Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information Quantum supercurrent transistors in carbon nanotubes Pablo Jarillo-Herrero, Jorden A. van Dam, Leo P. Kouwenhoven Device Fabrication The nanotubes were grown by chemical vapour deposition (CVD) 1 on degenerately p- doped silicon wafers (heavy p-type, or n-type, doping is necessary to make the substrate conductive at low temperature so that it acts as a backgate) with 25nm thermally grown oxide. For the catalyst, 4mg of Fe(NO 3 ) 3 9H 2 O, 2mg of MoO 2 (acac) 2 (SigmaAldrich), and 3mg of Alumina nanoparticles (Degussa Aluminum Oxide C) were mixed in 3ml of methanol and sonicated for ~1hr. The resulting liquid catalyst is deposited onto the substrate with.5μm 2 openings in the PMMA resist and blown dry. After lift-off in acetone, the substrate with patterned catalyst is placed in a 1-inch quartz tube furnace and the CVD is carried out at 9 C with 7sccm H 2, 52sccm CH 4 for 1 min. Argon is flown during heating up and cooling down. The methane and hydrogen flows have been optimised to obtain long and clean nanotubes (~1μm) without amorphous carbon deposition. The nanotubes are located by atomic force microscope (AFM) inspection and e-beam lithography is then carried out to pattern electrodes over the nanotubes. Our electrodes are customized for each device, and we typically choose straight and uniform sections of nanotubes in areas free of residues. The metal electrodes are deposited via e- beam evaporation and a typical thickness of 1nm Ti and 6nm Al is used. The Ti is used to have good contact to the CNT and the Al to have a value of the critical temperature well above the base temperature of our dilution refrigerator. After evaporation and liftoff, no further imaging of the devices is carried out: we have observed that AFM imaging after metal deposition can damage/perturb the devices, increasing their resistance. An image from our computer design program, showing the designed electrodes on top of the AFM picture of one of our CNT devices is shown in Fig. S1. (Note that the AFM markers are deformed due to the high temperatures during CVD growth). The electrodes contact the nanotubes with 1% yield and the devices are then probed to determine their metallic/semiconducting character and room temperature resistance. Only metallic nanotubes with room-temperature R<5kΩ are further studied in these experiments. Filtering system In this section we describe our filtering system. A filtering system is necessary to prevent electronic noise from reaching the sample (as much as possible) since this suppresses strongly the critical current. As mentioned in the main text we use three filters in series for each of the four measurement wires attached to a nanotube: a copper-powder filter (CuF), a π-filter and a two-stage RC filter (RCF). Three filters are used in order to cover the entire spectrum, from low frequency up to the microwave regime. CuFs are widely

2 used in dilution refrigerator measuring setups. They are typically used to suppress the high frequency noise (f 1GHz), lowering the effective electron temperature. Our CuF filters consist of ~1.5m long manganine wires, and give an attenuation 5 db at 1GHz. The π-filters cover the intermediate frequency range (~1 MHz - 2 GHz). The two-stage RC filters are useful in the range few khz 1 MHz and are widely used to measure small critical currents. The scheme of the RC filter can be seen in Fig. S2a, and a picture of the actual filter in Fig. S2b. The advantage of a two-stage versus a single stage RC filter is that it provides an attenuation of 4dB per decade (instead of 2dB/decade) above a certain cut-off frequency. An example of a used configuration is: R 1 = 82Ω, R 2 = 1.2kΩ; C 1 = 2nF, C 2 = 4.7nF, which gives a cut-off frequency in the ~1 khz range. Additional data & Fano resonances Here we show additional data from a different device. Figure S3 shows a dv/di versus (I,V G ) plot, similar to Fig. 2a of the main paper. Both multiple Andreev reflection and a modulation of the critical current as a function of gate voltage are clearly visible. In the center of the figure a sharp resonance can be seen, similar also to the sharp resonances in Fig. 2a. Such resonances have been observed and discussed in the context of carbon nanotubes strongly coupled to the leads 2, 3 and attributed to Fano resonances 4, although their origin have not been fully established. Two interfering channels are needed for Fano resonances to occur, a strongly coupled one and a weakly coupled one. The weakly coupled one can be an impurity, an inner shell in a mutiwall tube or a weakly coupled tube in a thin rope. It has also been suggested that intrinsic resonances may arise for individual single wall tubes 3, due to an asymmetric coupling of the two orbital channels in carbon nanotubes. We have examined the diameters of our samples and they are in the 2 to 7nm range. While single wall nanotubes of 2-3 nm are usually obtained with our CVD growth method 1, a diameter like 7nm is more rare. We note however that single wall NTs grown by CVD up to 13nm in diameter have been reported 5, 6. Therefore it cannot entirely be excluded that the Fano resonances are due to the fact that those tubes measured are not individual single wall tubes. Nevertheless, the conductance of our devices in the normal state gets very close to, but doesn t exceed, 4e 2 /h, similar to Ref. [3]. Future studies are necessary to clarify the precise origin of the Fano resonances. Multiple Andreev Reflection In order to visualize the regions of supercurrent flow, figure 2 (main text) shows differential resistance plots as a function of current bias. Because of this, the multiple Andreev reflection (MAR) lines move up and down along the plots (e.g., Fig. 2a,c). Figure S4 shows the differential conductance, di/dv (in log scale), versus measured source-drain voltage and gate voltage (black/dark red is low di/dv and yellow is high di/dv, the white features at low V are due to the conversion from current biased to voltage biased near supercurrent). The features in Fig. S4 are in good agreement with previous MAR results in carbon nanotubes 7. For example, the Andreev reflection peaks at 2Δ g and 2Δ g /2 are clearly visible OFF resonance, while they become smeared ON resonance.

