Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Size: px
Start display at page:

Download "Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg"

Transcription

1 Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg

2 Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential T temperature V voltage, electrostatic potential difference T V e T L T L T L T L J J J e I Q Q e T L e T e ST L 1 S T T L 1 L 1 L From: R.D. Barnard Thermoelectricity in Metals and Alloys (197)

3 Thermoelectric Properties T e K M L G Q I / Onsager-relation: M = -LT fluxes forces T I S R Q V K GT S K T Q ST G M I Q I T G L T e S I 0 / Diffusion Thermopower

4 Thermoelectric Properties ) ( ) ( ) ( T k E E E t E f de e k h e T K T k E E E t E f de e k h e L E t E f de h e G B F B B F B Landauer-Büttiker-Formalism: G L T e S I 0 / et E S E f T k E E B F odd function in E L large for t(e) asymmetric around E F

5 Thermopower (S) Kelvin-Onsager relation (1931) L S G T Heike s formula S 1 S e I 0 1 k e B ln E et g f ln g i Q TS (spin) entropy contribution thermal energy to transfer one electron from a hot to a cold reservoir Mott relation S 3 k q B kbt G dg de E F linear response

6 Thermopower (S) Measurement of the Thermopower S lim0 T V T th I 0 reservoir 1 reservoir cold? µ,t l l µ,t sample r r hot

7 Thermopower Measurement reservoir 1 reservoir cold? µ,t l l µ,t sample r r hot S : V th lim T T 0 I 0

8 Current Heating Technique V th V 1 V S dot S qpc T e T L

9 Current Heating Technique V th V 1 V S dot S qpc T e T L energy dissipation at the channel entrance only hot electron gas within channel (1 ps ee << eph 0. ns) energy relaxation in the reservoir diffusion thermopower T = 10 mk, x = 500 nm 0 K/mm QD and QPC create thermovoltages which can be measured as voltage difference between V 1 and V V 1 -V = (S QD -S QPC ) T = S QD T S QPC can be adjusted to zero ac-excitation and detection: P heat ~ [I sin(t)] ~ sin(t) (z

10 First Experiments: Thermopower of a QPC In semiconductors, at low T, 100 ps. e p nearly thermalized hot electron distribution in the heating channel

11 Step-by-step Barrier Each channel in the point contact acts as a potential barrier, hence the thermopower shows a series of peaks L.W. Molenkamp et al., Phys. Rev. Lett. 65, 105 (1990).

12 Thermopower of a QPC H. van Houten et al., Semicond. Sci. Technol. 7, B15 (199) ln 1 ln 1 / exp ln 1 n B B F B n n e e e k h e L T k E T k fde 1 ; if ln 1 N E E N e k S N F B 1 if 1 1 N e k S B quantized thermopower E 1 E 1 ; if 0 N E E S N F

13 Reference QPC Voltage Probes have to be at same temperature and of the same material QPC can be used as a reference since TP of QPC is known (can be adjusted to zero) G of QPC is quantized and therefore, so is S. This can be used as one method of temperature calibration V V V T,A V T,B V T,A V T,B L.W. Molenkamp et al., Phys. Rev. Lett. 65, 105 (1990). L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199). A.A.M. Staring et al., Europhys. Lett., 57 (1993). S. Möller et al., Phys. Rev. Lett. 81, 5197 (1998). S.F. Godijn et al., Phys. Rev. Lett. 8, 97 (1999). R. Scheibner et al., Phys. Rev. Lett. 95, (005). R. Scheibner et al., Phys. Rev. B75, (R) (007).

14 Peltier Coefficient Theoretical estimate for Peltier coefficient is within factor of from observed signal. L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199).

15 Thermal Conductance again within factor of from the observed signal. Wiedemann-Franz yields thermal conductance quantum. L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199).

