Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Size: px
Start display at page:

Download "Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique"

Transcription

1 Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic Roland Schleser Thomas Ihn Paul Studerus Klaus Ensslin ETH Zurich collaborations: Eugene Shukorukov (Genève) Andrew Jordan (Rochester) D. C. Driscoll A. C. Gossard (UCSB) M. Reinwald W. Wegscheider (Regensburg)

2 Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique conductor A shot noise: SI = 2eI (Schottky, 1918) time

3 Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique conductor A time

4 Outline Introduction 1. Detection of single electron transport 2. Current fluctuations and full counting statistics in a semiconductor quantum dot 3. Tunneling through multiple states: bunching of electrons 4. Single photon detection with a double quantum dot Conclusion and outlook

5 Semiconductor quantum dots gate S source D dot drain tunnel barriers Electrostatic energy EC Quantum level spacing source S k BT quantum dot drain D EC

6 DC current measurement in a quantum dot Spectroscopy of electronic states source quantum dot drain EC k BT k B T E C GSD (10-3 e2/h) VPG (mv)

7 DC current measurement in a quantum dot Spectroscopy of electronic states source S k BT quantum dot k B T E C drain D EC GSD (10-3 e2/h) VPG (mv)

8 DC current measurement in a quantum dot Spectroscopy of electronic states source S k BT quantum dot k B T E C drain D EC N-1 GSD (10-3 e2/h) EC (+Δ) N N+1 VPG (mv)

9 Noise in quantum dots Early experiments in non-tunable quantum dots showed reduction of the shot noise: SI < 2eI Birk et al., PRL 75, 1610 (1995) scanning tunneling microscope Nauen et al., PRB 70, (2004) InAs self-assembled QDs Challenge in lateral quantum dots very low noise level: I 1 pa SI < A2/Hz! strongly non-linear systems

10 Quantum dots realized by AFM lithography AFM tip water film 34 nm 2DEG GaAs/AlGaAs heterostructure (UCSB) 300 nm mesa ohmic contact oxide line 10 Nanophysics µm group

11 part 1: Detection of single electron transport

12 Detection of single electron transport Quantum point contact as a charge detector GQPC 2e2/h N+1 electrons in the QD N electrons in the QD VP Te = 350 mk Field et al., PRL 70, 1311 (1993) Elzerman et al., Nature 430, 431 (2004) Petta et al., Science 309, 2180 (2005)

13 Detection of single electron transport Quantum point contact as a charge detector Low bias voltage on the quantum dot quantum source S dot drain D k BT Te = 350 mk Schleser et al., APL 85, 2005 (2004) Vandersypen et al., APL 85, 4394 (2004)

14 Detection of single electron transport Quantum point contact as a charge detector Large bias voltage on the quantum dot quantum dot source S drain D k BT Te = 350 mk

15 Detection of single electron transport N N+1 quantum dot source S drain D k BT Te = 350 mk

16 Detection of single electron transport N current N+1 previous experiments: Te = 350 mk time Lu et al., Nature 423, 422 (2003) Fujisawa et al., APL 84, 2343 (2004) Bylander et al., Nature 434, 361 (2005)

17 Measuring the current by counting electrons N N+1 Count number n of electron entering the dot within a time t0: I = e<n>/t0 Max. current = few fa (bandwidth = 30 khz) BUT no absolute limitation for low current and noise measurements we show here: I few aa, SI A2/Hz

18 Detection of double occupancy of the quantum dot

19 Determination of the individual tunneling rates Exponential distribution of waiting times for independent events S = < in>, D = < out> N N+1

20 part 2: Current fluctuations in a quantumdot Full counting statistics

21 Current fluctuations measured by electron counting More than noise: access to the full counting statistics (distribution function) I = eµ/t0, µ = <n> SI = 2e2µ2/t0, µ2 = <(n-<n>)2> SI3 = e3µ3/t0, µ3 = <(n-<n>)3> and many more... S. Gustavsson, RL et al., Phys. Rev. Lett. 96, (2006)

22 Histogram of current fluctuations Poisson distribution for asymmetric coupling Sub-Poisson distribution for symmetric coupling Theory: Hershfield et al., PRB 47, 1967 (1993) Bagrets & Nazarov, PRB 67, (2003)

23 Noise in a quantum dot Asymmetric coupling statistics dominated by the thicker barrier quantum dot source S k BT drain Symmetric coupling Coulomb blockade orders the electrons quantum dot source S D drain D k BT

