Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Size: px
Start display at page:

Download "Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs"

Transcription

1 Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs L. Hofstetter 1, A. Kleine 1, S. Csonka 1,2, A. Geresdi 2, M. Aagesen 3, J. Nygard 3, A. Baumgartner 1, J. Trbovic 1, and C. Schönenberger 1 Department of Physics, University of Basel, Klingelbergstr. 82, CH 4056, Basel, Switzerland 2 Department of Physics, Budapest University of Technology and Economics, Budafoki u. 6, 1111 Budapest, Hungary 3 Nano Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen, Denmark. HYSWITCH Hanbury-Brown and Twiss (HBT) Australia Radio stars: R. Hanbury Brown and R. Q. Twiss, "A New Type of Interferometer for Use in Radio Astronomy", Philosophical Magazine (7) 45 p663 (1954) Optical:R. Hanbury Brown and R. Q. Twiss, "A Test of a New Type of Stellar Interferometer on Sirius", Nature 178 p1046 (1956)

2 bunching / antibunching C = > 0 photons < 0 electrons bunching anti-bunching bunching / antibunching C = > 0 photons < 0 electrons bunching anti-bunching M. Henny et al. Science 284, 296 (1999) it depends on the statistics

3 HBT and particle statistics C = Δn T Δn R Δn 2 n fluctuations particle nature sub- Poissonian C < 0 Δn 2 < n Poissonian C = 0 Δn 2 = n super- Poissonian C > 0 Δn 2 > n Photons can antibunch nitrogen-vacancy in diamond (no bleaching)

4 bunching / antibunching C = > 0 photons < 0 electrons bunching anti-bunching it depends on the statistics if photons may antibunch... can one make electrons to bunch? Andreev entangler Due to the Pauli principle: no double occupancy for Fermions (no bunching possible like it is for photons) Simultaneous emission of two electrons, for example from a superconductor: S S I Ψ 1 e e Ψ 2 [ Ψ 1) Ψ (2) + Ψ (1) Ψ (2)] (, ) Ψ =, 1( Cooper pair: spin singlet electron pair (naturally entangled pair) source of mobile entangled EPR electron pairs

5 Entanglement and EPR pairs point of origin Entanglers (EPR source) 2 entangled photons by parametric down conversion Kwiat et al., PRL 75, p4337 (95)

6 Entanglers (EPR source) electronic control, hence: possible on demand Nature 465, p594 (2010) EPR source in spin-based qubits D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots", Phys. Rev. A 57, p120 (1998) Loss-DiVincenzo quantum computer

7 Spin-based solid-state realization III-V semiconductors carbon nanotubes AFM from QT Delft H=p+e M. Gräber et al. Uni Basel graphene like chemical bonds Liu, Hug, Vandensypen EPR source in spin-based qubits e.g. double dot

8 Andreev entangler S S Ψ 1 e I e Ψ 2 [ Ψ 1) Ψ (2) + Ψ (1) Ψ (2)] (, ) Ψ =, 1( Cooper pair: spin singlet electron pair (naturally entangled pair) source of mobile entangled electrons (flying qubits) Andreev entangler (2001) Eropean Phys. J. (2001)

9 Andreev entangler P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B 63, (2001) N. M. Chtchelkatchev et al. Phys. Rev. B 66, (2002) P. Recher and D. Loss, Phys. Rev. B 65, (2002) C. Bena, S.Vishveshwara et al. PRL 89, (2002) O. Sauret, D. Feinberg, T. Martin PRB 70, (2004) Efficient and controlled pair splitting? exploit Coulomb interaction Charging energy prohibits direct pair tunneling Andreev source for HBT experiment S S I Ψ 1 e e Ψ 2 Radio stars: R. Hanbury Brown and R. Q. Twiss, "A New Type of Interferometer for Use in Radio Astronomy", Philosophical Magazine (7) 45 p663 (1954)

10 Andreev entangler? C C = h I 1 I 2 i B. R.Choi et al., Phys. Rev. B (2005) Andreev entangler? Lukas Hofstetter and Stefan Oberholzer, unpublished P.Samuelson and M.Büttiker, PRL and PRB (2002)

11 Nonlocal Andreev reflection Russo et al.; Phys. Rev. Lett. 95, (2005) three-terminal CAR = crossed Andreev reflection Beckmann et al.; PRL 93, (2004) inj-det distance: 310nm CAR Deutscher and Feinberg, APL 76 (2000) local Andreev reflection non-local Andreev = crossed Andreev reflections Nonlocal differential resistance: R nl =U nl,ac /I loc,ac