16 Next: quantum dots surface GaAs/AlGaAs - DEG n = cm -, µ = 10 6 cm /Vs Ti/Au-surface electrodes (opt. and e-beam lithography) Au/AuGe - ohmic contacts growth direction 17 nm Al 0.33 Ga 0.67 As 38 nm 1.33 x cm Si 0 nm 0.4 m GaAs Al 0.33 Ga 0.67 As GaAs DEG ohmic contacts QD semiconducting GaAs substrate B valence band conduction band C Au-gates electron heating channel DEG A F E D quantum dot

17 Quantum Dot (QD) Constant Interaction model: QD = small capacitor energies depend linearly on V gate coefficients do not depend on N (number of electrons) Energy needed to add one electron: qm. Energy E qm ~ 100 µev Coulomb Interaction E C = ½ e /C ~ mev E C = E qm + E C QD C S Parameters accessible in conventional transport experiments V SD C D C gate V gate

18 Transport Properties linear transport non-linear transport: - capacitive coupling of leads and QD - strong influence on hybridization of leads and QD

19 Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage V gate N-1 N N+1

20 Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage h - like V gate N-1 N N+1 negative contribution to the thermovoltage

21 Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage h - like V gate zero thermovoltage N-1 N N+1 negative contribution to the thermovoltage

22 Thermopower of a QD sequential tunneling + V T E gap T V th h - like V gate N-1 N N+1

23 Thermopower of a QD sequential tunneling Large, metallic-like QD N ~ 300 T ~ 30 mk E C ~ 0.3 mev E C / k B T ~ 15 A.A.M. Staring et al., Europhys. Lett., 57 (1993).

24 Thermopower of a QD sequential tunneling S G (e /h) - V T (µv) V E (V) small QD N ~ 15 T ~ 1.5 K E C ~ mev E C / k B T ~ 15 Sample: Bo_I13C

25 cotunneling contribution Thermopower of a QD suppression of thermovoltage

26 cotunneling contribution Thermopower of a QD [M. Turek and K.A. Matveev, PRB, 65, (001)] -8.0 V T * (µv) T ~ 100 mk T ~ 1.5 K N ~ 15 E C ~ mev E C / k B T ~ V E (V) R. Scheibner et al., PRB 75, (007)

27 cotunneling contribution Thermopower of a QD no signatures of cotunneling processes in the CB regime R. Scheibner et al., PRB 75, (007)

28 700 nm Chaotic Quantum Dot 800 nm dot gate n s = 3.4 x cm - G qpc = 4 e / h = 1 x 10 6 cm / (V sec) (N qpc = )

29 V = 0.46 V th Thermovoltage Fluctuations T = 0 mk statistical ensemble V Th / V -750 V gate = 10 mv B / mt -700 V / mv gate Th -500 gate B/mT I heating = 40 na T 35 mk V gate = mv

30 Thermopower Fluctuation Distribution RMT: G E c( ) 1 G(1 G) = analytic form for N 1 = N = 1 p(s) = 1 here: N 1 = N = S / a.u P(S) 1 P(S) S / ( V / K ) S / ( V / K ) S. Godijn et al., PRL 8, 97 (1999)

31 Residual Charging Energy DEG dot characteristic time scale: Luttinger liquid theory: DEG erg dwell E / h U * / h * U 0(1 ) N U t (Flensberg, 1993, 1994) chaotic QD: (Aleiner and Glazman, 1998) E U 0 t 1 1 t ln U E 0

32 Scaling Experiment tunneling regime (G << e /h) L e L scanned 1 G = G 0

33 Scaling Results Thermovoltage Thermopower 0.06 Theory k B T/U* = F I heating = 40 na T e = 55 mk, T L = 40 mk

34 Scaling chaotic behaviour 0.6 extrapolation t 1 U* / U Luttinger liquid behaviour theory E = 3 ev U 0 = 100 ev U * exp ( t 1) U 0 U * E U 0 U 0 ln 0.49 U 0 U 0 E S. Möller et al., PRL 81, 5197 (1998)

35 Spin-Correlated QD existence of a magnetic moment on the QD can lift the CB Kondo Resonance transport mechanism: spin scattering hybridization of free electrons in the leads with localized magnetic moment leads to resonance at the Fermi edge

36 Spin-Correlated QD Conductance di/dv Bias Thermovoltage V th (di/dv) / (e /h) Vthermo / µv V gate E / Volt strong coupling Kondo Regime weak coupling Cotunnel-Regime

37 Spin-Correlated QD e - like (di/dv) / (e /h) ~ 1 ev V thermo / µv h - like Conductance di/dv Bias -0.4 Thermovoltage V th Mott - Thermopower (scaled to fit) Asymmetry between electron- and hole-like transport: Mixed-valence regime Scheibner et al. PRL 95, (005)