3 Also, as predicted theoretically 7-9, the subgap structure becomes very complex in the vicinity of the resonances. It is worth noting that, depending on the resonance studied, we observe 5-7 MAR peaks, whereas in ref. 7 only 2-4 MAR peaks are observed. This may be due to insufficient noise filtering (no supercurrent was observed in ref. 7) or to a shorter inelastic scattering length in the multiwall nanotube studied in ref. 7, preventing the observation of higher order MAR processes. Magnetic field dependence The application of a magnetic field, B, suppresses superconductivity in the electrodes and, thus, suppresses the proximity effect associated-features in the transport through the nanotube. As an example we show in Figs. S5a,b the suppression of MAR and I C with B (shown for the device in Fig. S2; other devices exhibit the same behaviour). Figure S5a corresponds to the ON resonance case, while fig. S5b corresponds to the OFF resonance case. As mentioned in the main text, the differential resistance in the ON-resonance case is lower when the leads are superconducting. On the other hand, in the OFF-resonance case, there is a large peak in dv/di at low energies. [Note that the vertical scale is very different for the two figures.] Similar peaks in dv/di (although smaller in magnitude) have been observed previously 1 and attributed to electron-electron interactions. While we cannot rule out such effects (for example a small Coulomb interaction effect), it has been shown 7 that a non-interacting model which takes into account only a resonant level in between two superconducting leads, can yield also such an enhancement of the differential resistance at low energies in the OFF-resonance case. A more detailed study, both theoretical and experimental, should shed light on the relative importance of each of the possible effects accounting for these peaks. Quality factor and how to increase the switching current As we mention in the main text, the behaviour of our CNT devices is reminiscent of that of small, underdamped, current-biased Josephson unctions. Whether a Josephson unction is underdamped or overdamped can be estimated by calculating the quality factor, Q, for the unction, taking into account its electromagnetic environment. Fig. S6 shows the electrical circuit representing our device. The circuit is basically an extension of the familiar RCSJ model which includes also the environment, represented by a parallel capacitor C and a series resistor R. The unction itself is represented by an ideal Josephson unction with a capacitor C and a resistor R in parallel. The unction is biased by a current I and we measure the voltage V. V is the voltage across the unction. The circuit is described by the following equations: V I = CV + C V + I sinδ + (1) R V = V + R C V h V = δ 2e V + + I sinδ (2) R (3)

4 where δ is the phase difference across the unction, I its critical current, and we have made use of the Josephson relations. Differentiating and substituting eqs. (2) and (3) in (1) we arrive to the following differential equation: h R C h 1 h C δ + I RC + + RCC + I = I e R cosδ δ δ sinδ 2 2e R 2e which represents the dynamics of the phase and can be intuitively viewed as the motion of a particle of mass [C(1 + R/R ) + C )] in a tilted washboard potential 2e/ħ(I sin(x)-i) in the presence of friction. The plasma frequency for small oscillations is given by and the quality factor given by w p = 2eI R h C 1 + R + C Q = w p 1 h 1 RC + 2e I R In early experiments (11,12) on superconducting SETs as well as in our CNT QD experiments, the electrodes contacting the island are superconducting, therefore R is very small (ideally zero), resulting in high quality factors and a strong supression of the measured critical current. For our devices, we estimate: C ~ few ff (effective capacitance of the QD), R 2 kω (diff. resistance at the switching current value), I ~ 6 na. C in our case is mainly given by the capacitance between the bonding pads (with area = (3μm) 2 ), which is difficult to estimate. An upper bound is given by a parallel plate capacitor formula C ~ 1 pf (for 25 nm SiO 2 thickness), but the actual number is probably much lower, in the 1 ff to 1 pf range. R is also hard to estimate, since it should be in principle zero (our four-probe wires consist of two pairs of bonding wires bonded on top of two superconducting bonding pads-leads, which contact the CNT). In any case, for values of R from zero to ~ 2 Ω, the Q factors we obtain are Q 5, consistent with having an underdamped unction and, consequently, a strongly supressed critical current. Later experiments (13) performed with superconducting SETs intentionally increased R to several hundred Ω (by inserting non-superconducting elements in the leads) and also inserted on-chip capacitors to increase C. This resulted in critical currents much higher, aproaching the theoretical limit. We expect that the introduction of a controlled electromagnetic environment in a similar manner in superconducting circuits incorporating CNT QDs will also result in increased measured critical currents.