24 Counting statistics in a single-level quantum dot Bagrets & Nazarov, PRB 67, (2003) d p0 =M p 0 dt p1 p1 S M = D i Se D quantum dot source S drain D k BT Generating function determined from the minimal eigenvalue of M(χ): S =t 0 min t 0 P n = d S i n e 2

25 Histogram of current fluctuations S. Gustavsson, RL et al., PRL 96, (2006) Poisson distribution for asymmetric coupling Sub-Poisson distribution for symmetric coupling Theory: Hershfield et al., PRB 47, 1967 (1993) Bagrets & Nazarov, PRB 67, (2003)

26 Adjustable asymmetry of the tunneling rates S D a= S D

27 Current fluctuations vs. asymmetry S. Gustavsson, RL et al., Phys. Rev. Lett. 96, (2006) Reduction of the second and third moments for symmetric coupling Theory: Hershfield et al., PRB 47, 1967 (1993) Bagrets & Nazarov, PRB 67, (2003)

28 Full counting statistics S. Gustavsson, RL et al., Phys. Rev. B 75, (2007) Reaching higher moments of the distribution T = 10 min

29 Full counting statistics Reaching higher moments of the distribution detector not perfect (finite band width) missing events: can be taken into account with an additional rate det QD detector A. Naaman and J. Omentado,PRL 96, (2006) out N N+1 det N P =M P N+1 N+1 in N det N+1 N out [ [ N, N P= N 1, N N, N 1 N 1, N 1 ] in out det in out det 0 M = 0 0 in det 0 0 out det e i out 0 in ]

30 Full counting statistics Reaching higher moments of the distribution detector not perfect (finite band width) missing events: can be taken into account with an additional rate det QD detector A. Naaman and J. Omentado,PRL 96, (2006) out N N+1 det N N+1 N+1 in N det N+1 N out

31 Full counting statistics Reaching higher moments of the distribution detector not perfect (finite band width) finite length of the time trace T = 10 min m = T / t0 e S n = q 0 p e t 0 n n q p 0 (finite t0) D.A. Bagrets & Y.V. Nazarov, PRB 67, (2003)

32 Full counting statistics S. Gustavsson, RL et al., Phys. Rev. B 75, (2007) Reaching higher moments of the distribution T = 10 min

33 part 3: Bunching of electrons Super-poissonian noise

34 Super-poissonian noise Bunching of photons Bose-Einstein statistics Anti-bunching of electrons anti-symmetrization of the wave function (Pauli principle) shown experimentally shown experimentally Handburry-Brown & Twiss, Nature 177, 27 (1956) Henny et al., Science 284, 296 (1999); Oliver et al., Science 284, 299 (1999) wire with T=1 noiseless electron source

35 Super-poissonian noise Anti-bunching of photons? light from single atom interaction between atom and electromagnetic field shown experimentally H. J. Kimble et al., PRL 39, 691 (1977) application: single photon source Bunching of electrons? entangled electrons Loss & Sukhorukov, PRL 84, 1035 (2000); Saraga & Loss, PRL 90, (2003) with interactions Sukhorukov et al., PRB 63, (2001); Cottet et al., PRB 70, (2004); Belzig, PRB 71, (R) (2005)

36 Super-poissonian noise: bunching of electrons source quantum dot S drain D k BT IQPC [na] Time [ms] S. Gustavsson, RL et al., Phys. Rev. B 74, (2006)

37 Super-poissonian noise: bunching of electrons Two time scales quantum dot S 1 ~ 20 khz, 0 ~ 1.5 khz Fast tunneling sometimes blocked by a slow tunneling drain D k BT 8 IQPC [na] source Time [ms] S. Gustavsson, RL et al., Phys. Rev. B 74, (2006)

38 Super-poissonian noise: bunching of electrons super-poissonian noise occurs at the edge of conductance steps Counts/s [khz] 15 µ 3 µ 2 10 µ Vbias [mv] 1.6 S. Gustavsson, RL et al., Phys. Rev. B 74, (2006)

39 Super-poissonian noise: the model Needs two states with different coupling to the leads Γ0 Γ1 kbt the slow state blocks the conduction, due to Coulomb blockade similar to Belzig, PRB 71, (R) (2005) 8 IQPC [na] Time [ms]

