C c V Det. V Emi. C Self R S,E

Size: px
Start display at page:

Download "C c V Det. V Emi. C Self R S,E"

Transcription

1 Z( ) ( ) S I,Em (A /Hz) S V,Det (V /Hz) SUPPLEMENTARY INFORMATION: DETECTING NOISE WITH SHOT NOISE USING ON-CHIP PHOTON DETECTOR SUPPLEMENTARY FIGURES (a) V Emi C c V Det S I,Emi R E S I,SE C Self R S,E C Self R S,D R D r c r c r c r c (b) (c) 000 3,0x0-4,0x0-7,0x0-500,0x0-7,0x Frequency (Hz) 0,0 0, Frequency (Hz) Supplementary Figure : Experimental set up and transimpedance. (a) Schematic representation of the experimental set up for the PASN measurement including contact resistances. The coupling capacitance was designed to be C C ff. Ohmic contact resistances r c are 700 Ω. C self is the self capacitance to the ground. V Emi is the bias of the emitted line and V Det for the detected one. R E (R D) is the emitter (detector) resistance and R S,E (R S,D) is the series resistance in the emitter (detector) line. The noise source of the emitter (series resistance) is noted S I,Emi (S I,SE) (b) Calculated transimpedance as a function of the frequency considering the following parameters: R E = h/e, R SE = h/e, R D = h/e, R SD = h/4e, C C = ff, C self = 3 ff. (c) S V,Det(ω) and S I,Emi(ω) as a function of the frequency for R E = h/e, T e = 300 mk and V ds = mv.

2 Detection C SD T SD T det R SD V det PC D Supplementary Figure : Detection set up. Simplified electrical circuit in the high frequency limit 0 GHz seen by the detector. V det depends on the emitted shot noise. The detection part is surrounded by the dashed line. C SD is the self capacitance to the ground of the detector line. We note T det the effective temperature of the detector PC and T SD the one for the series resistance of the detector line.

3 I ph (pa) D D Supplementary Figure 3: Photocurrent measurement. In red dots, photocurrent measurement as a function of D D (series PC tuned on the first plateau) for D E tuned at 0.78 (series PC tuned on the second plateau). The emitter excitation is a sine function V amp. mv. The photocurrent measurement is realized before the PASN measurement and is used as a calibration to extract the different experimental parameters. Theoretical prediction is represented by a black solid line.

4 4 PC Contact = R PCI T e = R PCI Contact x Supplementary Figure 4: Schematic representation of the heat transport in a single PC. When a bias is applied on the PC, a power R P C I is injected on both side of the mesa. The heat equation can be solved using the Wiedemann-Franz law, assuming the contact being at the fridge temperature ridge. We note T e the electronic temperature at the PC.

5 5 PC serie PC Det Contact = R PC,LI T e,left = R PC,LI = R PC,RI T e,right = R PC,RI Contact T 0 Inner ohmic contact Supplementary Figure 5: Schematic representation of the heat transport in the detector line. The series PC is now tuned at transmission T =. In between, a floating ohmic contact with an unknown contact resistance assumed to be at the fridge temperature ridge. Regarding the detector PC we will consider the left (resp. right) electronic temperature noted T e,left (resp. T e,right ). The temperature inside the cavity is noted T 0.

