, restate as σ = m (s 2 s 1 R M ln (T 2 T 1 )) From Table A-22 at T 1, s 1 = kj/kg K Using Table A-22 with interpolation at T 2, s 2 = kj/kg K σ = (7.087 kg)[( kj/kg K kJ/kg K) ( ) kj/kg K(ln ( ))] = kj/k

3 PROBLEM 6.51

4 PROBLEM 6.51 (CONTINUED)

5 PROBLEM 6.80

6 PROBLEM 6.60 Air at 400 kpa, 980 K enters a turbine operating at steady state and exits at 100 kpa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kj per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kj per kg of air flowing, and (b) the rate of entropy production within the turbine, in kj/k per kg of air flowing. Schematic and Given Data: 2 T 2 = 670 K p 2 = 100 kpa Turbine T b = 315 K T 1 = 980 K p 1 = 400 kpa 1 Given: Air enters and exits a turbine operating at steady state with heat transfer. See above figure for values. Find: (a) Rate power is developed, in kj/kg of air flowing through the turbine (b) Rate of entropy production within the turbine in kj/kg K of air flowing through the turbine Engineering Model: 1. The control volume shown in the sketch is at steady state. 2. Heat transfer occurs at T b = 315K. 3. Kinetic and potential energy effects are negligible. 4. The air is modeled as an ideal taking into account variations in specific heat. Analysis: (a) An energy rate balance reads, 0 = Q cv W cv + (h 1 h 2 ) Simplified, W cv = Q cv + (h 1 h 2 ) (1) For states 1 and 2 at 980K and 670K, respectively, and using Table A-22:

7 h 1 = kj/kg, s 1 = kj/kg K h 2 = kj/kg, s 2 = kj/kg K Substituting these values into equation (1), W cv = 30 kj/kg + ( )kJ/kg = kj/kg (b) An entropy rate balance reads, 0 = Q cv T b + (s 1 s 2 ) + σ cv Considering variations in specific heat, Eq. 6.20a states, s 2 s 1 = s 2 s 1 R M ln (p 2 p 1 ) Simplified, σ cv σ cv σ cv = ( 30 kj/kg 315K = kj/kg K = Q cv/ T b + (s 2 s 1 R M ln (p 2 p 1 )) kj ) + ( kj kg K kg K ( ) ln (100 kpa 400 kpa ))

8 PROBLEM Refrigerant 22 in a refrigeration system enters one side of a counter-flow heat exchanger at 12 bar, 28 o C. The refrigerant exits at 22 bar, 20 o C. A separate stream of R-22 enters the other side of the heat exchanger as saturated vapor at 2 bar and exits as superheated vapor at 2 bar. The mass flow rates of the two streams are equal. Stray heat transfer from the heat exchanger to its surroundings and kinetic and potential energy effects are negligible. Determine the entropy production in the heat exchanger, in kj/k per kg of refrigerant flowing. What gives rise to the entropy production in this application? KNOWN: Two streams of R-22 pass though opposite sides of a counter-flow heat exchanger operating at steady state with equal mass flow rates. Data are known for each stream. FIND: Determine the entropy production for the heat exchanger per unit mass of refrigerant flowing. 12 bar T SCHEMATIC AND GIVEN DATA: 12 bar (1) (2) 12 bar (1) 28 o C 20 o 28 o C. C 20 o C (4) (3) 2 bar 2 bar sup. vapor sat. vapor ENGINEERING MODEL: (1) The control volume is at o C steady state. (2). (3) Kinetic and potential energy effects are negligible. ANALYSIS: To fix state 4, we write mass and energy rate balances. The mass balances reduce at steady state to and. Further, (2). (3) 2 bar.. (4) s T 4 0 = + [(h 1 h 2 ) + (h 3 h 4 )] h 4 = h 1 h 2 + h 3 From Table A-7: h 1 h f (28 o C) = kj/kg and s 1 s f (28 o C) = kj/kg K h 2 h f (20 o C) = kj/kg and s 2 s f (20 o C) = kj/kg K From Table A-8: h 3 = h g (2 bar) = kj/kg and s 3 = s g (2 bar) = kj/kg K h 4 = h 1 h 2 + h 3 = = kj/kg Interpolating in Table A-9: T o C and s kj/kg K The entropy rate balance reduces as follows: 0 = + [(s 1 s 2 ) + (s 3 s 4 )] + Thus = ( ) + ( ) = kj/ kg K The entropy production is due to irreversible heat transfer between the two streams. There would be a small effect of frictional pressure drop, but pressure drops have been ignored.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams. PROBLEM 63 Using the appropriate table, determine the indicated property In each case, locate the state on sketches of the -v and -s diagrams (a) water at p = 040 bar, h = 147714 kj/kg K Find s, in kj/kg