38 Spin-Entropy Transport Entropy change S adding one electron to an empty site: S = k B (ln g f - ln g i ) = k B (ln -ln1) = k B ln -V g e-like transport from the hot to the cold reservoir S = k B (ln g f - ln g i ) = k B (ln - ln 1) = k B ln S SE =-k B /e ln S 0. h-like transport from the cold to the hot reservoir S = k B (ln g f - ln g i ) = k B (ln 1 - ln ) = -k B ln S SE =-k B /e ln S SE S 3. e-like transport from the hot to the cold reservoir S = k B (ln g f - ln g i ) = k B (ln 1 - ln ) = -k B ln S SE =k B /e ln 4. h-like transport from the cold to the hot reservoir S = k B (ln g f - ln g i ) = k B (ln - ln 1) = k B ln S SE =k B /e ln g s = 1 g s = g s = 1 R. Scheibner et al., PRL 95, (005) R. Scheibner, PhD-Thesis, Würzburg 007

39 Spin entropy contributions

40 Thermal Rectifier R. Scheibner et al., NJP 10, (008)

41 Thermal Rectifier R. Scheibner et al., NJP 10, (008)

42 Thermal Rectifier asymmetrically coupled states

43 Thermal Rectifier G QD (e /h) N+1 N+ J tot de h f ( E, T ) f ( E, T ) t( E) L R e (electron) E (energy) 0.0 S L L 1 11 e df Th de E t( E) de e df h de t( E) de S QD (k B /e) / t( E) A f E EZ, T / E V P (V) R. Scheibner et al., NJP 10, (008)

44

45 Thermopower in (Ga,Mn)As First (Ga,Mn)As data by Shi group (Pu et al., Phys. Rev. Lett. 97, (006). - Signal too large compared to band model (claim Fermi level in impurity band) - Dependence on field direction mimics AMR, not band structure Data dominated by phonon drag?

46 Measure Diffusion Thermopower, only. Apply current heating technique to (Ga,Mn)As 0 nm (Ga,Mn)As (3% Mn) 60 nm n-gaas ( x cm -3 ) ohmics 5nm Ti/ 30 nm Au No counter point contact: T el inferred from weak localization peak in channel

47 30nm Au 5nm Ti 0nm LT GaMnAs 1nm LT GaAs 60nm n+- GaAs 00nm HT GaAs GaAs

48 Large Device (no UTF) V T I I V T

49 Flashback: TAMR in (Ga,Mn)As C. Gould et al., Phys. Rev. Lett. 93, (004). Device Contact GaMnAs AlOx Au Au GaMnAs Device Contact Resistance () B (mt) A tunnel barrier between a non-magnetic metal (Au) and ferromagnetic (Ga,Mn)As can exhibit a huge magnetoresistance that can show the signature of a spin valve.

50 Spin-Valve like TMR in (Ga,Mn)As/AlOx/Non-magnet devices h c1 h c 0 deg. 180 deg. R () deg B(mT) R() deg B(mT) Dependence of the magnetoresistance effect on the in-plane field angle (angle with respect to [100]). Effect due to biaxial anisotropy and anisotropic d.o.s. Now back to thermopower experiment...

51 Tunnel Anisotropic Magneto Thermopower 90 T. Naydenova et al., Phys. Rev. Lett. 107, (011) Thermo Voltage (µv) I=370pA (T=14K) h c h c Thermo Voltage (µv) I=730pA (T=0K) Signal at saturation (300 mt), shows well-known (Ga,Mn)As symmetry Sweep Angle (Degrees) B (mt) Temperature (K) I² (ma)² Signal with hysteresis, shows expected angle Thermo Voltage (µv) dependence...and is quadratic with current

52 hc1 and hc for various field directions Magnetic field (mt) T. Naydenova et al., Phys. Rev. Lett. 107, (011) Model (originally for Fe/GaAs):

53 Thermopower Model and Simulation Energy (a.u.) DOS (a.u.) Energy (a.u.) J + E F J - E F DOS (a.u.) Signal amplitude fully in agreement with band model S 0.4 V/K (Ga,Mn)As 4. K GaAs:Si 4. K + T