6 6 SUPPLEMENTARY DISCUSSIONS Supplementary Discussion : transimpedance coupling the Emitter and Detector DEG circuits The transimpedance Z(ω) coupling the two DEG circuits is defined as S V,Det = Z(ω) S I,Emi with S V,Det being the voltage fluctuations seen by the detector line and S I,Emi the shot noise generated by the emitter PC. Z(ω) is equal to: Z(ω) = Z E(ω) + Z D(ω)+ jccω + jc CωZ D(ω) with C c the coupling capacitance, R E (R D ) the emitter (detector) resistance and Z D (ω), Z E (ω) (see in Fig. (a)) defined by: Z D (ω) = jc self ω + R SD+r c + R D +r c () Z E (ω) = jc self ω + R SE+r c + R E+r c (3) with R SE (R SD ) the series resistance in the emitter (detector) line and C self the self capacitance. The frequency dependence of the detection is therefore related to the frequency dependence of the transimpedance. Fig. (b) shows Z(ω) as a function of the frequency: current fluctuations up to 0 GHz can be detected. In the low temperature limit (k B T ω), the excess current noise spectral density generated by the PC emitter S I,Emi (V ds, ω) is : 4e h + ev ds + ω D E,n ( D E,n )( e ((ev ds+ ω)/k BT e) n ev ds + ω e (( ev ds+ ω)/k BT e) ω e ( ω)/kbte) ) (4) where T e is the electronic temperature and D E,n the transmission of the n-electronic mode of the PC emitter. Fig. (c) shows S V,Det (ω) and S I,Emi (ω) as a function of the frequency. Clearly, the bandwidth of the detection is limited by the transimpedance and from the emission point of view, we are in the low frequency limit ( ω ev ds ). At high bias, we also have to consider S I,SE (ω) due to the heating effect of the series resistance. () Supplementary Discussion : the distribution probability P(E) In the continuous limit (i.e. non periodic excitation) which is relevant for random potential fluctuations, the probability to create an electron hole pair of energy E is: P (E) = π + dτe ieτ/ e i(φ(τ) φ(0)) (5) where φ(τ) = e τ dt V det (t ). Since e i(φ(τ) φ(0)) e (φ(τ) φ(0)), we have to solve (φ(τ) φ(0)) = e τ 0 dt τ 0 dt (V det (t )V det (t ). In the high frequency regime ( 0 GHz), the electrical circuit can be simplified as represented in Fig.. We introduce a characteristic time τ c : τ c = R Eq C self (6) with R Eq composed of R SD and R D in parallel. A good approximation of the environment noise temperature T E seen by the detector is: T E Z(ω 0) (S I,Emi + S I,SE ) R eq 4k B (7)

7 with ω 0 the resonant frequency of Z(ω). We are interested in the voltage fluctuations V det (t) seen by the PC detector. We have the relation V det (t)v det (0) = kbt E C self e t/τc. Then, we can show that e i(φ(τ) φ(0)) is equal to: e i(φ(τ) φ(0)) = e e k B T E C τ self c ( τ τc +e τ /τc ) To discuss this expression, we need to introduce the parameter λ= e k BT E C self τc. When λ >, one recovers the classical voltage fluctuation probability for a RC circuit at temperature TE : P (E) = πkb TE e /(C self ) e while for the lower temperature λ one enters a quantum regime, with: P (E) = 7 (8) E k B T E e /(C self ) (9) (πk B T α) + (E/k B T α ) (0) where T α = π ReqT E h/e. Typically in this experiment λ. The classical limit being easier to treat and still a good approximation, it will be considered in the following. Supplementary Discussion 3: the photocurrent In the continuous limit, the photocurrent is given by: I ph = e dɛ( f h ɛ )( D D ɛ ) For P(E) in the classical limit, we get the expression: E P (E) () I ph = e h ( D D ɛ ) E F k B T E e C self () To obtain ( DD ɛ ) EF, one considers the saddle point model of a PC where the transmission can be written as D D,n (V g ) = /(+e π(v0,n Vg)/Vg,n ) where V g,n defines the shape of the saddle potential []. The lever arm ( = ɛ/ V g ) is extracted from transconductance (dg/dv g ) measurements 0.0e. We finally obtain for I ph : I ph = e h k B T E e C self n π V g,n D D,n ( D D,n ) (3) In figure 3, we compare this theoretical prediction to photocurrent measurements. C c 0.9 ff and C self 3 ff being fixed by the geometry of the device, we extract 0.04e (independent measurements extracted from differential PC conductance versus gate and bias voltages gives 0.0e; for these measurements, the series PC are opened and the electrostatic environment is slightly different). Supplementary Discussion 4: Photon assisted shot noise The detected PASN low frequency shot noise S PASN I S PASN I is given by: = e h [4k BT e DD + D D ( D D ) EP (E) coth E k B T e ] (4) where P(E) is given by (9). To calculate S PASN I, we need to develop in Laurent series coth E k BT e (E/k B T e ) + E/(6k B T e ). We obtain the following expression: S PASN I = e h (4k BT e D D ) e T E 4e h D D( D D ) (5) (C self ) 6T e