More information

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe. 4.3 Steam enters a.6-cm-diameter pipe at 80 bar and 600 o C with a velocity of 50 m/s. Determine the mass flow rate, in kg/s. KNOWN: Pressure, temperature, and velocity of steam entering a.6-cm-diameter

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity. Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

ME Thermodynamics I

ME Thermodynamics I HW-6 (5 points) Given: Carbon dioxide goes through an adiabatic process in a piston-cylinder assembly. provided. Find: Calculate the entropy change for each case: State data is a) Constant specific heats

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

MAE 110A. Homework 3: Solutions 10/20/2017

MAE 110A. Homework 3: Solutions 10/20/2017 MAE 110A Homework 3: Solutions 10/20/2017 3.10: For H 2O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. Given a) T 140 C, v 0.5 m 3 kg b) p 30MPa,

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Name: I have observed the honor code and have neither given nor received aid on this exam.

Name: I have observed the honor code and have neither given nor received aid on this exam. ME 235 FINAL EXAM, ecember 16, 2011 K. Kurabayashi and. Siegel, ME ept. Exam Rules: Open Book and one page of notes allowed. There are 4 problems. Solve each problem on a separate page. Name: I have observed

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes.

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes. 50 MAE 320 THERODYNAMICS FINAL EXAM - Practice Name: You are allowed three sheets of notes. 1. Fill in the blanks for each of the two (Carnot) cycles below. (a) 5 a) Heat engine or Heat pump/refrigerator

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

MAE 110A. Homework 6: Solutions 11/9/2017

MAE 110A. Homework 6: Solutions 11/9/2017 MAE 110A Hoework 6: Solutions 11/9/2017 H6.1: Two kg of H2O contained in a piston-cylinder assebly, initially at 1.0 bar and 140 C undergoes an internally ersible, isotheral copression to 25 bar. Given

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation. Soln_21 An ordinary household refrigerator operating in steady state receives electrical work while discharging net energy by heat transfer to its surroundings (e.g., the kitchen). a. Is this a violation

More information

(SP 1) DLLL. Given: In a closed rigid tank,

(SP 1) DLLL. Given: In a closed rigid tank, (SP 1) Given: In a closed rigid tank, State 1: m 1,ice = 1, m 1,g = 0.05 P1= 0.0381 kpa, T1= -30 o C State 2: the liquid vapor equilibrium line, either saturated liquid or saturated vapor Find: (a) The

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Content Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As a system becomes

More information

In the next lecture...

In the next lecture... 16 1 In the next lecture... Solve problems from Entropy Carnot cycle Exergy Second law efficiency 2 Problem 1 A heat engine receives reversibly 420 kj/cycle of heat from a source at 327 o C and rejects

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

ME Thermodynamics I

ME Thermodynamics I HW-22 (25 points) Given: 1 A gas power cycle with initial properties as listed on the EFD. The compressor pressure ratio is 25:1 Find: 1 Sketch all the processes on a p-h diagram and calculate the enthalpy,

More information

Lecture 29-30: Closed system entropy balance

Lecture 29-30: Closed system entropy balance ME 200 Thermodynamics I Spring 2016 Lecture 29-30: Closed system entropy balance Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 200240, P.