12 Competing nonlocal subgap processes Crossed Andreev reflection (CAR) R nl <0 ΔQ S =-2e G 12 ~e -d/ξ Elastic cotunneling (EC) R nl >0 ΔQ S =0 G 12 ~e -d/ξ Nonlocal charge imbalance (CI): ρ* Diffusion of quasiparticles R nl >0 -e < ΔQ < 0 N2 d N1 CAR in the literature: Theory: CAR and EC are of similar strength and tend to compensate each other: - CAR and EC exactly cancel in lowest order tunneling [Falci et al., Europhys. Lett. 54, 255 (2001)] - EC dominates CAR [e.g. Mélin et al.; PRB 70, (2004)] - CAR can dominate EC: interactions [Levi Yeyati et al., Nature Phys. 3, 455 (2007); Futterer et al., Phys. Rev. B (2009); Golubev and Zaikin, arxiv: v1 (2009)]

13 CAR experiments Elastic cotunneling (EC) V nl > 0 R nl > 0 Russo et al.; Phys. Rev. Lett. 95, (2005) Crossed Andreev reflection (CAR) V nl < 0 R nl < 0 Conclusions: low bias: EC dominant high bias: CAR dominant Possible explanation: Levi Yeyati et al., Nature Phys. 3, 455 (2007) Samples - supercond. (S): 50 nm Al - barrier: AlO x - normal (N): 40 nm Pd A. Kleine et al. (2008)

14 Sample A K 0.4K 2 R nl [Ω] U dc [mv] R inj [kω] 0.39 R det [kω] 0.51 A. Kleine et al., EPL, 87 (2009) Sample A R nl [Ω] K 0.4K 0.8K 0.9K 1.05K 1.6K at zero bias: U dc [mv] R inj [kω] 0.39 R det [kω] 0.51 crossed Andreev reflection + charge imbalance A. Kleine et al., EPL, 87 (2009) 27011

15 Sample B K 0.8K 1.6K R nl [Ω] U dc [mv] R inj [kω] 0.80 R det [kω] 5.51 at zero bias: crossed Andreev reflection + elastic cotunneling A. Kleine et al., EPL, 87 (2009) Sample C R nl [Ω] K 0.4K K 1.6K U dc [mv] at zero bias: elastic cotunneling R inj [kω] 2.60 R det [kω] A. Kleine et al., EPL, 87 (2009) 27011

16 Comparing the curve shapes T=230 mk 3 2 Sample A Sample B Sample C CAR 3 2 CAR+EC EC R nl [Ω] U dc [mv] R nl [Ω] U dc [mv] R nl [Ω] U dc [mv] A. Kleine et al., EPL, 87 (2009) observations: sample A: R nl <0 in gap, increase with T R nl [Ω] sample C: R nl >0 for U 0, rest of gap: R nl <0 All signals reduced with T EC T [K] U dc =0 What determines the shape? 3 2 Sample A Sample B Sample C CAR 3 2 CAR+EC EC R nl [Ω] U dc [mv] R nl [Ω] U dc [mv] R nl [Ω] U dc [mv] A B C l [nm] ξ [nm] R inj [kω] R det [kω] d [nm] A inj *R inj, A det *R det [Ωμm 2 ] 8.5, , , (RA det -RA inj )/(RA det +RA inj )

17 Dynamical CB favors EC over CAR Crossed Andreev reflection (CAR) R nl <0 ΔQ S =2e Elastic co-tunneling (EC) R nl >0 ΔQ S =0 P(E) theory Conclusion there is CAR to some degree CAR can even dominate sub-gap transport in some window of contact resistances EC dominates CAR in devices with higher contact resistances (at zero bias) BUT: control over tunneling resistance is very difficult can one do better?