40 Super-poissonian noise: the model Master equation pa pa d pb = M p B dt p2 p2 M = ib 0 i B 1 T1 T1 ob rb e i 1 o i Ae T1 i o o r A A B B i A 2 B A Bagrets & Nazarov, PRB 67, (2003) Belzig, PRB 71, (R) (2995)

41 Super-poissonian noise: bunching of electrons Well described by our model S. Gustavsson, RL et al., Phys. Rev. B 74, (2006) µ T1 µ µ 0 But requires long relaxation time T1 > 1 ms (spin effects?) Vbias (V) 1.6

42 Conclusions Real-time detection of single electron traveling through a semiconductor quantum dot Measurement of current fluctuations (noise) and even the full counting statistics Bunching for interacting electrons Double quantum dot + quantum point contact = single photon detector

43 Outlook Electron counting statistics in the cotunneling regime? Kondo regime,... need for faster charge detector: RF-SET, RF-QPC,... Correlation measurement counting statistics of photons emitted by a quantum conductor probing entanglement of electrons

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Scanning Gate Microscopy (SGM) of semiconductor nanostructures Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve,

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Universal oscillations in counting statistics

Universal oscillations in counting statistics 1 Universal oscillations in counting statistics C. Flindt 1,2, C. Fricke 3, F. Hohls 3, T. Novotný 2, K. Netočný 4, T. Brandes 5 & R. J. Haug 3 1 Department of Physics, Harvard University, 17 Oxford Street,

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs L. Hofstetter 1, A. Kleine 1, S. Csonka 1,2, A. Geresdi 2, M. Aagesen 3, J. Nygard 3, A. Baumgartner 1, J. Trbovic 1, and C.

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Quantum Noise as an Entanglement Meter

Quantum Noise as an Entanglement Meter Quantum Noise as an Entanglement Meter Leonid Levitov MIT and KITP UCSB Landau memorial conference Chernogolovka, 06/22/2008 Part I: Quantum Noise as an Entanglement Meter with Israel Klich (2008); arxiv:

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

arxiv: v1 [cond-mat.mes-hall] 6 May 2008

arxiv: v1 [cond-mat.mes-hall] 6 May 2008 Nonequilibrium phenomena in adjacent electrically isolated nanostructures arxiv:0805.0727v1 [cond-mat.mes-hall] 6 May 2008 V.S. Khrapai a,b,1 S. Ludwig a J.P. Kotthaus a H.P. Tranitz c W. Wegscheider c

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

A Graphene Quantum Dot with a Single Electron

A Graphene Quantum Dot with a Single Electron A Graphene Quantum Dot with a Single Electron Transistor as Integrated Charge Sensor Ling-Jun Wang, Gang Cao, Tao Tu, Hai-Ou Li, Cheng Zhou, Xiao-Jie Hao, Zhan Su, Guang- Can Guo, Guo-Ping Guo *, and Hong-Wen

More information

Coherent nonlinear transport in quantum rings

Coherent nonlinear transport in quantum rings Physica E 35 (26) 327 331 www.elsevier.com/locate/physe Coherent nonlinear transport in quantum rings R. Leturcq a,, R. Bianchetti a, G. Go tz a, T. Ihn a, K. Ensslin a, D.C. Driscoll b, A.C. Gossard b

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

Imaging a Single-Electron Quantum Dot

Imaging a Single-Electron Quantum Dot Imaging a Single-Electron Quantum Dot Parisa Fallahi, 1 Ania C. Bleszynski, 1 Robert M. Westervelt, 1* Jian Huang, 1 Jamie D. Walls, 1 Eric J. Heller, 1 Micah Hanson, 2 Arthur C. Gossard 2 1 Division of

More information

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot S. Amasha, 1 A. J. Keller, 1 I. G. Rau, 2, A. Carmi, 3 J. A. Katine, 4 H. Shtrikman,

More information

C c V Det. V Emi. C Self R S,E

C c V Det. V Emi. C Self R S,E Z( ) ( ) S I,Em (A /Hz) S V,Det (V /Hz) SUPPLEMENTARY INFORMATION: DETECTING NOISE WITH SHOT NOISE USING ON-CHIP PHOTON DETECTOR SUPPLEMENTARY FIGURES (a) V Emi C c V Det S I,Emi R E S I,SE C Self R S,E

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP12851 TITLE: Single Photon Turnstile Device DISTRIBUTION: Approved for public release, distribution unlimited Availability:

More information

The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures

The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Electronic refrigeration and thermometry in nanostructures at low temperatures

Electronic refrigeration and thermometry in nanostructures at low temperatures Electronic refrigeration and thermometry in nanostructures at low temperatures Jukka Pekola Low Temperature Laboratory Aalto University, Finland Nanostructures Temperature Energy relaxation Thermometry

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Tunable Non-local Spin Control in a Coupled Quantum Dot System N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA M. P.