54 Conclusions Current heating is a flexible technique for thermoelectric measurements on nanostructures. Avoids phonon drag, substrate effects. Many detailed investigations of quantum dot transport First observation of Kondo thermopower on a single impurity Discovered TAMT in a n-gaas/(ga,mn)as junction Collaborators: Stefan Möller, Sandra Godijn, Ralph Scheibner, Tsvetelina Naydenova, Holger Thierschmann. Hartmut Buhmann, Charles Gould Funding: DFG

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res Physica Scripta. Vol. T49, 441-445, 1993 Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res L. W. Molenkamp, H. van Houten and A. A. M. Staring Philips Research

More information

arxiv: v1 [cond-mat.mes-hall] 28 Mar 2016

arxiv: v1 [cond-mat.mes-hall] 28 Mar 2016 http://www.nature.com/nnano/journal/v10/n10/abs/nnano.015.176.html Three-Terminal Energy Harvester with Coupled Quantum Dots arxiv:1603.08570v1 [cond-mat.mes-hall] 8 Mar 016 Holger Thierschmann 1,5,, Rafael

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva Scattering theory of thermoelectric transport Markus Büttiker University of Geneva Summer School "Energy harvesting at micro and nanoscales, Workshop "Energy harvesting: models and applications, Erice,

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Thermoelectric Properties of Few-Electron Quantum Dots

Thermoelectric Properties of Few-Electron Quantum Dots Thermoelectric Properties of Few-Electron Quantum Dots Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Ralf Scheibner

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

A Tunable Kondo Effect in Quantum Dots

A Tunable Kondo Effect in Quantum Dots A Tunable Kondo Effect in Quantum Dots Sara M. Cronenwett *#, Tjerk H. Oosterkamp *, and Leo P. Kouwenhoven * * Department of Applied Physics and DIMES, Delft University of Technology, PO Box 546, 26 GA

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

arxiv: v1 [cond-mat.mes-hall] 6 May 2008

arxiv: v1 [cond-mat.mes-hall] 6 May 2008 Nonequilibrium phenomena in adjacent electrically isolated nanostructures arxiv:0805.0727v1 [cond-mat.mes-hall] 6 May 2008 V.S. Khrapai a,b,1 S. Ludwig a J.P. Kotthaus a H.P. Tranitz c W. Wegscheider c

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Master thesis. Thermoelectric effects in quantum dots with interaction

Master thesis. Thermoelectric effects in quantum dots with interaction Master thesis Thermoelectric effects in quantum dots with interaction Miguel Ambrosio Sierra Seco de Herrera Master in Physics of Complex Systems July 17, 2014 Abstract Thermoelectric effects of small

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Physics Department, University of Basel Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures Dominik Zumbühl Department of Physics, University of Basel Basel QC2 Center and Swiss

More information

Spin Currents in a 2D Electron Gas

Spin Currents in a 2D Electron Gas Spin Currents in a 2D Electron Gas Joshua Folk UBC Asilomar, 2007 Thanks to: My group Sergey Frolov (postdoc) Ananth Venkatesan (postdoc) Mark Lundeberg (PhD) Wing Wa Yu (Masters) Yuan Ren (Masters) Chung-Yu

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

Chapter 8: Coulomb blockade and Kondo physics

Chapter 8: Coulomb blockade and Kondo physics Chater 8: Coulomb blockade and Kondo hysics 1) Chater 15 of Cuevas& Scheer. REFERENCES 2) Charge transort and single-electron effects in nanoscale systems, J.M. Thijssen and H.S.J. Van der Zant, Phys.