18 Andreev entangler (2001) Cooper pair splitter S... D1 gate gate 1 gate gate 2 D2 Ψ = [ Ψ 1) Ψ (2) + Ψ (1) Ψ (2)] (,, ) 1( 2 2 1

19 Measurement principle and device sensing gate V SG V ac V TG tuning gate S I S I T S-electrode connected to two tunable qdots InAs nanowire d 80nm superconductor (Ti/Al), w 150nm top gates: Ti/Au with surface oxide 2 InAs NW qdots separately tuned by top gates (V SG and V TG ) I/V sensing qdot tuning qdot I/V G=I S S /V ac G=I/V T T ac G nonlocal (V TG ) = G S (V TG ) -(α+βv TG ) NONLOCAL MEASUREMENT: current measurement of sensing qdot while sweeping the gate of the tuning qdot Cooper pair splitting contributes to I S depends on sensing QD and tuning QD Explanation Regime: U >> Δ >> T; ε >> Δ, Γ << Δ; ξ w S Transport happens in pairs of electrons Cooper pair splitting CPS Direct pair tunneling DPT Direct pair tunneling DPT

20 Explanation Simple non-interacting tunneling picture (T i <<1) I S = I DPT + I CPS /2 T S T T I DPT ~ T S T S I CPS ~ T S T T G Nonlocal ~ T T Measurement principle and device V sd [mv] GS (G0) GS (G0) V SG SG [V] (mv) V SG (mv) G S [G 0 ] V TG (mv) quantum dot with U 2-4meV, ε 1meV clear subgap feature, gap visible, Δ 160μV very weak ( 1/1000) cross capacitance cross capacitance = ΔV SG /ΔV TG ; ΔG S (ΔV SG ) = ΔG S (ΔV TG )

21 Measurement principle and device V sd [mv] GS (G0) GS (G0) V SG SG [V] (mv) V SG (mv) G S [G 0 ] V TG (mv) clear subgap feature, gap visible, Δ 160μV very weak ( 1/1000) cross capacitance averaging (~10 2 ) necessary to make signal visible Results G Nonlocal [10-3 G 0 ] GT [G 0 ] V TG [V] 0.0 Coulomb blockade peaks through green tuning qdot positive nonlocal signal through red sensing qdot while sweeping tuning qdot

22 Classical expectation V ac V R 200 Ω R 200 Ω S I 1 R 1 R 2 I 2 G 1 :=I 1 /V G 2 :=I 2 /V I S sensing arm 1 MΩ 200 Ω tuning arm 200 Ω I T 1 MΩ δg 2 > 0 δg 1 < 0 δg R 1 δg2 R1 resistive cross-talk is negative (as expected for charge conversation) I/V G S =I S /V ac G T =I T /V ac I/V Results B = 120mT G Nonlocal [G 0 ] B = 0mT GT [G 0 ] Current in sensor dot (I S ): positive non local signal while sweeping the V TG at B = 0! B > B c signal changes sign and corresponds to the classical circuit response (no fitting parameters) V TG [V] 0.0

23 Results B = 120mT G Nonlocal [G 0 ] B = 0mT GT [G 0 ] Current in sensor dot (I S ): positive non local signal while sweeping the V TG at B = 0! B > B c signal changes sign and corresponds to the classical circuit response (no fitting parameters) V TG [V] 0.0 Results non local signal vanishes at ~ 200mK but superconducting gap still visible up to 600mK (T C = 1.2 K) T dependence on top, left and right side of sensing qdot s Coulomb blockade peak monotonous decay of the nonlocal signal with T L. Hofstetter, S. Csonka, J. Nygard, and C. Schönenberger, Cooper pair splitter realized in a two-quantum-dot Y-junction, Nature 460, 906 (2009).

24 Results V TG [V] V TG [V] G T [G 0 ] G Nonlocal [G 0 ] the sign of the non-local signal depends on the state of the sensing qdot: dot sensing out of resonance: G Nonlocal [G 0 ] GS [G 0 ] G Nonlocal follows G T Cooper pair splitting dot sensing in resonance: classical V TG [V] V SG [V] 0.0 filtering of DPT is not efficient reproduced with 3 samples B = 0 T

25 reproduced with 3 samples Discussion Efficiency of Pair Splitting δr ΔG Nonlocal /(G S +G T ) a few %... 10% why? L. Hofstetter, S. Csonka, J. Nygard, and C. Schönenberger, Cooper pair splitter realized in a two-quantum-dot Y-junction, Nature 460, 906 (2009). L.G. Herrmann, F. Portier, P. Roche, A. Levy Yeyati, T. Kontos, and C. Strunk, Carbon Nanotubes as Cooper Pair Beam Splitters, Phys. Rev. Lett. 104, p (2010) C. Strunk, Nature Nanotechnology 5, (2009).