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra EVALUATING PROPERTIES FOR A PURE SUBSTANCES 1 By Ertanto Vetra Outlines - TV, PV, PT, PVT Diagram - Property Tables - Introduction to Enthalpy - Reference State & Reference Values - Ideal Gas Equation

More information

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 1:30 p.m. 3:30 p.m. Mongia Abraham Sojka Bae Naik ME 200 Final Exam December 12, 2011 8:00 a.m. to 10:00 a.m. INSTRUCTIONS

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

ESO 201A Thermodynamics

ESO 201A Thermodynamics ESO 201A Thermodynamics Instructor: Sameer Khandekar Tutorial 9 [7-27] A completely reversible heat pump produces heat at arate of 300 kw to warm a house maintained at 24 C. Theexterior air, which is at

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

CLAUSIUS INEQUALITY. PROOF: In Classroom

CLAUSIUS INEQUALITY. PROOF: In Classroom Chapter 7 ENTROPY CLAUSIUS INEQUALITY PROOF: In Classroom 2 RESULTS OF CLAUSIUS INEQUALITY For internally reversible cycles δq = 0 T int rev For irreversible cycles δq < 0 T irr A quantity whose cyclic

More information

ME Thermodynamics I = = = 98.3% 1

ME Thermodynamics I = = = 98.3% 1 HW-08 (25 points) i) : a) 1 Since ν f < ν < ν g we conclude the state is a Saturated Liquid-Vapor Mixture (SLVM) 1, from the saturation tables we obtain p 3.6154 bar. 1 Calculating the quality, x: x ν

More information

To receive full credit all work must be clearly provided. Please use units in all answers.

To receive full credit all work must be clearly provided. Please use units in all answers. Exam is Open Textbook, Open Class Notes, Computers can be used (Computer limited to class notes, lectures, homework, book material, calculator, conversion utilities, etc. No searching for similar problems

More information

ENGR Thermodynamics

ENGR Thermodynamics ENGR 224 - hermodynamics W #5 Problem : 7.14 - he Increase of Entropy Principle - 2 pts 11-May-11 Will the entropy of steam increase, decrease or remain the same as it flows through a real adiabatic turbine?

More information

Brown Hills College of Engineering & Technology

Brown Hills College of Engineering & Technology UNIT 4 Flow Through Nozzles Velocity and heat drop, Mass discharge through a nozzle, Critical pressure ratio and its significance, Effect of friction, Nozzle efficiency, Supersaturated flow, Design pressure

More information

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1 In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

More information

Isentropic Efficiency in Engineering Thermodynamics

Isentropic Efficiency in Engineering Thermodynamics June 21, 2010 Isentropic Efficiency in Engineering Thermodynamics Introduction This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by Moran and Shapiro (2008. The intent

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University Chapter 7 ENTROPY Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify

More information

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

ME 201 Thermodynamics

ME 201 Thermodynamics Spring 01 ME 01 Thermodynamics Property Evaluation Practice Problems II Solutions 1. Air at 100 K and 1 MPa goes to MPa isenthapically. Determine the entropy change. Substance Type: Ideal Gas (air) Process:

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m. ME 00 Thermodynamics II Exam 1 September 7, 01 8:00 p.m. 9:00 p.m. Name: Solution Section (Circle One): Sojka Naik 11:0 a.m. 1:0 p.m. Instructions: This is a closed book/notes exam. You may use a calculator.

More information

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 5 Higher Nationals in Engineering (RQF) Unit 64: Thermofluids Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Vapour Power Cycles Page 1 of 26 2.1 Power Cycles Unit

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Equatorial Journal of Engineering (2018) 9-13 Journal Homepage: www.erjournals.com ISSN: 0184-7937 EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Kingsley Ejikeme

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

Appendix F. Steam Tables

Appendix F. Steam Tables Appendix F Steam Tables F.1 INTERPOLATION When a value is required from a table at conditions which lie between listed values, interpolation is necessary. If M, the quantity sought, is a function of a

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19. HERMODYNAMICS ES Answer Key. (a) 9. (a) 7. (c) 5. (a). (d). (b) 0. (d) 8. (d) 6. (c) 4. (b). (d). (c) 9. (b) 7. (c) 5. (c) 4. (d). (a) 0. (b) 8. (b) 6. (b) 5. (b). (d). (a) 9. (a) 7. (b) 6. (a) 4. (d).