8 8 Our measurements are presented in terms of the excess noise SI PASN off to the noise with V ds on. It finally gives: obtained by subtracting the noise with V ds S PASN I e T E = 4e h D D( D D ) (6) (C self ) 6T e Supplementary Discussion 5: heating effect single PC configuration At low temperature, electrons in the two dimensional electron gas are hardly thermalized by the phonons since typical sample lengths are very small compared to electron-phonon temperature relaxation length. A temperature gradient between the PC and the contacts (assumed to be thermalized at the base temperature of the fridge ridge ) will therefore appear. Combining the Wiedemann-Franz law and the Joule heating, the problem can be exactly solved. We note T (x) the electronic temperature at position x. The injected power by the PC on each side of the mesa is equal to = RPCI (see Fig. 4). The heat equation can be written: and T (x) j (x) = κ x (x) x (7) = ρ mesa I (8) with κ the thermal conductivity of the mesa, R PC the resistance of the PC and ρ mesa the linear resistance of the mesa. The Wiedemann-Franz law enables us to relate κ, the conductivity of the mesa σ and T : κ σt = π 3 [k B e ] (9) We introduce T e the electronic temperature at the PC. Integrating over the length of the right mesa we get: T e T f = 4 G PC R m π VDS[ + R mg PC ] (0) where R m is the total resistance of the mesa + contact resistance. We assume the contact resistance to be the same on the right and left of the PC. Therefore the total conductance of the right and left mesa + contact in parallel is equal to G m = 4/R m. We finally obtain: Since G PC G m, we have: with L = π k B 3e. T e = T f + 4 π G PC T e = T f G m [ + G PC ]( ev DS ) () G m k B + G PC VDS () L G m Series PC configuration We now discuss the electron heating in our experiment, where two PCs are in series with in between an inner ohmic contact. As depicted in Fig. 5, because of the series PC, we introduce the left electronic temperature of the PC noted T e,left, the right one T e,right, in between the two PCs T 0 and the inner ohmic contact at. A similar approach to the one described in the single PC configuration gives: L (Te,right ) = G PC,RVR (R m,r ) (3)

9 with G PC,R the conductance of the detector PC, V R the applied bias on the right PC and R m,r the resistance of the right mesa+contact resistance. For T e,left : 9 L (Te,left ) = G PC,LVL (R m,l ) (4) with G PC,L the conductance of the serie PC (tuned on a plateau), V L the applied bias on the left PC and R m,l the resistance of the left mesa+contact resistance. For T 0 the temperature in between the PCs, we write: L (T0 Tin ) = G PC,LVR + G PC,RVL (R c,in ) (5) with R c,in the contact resistance of the inner ohmic contact. The electronic temperature of the left PC is given by the average of the left temperature T e,left and the temperature in between the two PCs T 0, (T e,left +T 0 )/. From our measurements we extract R m,l =R m,r = 400 Ω and R c,in = 500 Ω. The inner ohmic contact resistance being much smaller this difference is not surprising. [] Y.M. Blanter and M. Buttiker. Phys. Rep., 336: 66, 000. [] M. Büttiker, Phys. Rev. B 4, 7906(R), 990.