5 Charging effects: Electronic transport through a quantum dot can be classified into three categories depending on the ratio of the dot coupling to the leads, represented by Γ, with respect to the charging energy, U: i) hγ << U (Closed QD regime) Charging effects dominate transport (Coulomb blockade) ii) hγ U (Intermediate transparency regime) Charging effects important, but higher-order tunneling processes significant too (cotunneling and Kondo effect). iii) hγ >> U (Open QD regime) Quantum interference of non-interacting electrons. Our nanotube devices operate in the open QD regime. Of course, in order to be able to speak of QDs, the condition ΔE > hγ must be fulfilled, where ΔE is the energy spacing between different levels (CNT shells in our case). The conductance, G, vs gate voltage V G, looks very different in each of these three regimes. In regime (i) G vs V G displays sharp Coulomb peaks with G max << 2e 2 /h, spaced by the addition energy, E add = U + ΔE (multiplied by the gate voltage to bias conversion factor). The charging energy is typically large and the Coulomb diamonds are well-resolved. In regime (ii), G vs V G also exhibits Coulomb peaks, but these are typically broadened, with G max 2e 2 /h, and asymmetric due to Kondo effect in the odd N side of the peak, where N is the number of electrons in the QD. The charging energies are much smaller than in (i) and the Coulomb diamonds look fuzzy. For nanotubes one typically finds groups of four closely spaced peaks separated by a large gap from the next group of four peaks (see, for example, refs. 15, 24). In regime (iii), G vs V G exhibits a series of broad resonances, with G max 4e 2 /h (reflecting the two modes of the CNT band structure), symmetric and with a spacing proportional to the energy level spacing (because the charging energy is negligible). In our case, these last conditions are met: the energy level spacing calculated from Fig. 1b agrees with the nanotube length in between electrodes; and the maximum conductance is very close to 4e 2 /h. In regime (i), N changes by 1 when varying the gate voltage across a Coulomb peak. In regime (iii), however, the average number of electrons in the CNT QD is changed by 4 electrons across each resonance (average because, since the QD is open, charge fluctuations are important). This can be viewed as shrinking the 4 closely spaced peaks (e.g., in ref. 24) until they form a single resonance, while keeping the gate voltage spacing in between groups of four peaks constant. This is our experimental situation. It becomes clear then that, if charging effects were relevant for our experiment, each conductance resonance (and the corresponding max. supercurrent resonance) should be split in four closely spaced resonances. Moreover, the conductance in that case would not be higher than 2e 2 /h. Note that the gate voltage spacing between critical current resonances is the same as the spacing between conductance resonances in the normal state, which means that they stem from the same origin, and are not due to charging effects. Although we cannot give an estimate of the smallness of U, from the

6 fact that we do not observe either in the normal or superconducting state any signatures of charging effects, we conclude that these are negligible. References: 1. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, (1998). 2. Zhang, Z., Dikin, D. A., Ruoff, R. S. & Chandrasekhar, V. Conduction in carbon nanotubes through metastable resonant states. Europhys. Lett. 68, (24). 3. Babic, B. & Schonenberger, C. Observation of Fano resonances in single-wall carbon nanotubes. Phys. Rev. B 7, (24). 4. Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 124, (1961). 5. Li, Y. M. et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 15, (21). 6. Cheung, C. L., Kurtz, A., Park, H. & Lieber, C. M. Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 16, (22). 7. Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 575 (23). 8. Levy Yeyati, A., Cuevas, J. C., López-Dávalos, A. & Martín-Rodero, A. Resonant tunneling through a small quantum dot coupled to superconducting leads. Phys. Rev. B 55, R6137-R614 (1997). 9. Johansson, G., Bratus, E. N., Shumeiko, V. S. & Wendin, G. Resonant multiple Andreev reflections in mesoscopic superconducting unctions. Phys. Rev. B 6, (1999).