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester MEL 140 ENGINEERING THERMODYNAMICS

Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester MEL 140 ENGINEERING THERMODYNAMICS PROBLEM SET 1: Review of Basics Problem 1: Define Work. Explain how the force is generated in an automobile. Problem 2: Define and classify Energy and explain the relation between a body and energy. Problem

More information

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 7 ENTROPY Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

a) The minimum work with which this process could be accomplished b) The entropy generated during the process

a) The minimum work with which this process could be accomplished b) The entropy generated during the process ENSC 46 Tutorial, Week#6 Exergy: Control Mass Analysis An insulated piston-cylinder device contains L of saturated liquid water at a pressure of 50 kpa which is constant throughout the process. An electric

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name: Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)

More information

GAS. Outline. Experiments. Device for in-class thought experiments to prove 1 st law. First law of thermodynamics Closed systems (no mass flow)

GAS. Outline. Experiments. Device for in-class thought experiments to prove 1 st law. First law of thermodynamics Closed systems (no mass flow) Outline First law of thermodynamics Closed systems (no mass flow) Device for in-class thought experiments to prove 1 st law Rubber stops GAS Features: Quasi-equlibrium expansion/compression Constant volume

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 1 June 006 Midterm Examination R. Culham This is a hour, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib sheet (one side

More information

2. Describe the second law in terms of adiabatic and reversible processes.

2. Describe the second law in terms of adiabatic and reversible processes. Lecture #3 1 Lecture 3 Objectives: Students will be able to: 1. Describe the first law in terms of heat and work interactions.. Describe the second law in terms of adiabatic and reversible processes. 3.

More information

III. Evaluating Properties. III. Evaluating Properties

III. Evaluating Properties. III. Evaluating Properties F. Property Tables 1. What s in the tables and why specific volumes, v (m /kg) (as v, v i, v f, v g ) pressure, P (kpa) temperature, T (C) internal energy, u (kj/kg) (as u, u i, u f, u g, u ig, u fg )

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:30 am 8:30 am 10:30 am 11:30 am Joglekar Bae Gore Abraham 1:30 pm 3:30 pm 4:30 pm Naik Naik Cheung ME 200 Exam 2 October 16, 2013 6:30 p.m. to

More information

Chapter 4. Energy Analysis of Closed Systems

Chapter 4. Energy Analysis of Closed Systems Chapter 4 Energy Analysis of Closed Systems The first law of thermodynamics is an expression of the conservation of energy principle. Energy can cross the boundaries of a closed system in the form of heat

More information

First Law of Thermodynamics Closed Systems

First Law of Thermodynamics Closed Systems First Law of Thermodynamics Closed Systems Content The First Law of Thermodynamics Energy Balance Energy Change of a System Mechanisms of Energy Transfer First Law of Thermodynamics in Closed Systems Moving

More information

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011. Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

Topics to be covered. Fundamental Concepts & Definitions: Thermodynamics; definition and scope. Microscopic

Topics to be covered. Fundamental Concepts & Definitions: Thermodynamics; definition and scope. Microscopic time Class No Text/ Reference page Topics to be covered Fundamental Concepts & Definitions: Thermodynamics; definition and scope. Microscopic 1 and Macroscopic approaches. Engineering Thermodynamics Definition,,

More information

First Law of Thermodynamics: Closed Systems

First Law of Thermodynamics: Closed Systems utorial # First Law of hermodynamics: Closed Systems Problem -7 A 0.-m tank contains oxygen initially at 00kPa and 7 C. A paddle wheel within the tank is rotated until the pressure inside rise to 50kPa.

More information

QUESTION BANK UNIT-1 INTRODUCTION. 2. State zeroth law of thermodynamics? Write its importance in thermodynamics.

QUESTION BANK UNIT-1 INTRODUCTION. 2. State zeroth law of thermodynamics? Write its importance in thermodynamics. QUESTION BANK UNIT-1 INTRODUCTION 1. What do you mean by thermodynamic equilibrium? How does it differ from thermal equilibrium? [05 Marks, June-2015] 2. State zeroth law of thermodynamics? Write its importance

More information

20 m neon m propane. g 20. Problems with solutions:

20 m neon m propane. g 20. Problems with solutions: Problems with solutions:. A -m tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T7K; P00KPa; M air 9; M

More information