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL, This is the viewgraph with the recorded talk at the 26th International Conference on Physics of Semiconductor (ICPS26, Edinburgh, 22). By clicking the upper-left button in each page, you can hear the talk

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Electrical transport through a single-electron transistor strongly coupled to an oscillator

Electrical transport through a single-electron transistor strongly coupled to an oscillator Electrical transport through a single-electron transistor strongly coupled to an oscillator C. B. Doiron, 1 W. Belzig, 2 and C. Bruder 1 1 Department of Physics and Astronomy, University of Basel, CH-456

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems physica status solidi Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems Philipp Stegmann *,1 and Jürgen König 1 1 Theoretische Physik, Universität Duisburg-Essen

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity http://www-drfmc.cea.fr/pisp/55/silvano.de_franceschi.html

More information

Spin Currents in a 2D Electron Gas

Spin Currents in a 2D Electron Gas Spin Currents in a 2D Electron Gas Joshua Folk UBC Asilomar, 2007 Thanks to: My group Sergey Frolov (postdoc) Ananth Venkatesan (postdoc) Mark Lundeberg (PhD) Wing Wa Yu (Masters) Yuan Ren (Masters) Chung-Yu

More information

Self-assembled SiGe single hole transistors

Self-assembled SiGe single hole transistors Self-assembled SiGe single hole transistors G. Katsaros 1, P. Spathis 1, M. Stoffel 2, F. Fournel 3, M. Mongillo 1, V. Bouchiat 4, F. Lefloch 1, A. Rastelli 2, O. G. Schmidt 2 and S. De Franceschi 1 1

More information

Charge fluctuators, their temperature and their response to sudden electrical fields

Charge fluctuators, their temperature and their response to sudden electrical fields Charge fluctuators, their temperature and their response to sudden electrical fields Outline Charge two-level fluctuators Measuing noise with an SET Temperature and bias dependence of the noise TLF temperature

More information

Enhancement-mode quantum transistors for single electron spin

Enhancement-mode quantum transistors for single electron spin Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-1-2006 Enhancement-mode quantum transistors for single electron spin G. M. Jones B. H. Hu C. H. Yang M. J.

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear Pauli spin blockade in cotunneling transport through a double quantum dot H. W. Liu, 1,,3 T. Fujisawa, 1,4 T. Hayashi, 1 and Y. Hirayama 1, 1 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya,

More information

Flying qubits in semiconductors

Flying qubits in semiconductors FIRST 2011.8.13 Flying qubits in semiconductors Yasuhiro Tokura (NTT Basic Research Laboratories) Introduction -flying qubit- Topics Effect of statistics Entanglement generation and detection Single electron

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/ Electrical control of spin relaxation in a quantum dot S. Amasha et al., condmat/07071656 Spin relaxation In a magnetic field, spin states are split b the Zeeman energ = g µ B B Provides a two-level sstem

More information

Semiconductor few-electron quantum dots as spin qubits

Semiconductor few-electron quantum dots as spin qubits 36 Semiconductor few-electron quantum dots as spin qubits J. M. ELZERMAN, R. HANSON, L. H. WILLEMS VAN BEVEREN, L. M. K. VANDERSYPEN, AND L. P. KOUWENHOVEN Kavli Institute of Nanoscience Delft and ERATO

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Bruit de grenaille dans les junctions SNS et SIN diffusives

Bruit de grenaille dans les junctions SNS et SIN diffusives Bruit de grenaille dans les junctions N et N usives François Lefloch, C. Hoffmann, D. Quirion and M. anquer Physique Mésoscopique CEA-Grenoble, Département de echerche Fondamentale sur la Matière Condensée

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall. Lecture 3 Qubits based on the electron spin

Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall. Lecture 3 Qubits based on the electron spin Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall Lecture 3 Qubits based on the electron spin!! From Lecture 3 Physical system Microsopic Hamiltonian Effective

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

A Tunable Kondo Effect in Quantum Dots

A Tunable Kondo Effect in Quantum Dots A Tunable Kondo Effect in Quantum Dots Sara M. Cronenwett *#, Tjerk H. Oosterkamp *, and Leo P. Kouwenhoven * * Department of Applied Physics and DIMES, Delft University of Technology, PO Box 546, 26 GA

More information

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Yasuhiro Utsumi Tomohiro Taniguchi Mie Univ. Spintronics Research Center, AIST YU, Tomohiro Taniguchi, PRL 114, 186601,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/114892/dc1 Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields K. C. Nowack, * F. H. L. Koppens, Yu. V. Nazarov, L. M. K.