7 1. Morpurgo, A. F., Kong, J., Marcus, C. M. & Dai, H. Gate-Controlled Superconducting Proximity Effect in Carbon Nanotubes. Science 286, (1999). 11. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of Parity- Induced Suppression of Josephson Tunneling in the Superconducting Single-Electron Transistor. Phys. Rev. Lett. 72, (1994). 12. Eiles, T. M. & Martinis, J. M. Combined Josephson and charging behaviour of the supercurrent in the superconducting single-electron transistor. Phys. Rev. B 5, 627 (1994). 13. Vion, D., Götz, M., Joyez, P., Esteve, D. & Devoret, M. H. Thermal activation above a dissipation barrier: switching of a small Josephson unction. Phys. Rev. Lett. 77, 3435 (1996). 14. Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schonenberger, C. Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, (22). 15. Liang, W. J., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, (22).

8 AFM markers Figure S1. Jarillo-Herrero et al. Designed electrodes Nanotube 1 µm

9 a b 1cm R 1 R 2 C 1 C 2 R 1 C 1 R 2 C 2 Figure S2. Jarillo-Herrero et al.

10 V G (V) Figure S3. Jarillo-Herrero et al. I (na)

11 ON OFF ON OFF ON OFF V G (V) Figure S4. Jarillo-Herrero et al. 2 g 2 g /2 V ( µ V)

12 a b 3 5 ON OFF I (na) I (na) B (mt) B (mt) dv/di (kω) dv/di (kω) Figure S5. Jarillo-Herrero et al.

13 R I V C V C R Figure S6. Jarillo-Herrero et al.

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005 Carbon Nanotubes part 2 CNT s s as a toy model for basic science Niels Bohr Institute School 2005 1 Carbon Nanotubes as a model system 2 Christian Schönenberger University of Basel B. Babic W. Belzig M.

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/320/5874/356/dc1 Supporting Online Material for Chaotic Dirac Billiard in Graphene Quantum Dots L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill,

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s Carbon Nanotube Quantum Dot with Superconducting Leads Kondo Effect and Andreev Reflection in CNT s Motivation Motivation S NT S Orsay group: reported enhanced I C R N product S A. Yu. Kasumov et al. N

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Demonstration of a functional quantum-dot cellular automata cell

Demonstration of a functional quantum-dot cellular automata cell Demonstration of a functional quantum-dot cellular automata cell Islamshah Amlani, a) Alexei O. Orlov, Gregory L. Snider, Craig S. Lent, and Gary H. Bernstein Department of Electrical Engineering, University

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Josephson effect in carbon nanotubes with spin-orbit coupling.

Josephson effect in carbon nanotubes with spin-orbit coupling. Josephson effect in carbon nanotubes with spin-orbit coupling. Rosa López Interdisciplinary Institute for Cross-Disciplinary Physics and Complex Systems University of Balearic Islands IFISC (CSIC-UIB),

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Mar 2007 Even-odd effect in Andreev Transport through a Carbon Nanotube Quantum Dot arxiv:cond-mat/0703082v1 [cond-mat.mes-hall] 2 Mar 2007 A. Eichler, M. Weiss, S. Oberholzer, and C. Schönenberger Institut für

More information

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity http://www-drfmc.cea.fr/pisp/55/silvano.de_franceschi.html

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Charge spectrometry with a strongly coupled superconducting single-electron transistor

Charge spectrometry with a strongly coupled superconducting single-electron transistor PHYSICAL REVIEW B, VOLUME 64, 245116 Charge spectrometry with a strongly coupled superconducting single-electron transistor C. P. Heij, P. Hadley, and J. E. Mooij Applied Physics and Delft Institute of

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Aug 2006 Gate-controlled superconductivity in diffusive multiwalled carbon nanotube arxiv:cond-mat/0608479v1 [cond-mat.supr-con] 22 Aug 2006 T. Tsuneta 1, L. Lechner 1,2, and P. J. Hakonen 1 1 Low Temperature Laboratory,

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter 1 Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter Woong Kim, Ali Javey, Ryan Tu, Jien Cao, Qian Wang, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.138 Graphene Nanoribbons with Smooth Edges as Quantum Wires Xinran Wang, Yijian Ouyang, Liying Jiao, Hailiang Wang, Liming Xie, Justin Wu, Jing Guo, and