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Detecting noise with shot noise: a new on-chip photon detector

Detecting noise with shot noise: a new on-chip photon detector Detecting noise with shot noise: a new on-chip photon detector Y. Jompol 1,,, P. Roulleau 1,, T. Jullien 1, B. Roche 1, I. Farrer 2, D.A. Ritchie 2, and D. C. Glattli 1 1 Nanoelectronics Group, Service

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Efficient Light Scattering in Mid-Infrared Detectors

Efficient Light Scattering in Mid-Infrared Detectors Efficient Light Scattering in Mid-Infrared Detectors Arvind P. Ravikumar, Deborah Sivco, and Claire Gmachl Department of Electrical Engineering, Princeton University, Princeton NJ 8544 MIRTHE Summer Symposium

More information

Noise in voltage-biased scaled semiconductor laser diodes

Noise in voltage-biased scaled semiconductor laser diodes Noise in voltage-biased scaled semiconductor laser diodes S. M. K. Thiyagarajan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111

More information

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Department of Physics, Indian Institute of Science, Bangalore Nature 585 466 (2010) Quantum Hall Effect Magnetic field

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.215.33 Epitaxial graphene quantum dots for high-performance terahertz bolometers Abdel El Fatimy *, Rachael L. Myers-Ward, Anthony K. Boyd, Kevin M. Daniels, D. Kurt Gaskill, and Paola

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 Supplementary Material Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Rastogi 2, R. C. Budhani 2,3, N.

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Mar Yunsu Sung. Yunsu Sung. Special Topics in Optical Engineering II(15/1)

Mar Yunsu Sung. Yunsu Sung. Special Topics in Optical Engineering II(15/1) Mar 12 2015 Contents Two-port model Rate equation and damping Small signal response Conclusion Two Port Model I:Current V:Voltage P: Optical Power ν: Optical frequency shift Model summarize parasitic effects

More information

A Double Quantum Dot as an Artificial Two-Level System

A Double Quantum Dot as an Artificial Two-Level System Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 2100 2104 Part 1, No. 3B, March 2001 c 2001 The Japan Society of Applied Physics A Double Quantum Dot as an Artificial Two-Level System Wilfred G. van der WIEL 1,

More information

IbIs Curves as a useful sensor diagnostic

IbIs Curves as a useful sensor diagnostic IbIs Curves as a useful sensor diagnostic Tarek Saab November 7, 999 Abstract The IbIs plot is a very useful diagnostic for understanding the the behaviour and parameters of a TES as well as extracting

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

FYS3410 Condensed matter physics

FYS3410 Condensed matter physics FYS3410 Condensed matter physics Lecture 23 and 24: pn-junctions and electrooptics Randi Haakenaasen UniK/UiO Forsvarets forskningsinstitutt 11.05.2016 and 18.05.2016 Outline Why pn-junctions are important

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Photosynthesis & Solar Power Harvesting

Photosynthesis & Solar Power Harvesting Lecture 23 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0. a Press down b Retract D RG S c d 2 µm Recess 2 µm.5 µm Supplementary Figure 1 CNT mechanical transfer (a) Schematics showing steps of pressing down and retracting during the transfer of the CNT from the

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap ,

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap , MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor p-n junction diodes Reading: Kasap 6.1-6.5, 6.9-6.12 Metal-semiconductor contact potential 2 p-type n-type p-type n-type Same semiconductor

More information

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12 ECE 634 Fall 16 Homework Please do the following problems (you may do the others for practice if you wish: Probs. 1,, 3, 4, 5, 6, 7, 1, 1 1 Consider two parallel infinite wires in free space each carrying

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

Self-consistent analysis of the IV characteristics of resonant tunnelling diodes

Self-consistent analysis of the IV characteristics of resonant tunnelling diodes Terahert Science and Technology, ISSN 1941-7411 Vol.5, No.4, December 01 Self-consistent analysis of the IV characteristics of resonant tunnelling diodes Jue Wang * and Edward Wasige School of Engineering,

More information

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Y. Takei L. Gottardi H.F.C. Hoevers P.A.J. de Korte J. van der Kuur M.L. Ridder M.P. Bruijn Characterization of a high-performance

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

Chapter 4. Photodetectors

Chapter 4. Photodetectors Chapter 4 Photodetectors Types of photodetectors: Photoconductos Photovoltaic Photodiodes Avalanche photodiodes (APDs) Resonant-cavity photodiodes MSM detectors In telecom we mainly use PINs and APDs.