26 Discussion Efficiency of Pair Splitting δr ΔG Nonlocal /(G S +G T ) a few %... 10% why? important paparmeters: ΔE, U, Δ, Γ as well as δr I CPS ~ p(δr): electrons tunnel at distance δr p(δr) ~ [sin(k F δr)/(k F δr)] 2 exp(-δr/ξ) (ball. limit) p(δr) ~ 1/(k F δr) 1/k F l exp(-δr/ξ) (diff. limit) λ F =3.5Å, l=5nm δr =150nm, ~ Recher et al. PRB, 63, (2001), D. Feinberg Eur. Phys. J. B 36, 419 (2003) Outlook: lower gamma

27 Outlook: finite bias Recher et al. PRB, 63, (2001) Outlook: entanglement detection spin entanglement detected via orbital (charge) degrees of freedom probing symmetry of orbital wave-function by current noise measurements C = h I 1 I 2 i bunch (+) for S anti-bunch (-) for T G.Burkhard, D.Loss,E.V.Sukhorukov, PRB 61, R16303 (2000) P. Recher, E. V. Sukhorukov, and D. Loss, PRB 63, (2001). P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, PRB 70, (2004)

28 Outlook: entanglement detection 1 μm N1 SG1 N QD S QD QD1 SC1 SC2 QD2 SG2 N2 N/F N/F going to carbon nanotubes... Aharonov-Bohm effect in CNT loops? Thanks to... Lukas Hofstetter Andreas Kleine Jelena Trbovic Andreas Baumgartner Jens Schindele Hagen Aurich Scabolcs Csonka Attila Geresdi Jesper Nygard Martin Aagesen

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s Carbon Nanotube Quantum Dot with Superconducting Leads Kondo Effect and Andreev Reflection in CNT s Motivation Motivation S NT S Orsay group: reported enhanced I C R N product S A. Yu. Kasumov et al. N

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

OTKA NNF Publication List Szabolcs Csonka

OTKA NNF Publication List Szabolcs Csonka OTKA NNF-78842 Publication List Szabolcs Csonka Publications In this project 1 article has been published in Nature and 2 in Phys. Rev. Letters. The cumulative impact factor of the publications is 49.14.

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva Lecture 3 Shot noise correlations: The two-particle haronv-bohm effect 1 6 1 C 3 B 8 5 4 D 3 4 7 Markus Buttiker University of Geneva IV-th Windsor Summer School on Condensed Matter Theory, organized by

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

arxiv: v2 [cond-mat.mes-hall] 17 Jan 2017

arxiv: v2 [cond-mat.mes-hall] 17 Jan 2017 physica status solidi Entanglement-symmetry control in a quantum-dot Cooper-pair splitter Robert Hussein,, Alessandro Braggio,3,4, Michele Governale *,5 arxiv:69.9v [cond-mat.mes-hall] 7 Jan 7 SPIN-CNR,

More information

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors Capri - 04/04/2006-1 Hanbury Brown and Twiss type experiments in elecronic conductors 50 years of HBT Pioneering experiments in the field of quantum statistics by R. Hanbury-Brown and R. Q. Twiss 50 years

More information

Flying qubits in semiconductors

Flying qubits in semiconductors FIRST 2011.8.13 Flying qubits in semiconductors Yasuhiro Tokura (NTT Basic Research Laboratories) Introduction -flying qubit- Topics Effect of statistics Entanglement generation and detection Single electron

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008

arxiv: v2 [cond-mat.mes-hall] 12 Aug 2008 Giant fluctuations and gate control of the g-factor in InAs arxiv:0808.1492v2 [cond-mat.mes-hall] 12 Aug 2008 Nanowire Quantum Dots August 12, 2008 S. Csonka 1, L. Hofstetter, F. Freitag, S. Oberholzer

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

arxiv: v2 [cond-mat.mes-hall] 17 Jul 2015

arxiv: v2 [cond-mat.mes-hall] 17 Jul 2015 Magnetic field tuning and quantum interference in a Cooper pair splitter arxiv:157.136v2 [cond-mat.mes-hall] 17 Jul 215 G. Fülöp, 1, F. Domínguez, 2, S. d Hollosy, 3, A. Baumgartner, 3, P. Makk, 1, 3 M.H.