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Kubala, Björn & König, Jürgen & Pekola, Jukka Violation of the Wiedemann-Franz Law in a Single-Electron Transistor

Kubala, Björn & König, Jürgen & Pekola, Jukka Violation of the Wiedemann-Franz Law in a Single-Electron Transistor owered by TCDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Kubala, Björn & König,

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction NPCQS2012, OIST Commensurability-dependent transport of a Wigner crystal in a nanoconstriction David Rees, RIKEN, Japan Kimitoshi Kono (RIKEN) Paul Leiderer (University of Konstanz) Hiroo Totsuji (Okayama

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/320/5874/356/dc1 Supporting Online Material for Chaotic Dirac Billiard in Graphene Quantum Dots L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill,

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

Evidence of anisotropic Kondo coupling in nanostructured devices

Evidence of anisotropic Kondo coupling in nanostructured devices Evidence of anisotropic Kondo coupling in nanostructured devices Luiz Nunes de Oliveira and Krissia Zawadzki University of São Paulo University of São Paulo Stockholm, 19 September 2012 Nanostructured

More information

Thermal transport in strongly correlated nanostructures J. K. Freericks

Thermal transport in strongly correlated nanostructures J. K. Freericks Thermal transport in strongly correlated nanostructures J. K. Freericks Department of Physics, Georgetown University, Washington, DC 20057 Funded by the Office of Naval Research and the National Science

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

3.45 Paper, Tunneling Magnetoresistance

3.45 Paper, Tunneling Magnetoresistance 3.45 Paper, Tunneling Magnetoresistance Brian Neltner May 14, 2004 1 Introduction In the past few decades, there have been great strides in the area of magnetoresistance the effect of magnetic state on

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Spin-Polarized Current in Coulomb Blockade and Kondo Regime P. Ogrodnik

More information

The Kondo Effect in the Unitary Limit

The Kondo Effect in the Unitary Limit The Kondo Effect in the Unitary Limit W.G. van der Wiel 1,*, S. De Franceschi 1, T. Fujisawa 2, J.M. Elzerman 1, S. Tarucha 2,3 and L.P. Kouwenhoven 1 1 Department of Applied Physics, DIMES, and ERATO

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Mott Relation for Anomalous Hall and Nernst effects in

Mott Relation for Anomalous Hall and Nernst effects in Mott Relation for Anomalous Hall and Nernst effects in Ga -x Mn x As Ferromagnetic Semiconductors Yong Pu, Daichi Chiba 2, Fumihiro Matsukura 2, Hideo Ohno 2 and Jing Shi Department of Physics and Astronomy,

More information

Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit

Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit Eva Weig, now postdoc at University of California at Santa Barbara. Robert H. Blick, University of Wisconsin-Madison, Electrical & Computer Engineering,

More information

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures Thomas Ihn Electronic Quantum Transport in Mesoscopic Semiconductor Structures With 90 Illustrations, S in Full Color Springer Contents Part I Introduction to Electron Transport l Electrical conductance

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen Electronic Transport Peter Kratzer Faculty of Physics, University Duisburg-Essen molecular electronics = e2 n m Paul Drude (1863-1906) molecular electronics = e2 n m Paul Drude (1863-1906) g = e2 h N ch

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Formation of unintentional dots in small Si nanostructures

Formation of unintentional dots in small Si nanostructures Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0942 Available online at http://www.idealibrary.com on Formation of unintentional dots in small Si nanostructures L. P. ROKHINSON,

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Enhancement-mode quantum transistors for single electron spin

Enhancement-mode quantum transistors for single electron spin Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-1-2006 Enhancement-mode quantum transistors for single electron spin G. M. Jones B. H. Hu C. H. Yang M. J.

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Overview - HgTe/CdTe bandstructure, quantum spin Hall effect: 2D TI - Dirac surface states of strained bulk HgTe: 3D TI - Topological

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

To Quantum Dots and Qubits with electrons on helium

To Quantum Dots and Qubits with electrons on helium To Quantum Dots and Qubits with electrons on helium CEA-DRECAM Service de Physique de l Etat Condensé CEA-Saclay France E. Rousseau D. Ponarine Y. Mukharsky E.Varoquaux O. Avenel J.M. Richomme Confine

More information

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs Universal valence-band picture of the ferromagnetic semiconductor GaMnAs Shinobu Ohya *, Kenta Takata, and Masaaki Tanaka Department of Electrical Engineering and Information Systems, The University of

More information

Final exam. Introduction to Nanotechnology. Name: Student number:

Final exam. Introduction to Nanotechnology. Name: Student number: 1 Final exam. Introduction to Nanotechnology Name: Student number: 1. (a) What is the definition for a cluster size-wise? (3%) (b) Calculate the energy separation near the Fermi surface of a metallic cluster

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information