More information

Chap. 11 Semiconductor Diodes

Chap. 11 Semiconductor Diodes Chap. 11 Semiconductor Diodes Semiconductor diodes provide the best resolution for energy measurements, silicon based devices are generally used for charged-particles, germanium for photons. Scintillators

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes John Prineas Department of Physics and Astronomy, University of Iowa May 3, 206 Collaborator: Thomas Boggess Grad Students: Yigit Aytak Cassandra

More information

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 19 BJT Base Resistance and Small Signal Modelling Lecture Outline Lecture 17 derived static (dc) injection model to predict dc currents from terminal voltages This

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/114892/dc1 Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields K. C. Nowack, * F. H. L. Koppens, Yu. V. Nazarov, L. M. K.

More information

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron Supplementary Figure 1 Supplementary Figure 1 Characterization of another locally gated PN junction based on boron nitride and few-layer black phosphorus (device S1). (a) Optical micrograph of device S1.

More information

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Fatima Zohra Mahi, Luca Varani Abstract We present an analytical model for the calculation of the sensitivity, the spectral current noise

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

Physics 342: Modern Physics

Physics 342: Modern Physics Physics 342: Modern Physics Final Exam (Practice) Relativity: 1) Two LEDs at each end of a meter stick oriented along the x -axis flash simultaneously in their rest frame A. The meter stick is traveling

More information

The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements

The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements TOBIAS KRAMER 1,2, ERIC J. HELLER 2,3, AND ROBERT E. PARROTT 4 arxiv:95.3286v1 [cond-mat.mes-hall] 2 May

More information

Shot Noise and the Non-Equilibrium FDT

Shot Noise and the Non-Equilibrium FDT Shot Noise and the Non-Equilibrium FDT Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Photodiodes and other semiconductor devices

Photodiodes and other semiconductor devices Photodiodes and other semiconductor devices Chem 243 Winter 2017 What is a semiconductor? no e - Empty e levels Conduction Band a few e - Empty e levels Filled e levels Filled e levels lots of e - Empty

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Memories Bipolar Transistors

Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Exams February 5 March 7 April 18 June 27 Exam Four

More information

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity 6.012 - Electronic Devices and Circuits Lecture 2 - Uniform Excitation; Non-uniform conditions Announcements Review Carrier concentrations in TE given the doping level What happens above and below room

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Tunnel Diodes (Esaki Diode)

Tunnel Diodes (Esaki Diode) Tunnel Diodes (Esaki Diode) Tunnel diode is the p-n junction device that exhibits negative resistance. That means when the voltage is increased the current through it decreases. Esaki diodes was named

More information

Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics

Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics Jeff T. Hill, 1 Amir H. Safavi-Naeini, 1 Jasper Chan, 1 and O. Painter 1 1 Kavli Nanoscience Institute and

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Multi-Color Soft X-ray Diagnostic Design for the Levitated Dipole Experiment (LDX)

Multi-Color Soft X-ray Diagnostic Design for the Levitated Dipole Experiment (LDX) Multi-Color Soft X-ray Diagnostic Design for the Levitated Dipole Experiment (LDX) M.S. Davis, D.T.!Garnier, M.E. Mauel Columbia University J.L.!Ellsworth, J. Kesner, P.C. Michael PSFC MIT 1 Abstract We

More information

Single-electron Transistor

Single-electron Transistor Single-electron Transistor As Fast and Ultra-Sensitive Electrometer Francesco Maddalena Abstract The single-electron transistor (SET) is a nanodevice that can control the transport of single elementary

More information

Last Name Minotti Given Name Paolo ID Number

Last Name Minotti Given Name Paolo ID Number Last Name Minotti Given Name Paolo ID Number 20180131 Question n. 1 Draw and describe the simplest electrical equivalent model of a 3-port MEMS resonator, and its frequency behavior. Introduce possible

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

Monolithic N-Channel JFET Duals

Monolithic N-Channel JFET Duals Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Quantum Spectrometers of Electrical Noise

Quantum Spectrometers of Electrical Noise Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