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons M12.L6 Low frequency noise in magnetic tunnel junctions L6 Shot noise: from photons to electrons 59 What we understand under noise in electron transport Definitions Noise is the SIGNAL (Rodolf Landauer)

More information

arxiv: v1 [cond-mat.mes-hall] 17 Oct 2012

arxiv: v1 [cond-mat.mes-hall] 17 Oct 2012 Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate-Sensors J. I. Colless, 1 A. C. Mahoney, 1 J. M. Hornibrook, 1 A. C. Doherty, 1 D. J. Reilly, 1 H. Lu, 2 and A. C. Gossard 2 1 ARC

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Resolved dynamics of single electron tunneling using the RF-SET

Resolved dynamics of single electron tunneling using the RF-SET Abstract Resolved dynamics of single electron tunneling using the RF-SET Julie Helen Love 2007 This thesis presents measurements of time resolved single electron tunneling events in a metallic thin film

More information

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Physics Department, University of Basel Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Dominik Zumbühl Department of Physics, University of Basel Basel QC2 Center and Swiss

More information

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046,

More information

Single photons. how to create them, how to see them. Alessandro Cerè

Single photons. how to create them, how to see them. Alessandro Cerè Single photons how to create them, how to see them Alessandro Cerè Intro light is quantum light is cheap let s use the quantum properties of light Little interaction with the environment We can send them

More information

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors Capri - 04/04/2006-1 Hanbury Brown and Twiss type experiments in elecronic conductors 50 years of HBT Pioneering experiments in the field of quantum statistics by R. Hanbury-Brown and R. Q. Twiss 50 years

More information

Construction of a dilution refrigerator cooled scanning force microscope

Construction of a dilution refrigerator cooled scanning force microscope REVIEW OF SCIENTIFIC INSTRUMENTS 78, 013704 2007 Construction of a dilution refrigerator cooled scanning force microscope A. E. Gildemeister, a T. Ihn, C. Barengo, P. Studerus, and K. Ensslin Laboratory

More information

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy *nicola.paradiso@sns.it Nicola Paradiso Ph. D. Thesis Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy N. Paradiso, Advisors: S. Heun,

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

arxiv: v1 [cond-mat.mes-hall] 27 Jul 2017

arxiv: v1 [cond-mat.mes-hall] 27 Jul 2017 On-Chip Quantum Dot Light Source for Quantum State Readout arxiv:177.896v1 [cond-mat.mes-hall] 27 Jul 217 Y.-Y. Liu, 1 J. Stehlik, 1 X. Mi, 1 T. Hartke, 1 and J. R. Petta 1 1 Department of Physics, Princeton

More information

Higher-order spin and charge dynamics in a quantum dot-lead hybrid system

Higher-order spin and charge dynamics in a quantum dot-lead hybrid system www.nature.com/scientificreports Received: 31 July 2017 Accepted: 5 September 2017 Published: xx xx xxxx OPEN Higher-order spin and charge dynamics in a quantum dot-lead hybrid system Tomohiro Otsuka 1,2,3,

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Few-electron quantum dots for quantum computing

Few-electron quantum dots for quantum computing Few-electron quantum dots for quantum computing I.H. Chan a, P. Fallahi b, A. Vidan b, R.M. Westervelt a,b, M. Hanson c, and A.C. Gossard c. a Department of Physics, Harvard University, Cambridge, MA 02138,

More information

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE F. Parmentier, A. Anthore, S. Jézouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly Laboratory for Photonics &

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Gate-defined graphene double quantum dot and excited state spectroscopy

Gate-defined graphene double quantum dot and excited state spectroscopy pubs.acs.org/nanolett Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu,* Dorothee Hug, and Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University

More information

Stability Diagram of a Few-Electron Triple Dot

Stability Diagram of a Few-Electron Triple Dot Stability Diagram of a Few-Electron Triple Dot L. Gaudreau Institute For Microstructural Sciences, NRC, Ottawa, Canada K1A 0R6 Régroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke,

More information