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Procesy Andreeva w silnie skorelowanych układach fermionowych

Procesy Andreeva w silnie skorelowanych układach fermionowych Kraków, 4 marca 2013 r. Procesy Andreeva w silnie skorelowanych układach fermionowych T. Domański Uniwersytet Marii Curie Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Outline Outline

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Interferometric and noise signatures of Majorana fermion edge states in transport experiments

Interferometric and noise signatures of Majorana fermion edge states in transport experiments Interferometric and noise signatures of ajorana fermion edge states in transport experiments Grégory Strübi, Wolfgang Belzig, ahn-soo Choi, and C. Bruder Department of Physics, University of Basel, CH-056

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014 Hanbury Brown and Twiss Correlations of Cooper Pairs in Helical Liquids Mahn-Soo Choi Department of Physics, Korea University, Seoul 136-713, Korea School of Physics, Korea Institute for dvanced Study,

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity http://www-drfmc.cea.fr/pisp/55/silvano.de_franceschi.html

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

arxiv: v1 [cond-mat.mes-hall] 14 Sep 2014

arxiv: v1 [cond-mat.mes-hall] 14 Sep 2014 Spin-polarized Andreev transport influenced by Coulomb repulsion through two quantum dot system Piotr Trocha 1, and Józef Barnaś 1,2 1 Department of Physics, Adam Mickiewicz University, 61-614 Poznań,

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology [1] Ch. 4 in Metal Clusters,

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson φ 0 -junction in nanowire quantum dots D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 1. Breaking of the chiral symmetry in quantum dots 2. Characterization

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE F. Parmentier, A. Anthore, S. Jézouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly Laboratory for Photonics &

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

arxiv: v2 [cond-mat.mes-hall] 16 Jul 2012

arxiv: v2 [cond-mat.mes-hall] 16 Jul 2012 A Numerical Model of Crossed Andreev Reflection and Charge Imbalance arxiv:123.4949v2 [cond-mat.mes-hall] 16 Jul 212 J.L. Webb, 1, B.J. Hickey, 1 and G. Burnell 1, 1 School of Physics & Astronomy, University

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Can electron pairing promote the Kondo state?

Can electron pairing promote the Kondo state? Czech Acad. Scien. in Prague, 6 X 2015 Can electron pairing promote the Kondo state? Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Issues to

More information

Graphene Field effect transistors

Graphene Field effect transistors GDR Meso 2008 Aussois 8-11 December 2008 Graphene Field effect transistors Jérôme Cayssol CPMOH, UMR Université de Bordeaux-CNRS 1) Role of the contacts in graphene field effect transistors motivated by

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions

Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions B.-R. Choi, A. E. Hansen, T. Kontos, C. Hoffmann, S. Oberholzer, W. Belzig, and C. Schönenberger*

More information

Interactions and transport in Majorana wires. Alfredo Levy Yeyati

Interactions and transport in Majorana wires. Alfredo Levy Yeyati Interactions and transport in Majorana wires Alfredo Levy Yeyati SPICE Workshop: Spin dynamics in the Dirac systems, Mainz 6-9 June 2017 Content Low energy transport theory in Majorana wire junctions,

More information

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046,

More information

Information processing in nanoscale systems

Information processing in nanoscale systems Information processing in nanoscale systems Mark Rudner Niels Bohr International Academy Image from: www.upscale.utoronto.ca 100 years after Bohr, the basic laws and players are established 1913 2013 Image

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

1D quantum rings and persistent currents

1D quantum rings and persistent currents Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Motivation In the last decades there was a growing interest for such microscopic

More information

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Hervé Courtois Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France with L. Pascal, H.

More information

Supplementary Information

Supplementary Information Supplementary Information Quantum supercurrent transistors in carbon nanotubes Pablo Jarillo-Herrero, Jorden A. van Dam, Leo P. Kouwenhoven Device Fabrication The nanotubes were grown by chemical vapour

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise Part 2 : Nanostuctures Lecture 1 : Coulomb blockade and single electron tunneling Module 8 : Coulomb blockade and single electron tunneling Coulomb blockade and single electron tunneling A typical semiconductor

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003 Writing Spin in a Quantum Dot with Ferromagnetic and Superconducting Electrodes arxiv:cond-mat/0303v [cond-mat.mes-hall] 4 Jan 003 Yu Zhu, Qing-feng Sun, and Tsung-han Lin, State Key Laboratory for Mesoscopic

More information

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons M12.L6 Low frequency noise in magnetic tunnel junctions L6 Shot noise: from photons to electrons 59 What we understand under noise in electron transport Definitions Noise is the SIGNAL (Rodolf Landauer)

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

Gate-defined graphene double quantum dot and excited state spectroscopy

Gate-defined graphene double quantum dot and excited state spectroscopy pubs.acs.org/nanolett Gate-defined graphene double quantum dot and excited state spectroscopy Xing Lan Liu,* Dorothee Hug, and Lieven M. K. Vandersypen Kavli Institute of Nanoscience, Delft University

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information