Charge spectrometry with a strongly coupled superconducting single-electron transistor

Charge spectrometry with a strongly coupled superconducting single-electron transistor PHYSICAL REVIEW B, VOLUME 64, 245116 Charge spectrometry with a strongly coupled superconducting single-electron transistor C. P. Heij, P. Hadley, and J. E. Mooij Applied Physics and Delft Institute of

More information

Document Number: SPIRE-UCF-DOC Issue 1.0. November Matt Griffin

Document Number: SPIRE-UCF-DOC Issue 1.0. November Matt Griffin Sensitivity of the SPIRE Detectors to Operating Parameters Document Number: SPIRE-UCF-DOC-9 Issue. November 4 7 Matt Griffin Contents. Introduction.... List of symbols... 3. Principles of semiconductor

More information

Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria

Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED S. Putz, 1, 2 D. O. Krimer, 3 R. Amsüss, 1 A. Valookaran, 1 T. Nöbauer, 1 J. Schmiedmayer, 1 S. Rotter, 3 and

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

Ultrasensitive graphene far-infrared power detectors

Ultrasensitive graphene far-infrared power detectors Home Search Collections Journals About Contact us My IOPscience Ultrasensitive graphene far-infrared power detectors This content has been downloaded from IOPscience. Please scroll down to see the full

More information

ECE 240a - Notes on Spontaneous Emission within a Cavity

ECE 240a - Notes on Spontaneous Emission within a Cavity ECE 0a - Notes on Spontaneous Emission within a Cavity Introduction Many treatments of lasers treat the rate of spontaneous emission as specified by the time constant τ sp as a constant that is independent

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

New experimental evidence for the role of long- range potential fluctuations in the mechanism of 1/f noise in a-si:h

New experimental evidence for the role of long- range potential fluctuations in the mechanism of 1/f noise in a-si:h New experimental evidence for the role of long- range potential fluctuations in the mechanism of 1/f noise in a-si:h J.P.R. Bakker 1, P.J.S. van Capel 1, B.V. Fine 2,3, and J.I. Dijkhuis 1 1 Debye Institute

More information

Electrons in metals PHYS208. revised Go to Topics Autumn 2010

Electrons in metals PHYS208. revised Go to Topics Autumn 2010 Go to Topics Autumn 010 Electrons in metals revised 0.1.010 PHYS08 Topics 0.1.010 Classical Models The Drude Theory of metals Conductivity - static electric field Thermal conductivity Fourier Law Wiedemann-Franz

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.212.314 Supplementary Information: Photoconductivity of biased graphene Marcus Freitag, Tony Low, Fengnian Xia, and Phaedon Avouris IBM T.J. Watson Research Center, Yorktown Heights,

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fast spin information transfer between distant quantum dots using individual electrons B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, T. Meunier* Content

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Energy balance in self-powered MR damper-based vibration reduction system

Energy balance in self-powered MR damper-based vibration reduction system BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0011-4 Varia Energy balance in self-powered MR damper-based vibration reduction system J. SNAMINA

More information

Characteristics of Active Devices

Characteristics of Active Devices 007/Oct/17 1 haracteristics of Active Devices Review of MOSFET Physics MOS ircuit Applications Review of JT Physics MOS Noise JT Noise MS/RF Technology Roadmap MS MOS 1., 1.0, 0.8µm 0.60, 0.50µm 0.45,

More information

Supplementary information

Supplementary information Supplementary information April 16, 2008 Development of collective modes The atoms in our system are confined at many locations within a one dimensional optical lattice of wavevector k t /850 nm, yet interact

More information

Lecture 5 Junction characterisation

Lecture 5 Junction characterisation Lecture 5 Junction characterisation Jon Major October 2018 The PV research cycle Make cells Measure cells Despair Repeat 40 1.1% 4.9% Data Current density (ma/cm 2 ) 20 0-20 -1.0-0.5 0.0 0.5 1.0 Voltage

More information

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? Conventional Paper I-03.(a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? (ii) Give one example each of a dielectric and a ferroelectric material

More information