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Quantum-dot cellular automata

Quantum-dot cellular automata Quantum-dot cellular automata G. L. Snider, a) A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod Department of Electrical Engineering, University of Notre Dame, Notre

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Supplementary materials for: Large scale arrays of single layer graphene resonators

Supplementary materials for: Large scale arrays of single layer graphene resonators Supplementary materials for: Large scale arrays of single layer graphene resonators Arend M. van der Zande* 1, Robert A. Barton 2, Jonathan S. Alden 2, Carlos S. Ruiz-Vargas 2, William S. Whitney 1, Phi

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0. a Press down b Retract D RG S c d 2 µm Recess 2 µm.5 µm Supplementary Figure 1 CNT mechanical transfer (a) Schematics showing steps of pressing down and retracting during the transfer of the CNT from the

More information

All-around contact for carbon nanotube field-effect transistors made by ac dielectrophoresis

All-around contact for carbon nanotube field-effect transistors made by ac dielectrophoresis All-around contact for carbon nanotube field-effect transistors made by ac dielectrophoresis Zhi-Bin Zhang a and Shi-Li Zhang b Department of Microelectronics and Information Technology, Royal Institute

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) SET: e - e - dot A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. C g 2) the dot is separated from

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth

Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth Y. Zhou 1, J. Johnson 1, L. Wu 1, S. Maley 2, A. Ural 1, and H. Xie 1 1 Department of Electrical and Computer Engineering, University

More information

Formation of unintentional dots in small Si nanostructures

Formation of unintentional dots in small Si nanostructures Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0942 Available online at http://www.idealibrary.com on Formation of unintentional dots in small Si nanostructures L. P. ROKHINSON,

More information

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures F. Amet, 1 J. R. Williams, 2 A. G. F. Garcia, 2 M. Yankowitz, 2 K.Watanabe, 3 T.Taniguchi, 3 and D. Goldhaber-Gordon

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition Supporting Information for Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee, Kyunghoon Lee, Zhaohui Zhong Department of Electrical Engineering and Computer Science,

More information

Supporting information

Supporting information Supporting information Design, Modeling and Fabrication of CVD Grown MoS 2 Circuits with E-Mode FETs for Large-Area Electronics Lili Yu 1*, Dina El-Damak 1*, Ujwal Radhakrishna 1, Xi Ling 1, Ahmad Zubair

More information

Chapter 8: Coulomb blockade and Kondo physics

Chapter 8: Coulomb blockade and Kondo physics Chater 8: Coulomb blockade and Kondo hysics 1) Chater 15 of Cuevas& Scheer. REFERENCES 2) Charge transort and single-electron effects in nanoscale systems, J.M. Thijssen and H.S.J. Van der Zant, Phys.

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry Journal of Low Temperature Physics - QFS2009 manuscript No. (will be inserted by the editor) Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

SINGLE-ELECTRON DETECTION AND MEMORY USING A SINGLE CARBON NANOTUBE DEFECT

SINGLE-ELECTRON DETECTION AND MEMORY USING A SINGLE CARBON NANOTUBE DEFECT SINGLE-ELECTRON DETECTION AND MEMORY USING A SINGLE CARBON NANOTUBE DEFECT B. M. Kim, Yung-Fu Chen and M. S. Fuhrer * Department of Physics, University of Maryland, College Park, MD 20742-4111 A single

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/114892/dc1 Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields K. C. Nowack, * F. H. L. Koppens, Yu. V. Nazarov, L. M. K.

More information

Lattice-Oriented Growth of Single-Walled Carbon Nanotubes

Lattice-Oriented Growth of Single-Walled Carbon Nanotubes Letter Subscriber access provided by DUKE UNIV Lattice-Oriented Growth of Single-Walled Carbon Nanotubes Ming Su, Yan Li, Benjamin Maynor, Alper Buldum, Jian Ping Lu, and Jie Liu J. Phys. Chem. B, 2000,

More information

Formation mechanism and Coulomb blockade effect in self-assembled gold quantum dots

Formation mechanism and Coulomb blockade effect in self-assembled gold quantum dots Formation mechanism and Coulomb blockade effect in self-assembled gold quantum dots S. F. Hu a) National Nano Device Laboratories, Hsinchu 300, Taiwan R. L. Yeh and R. S. Liu Department of Chemistry, National

More information

2003 American Physical Society. Reprinted with permission.

2003 American Physical Society. Reprinted with permission. René Lindell, Jari Penttilä, Mika Sillanpää, and Pertti Hakonen, Quantum states of a mesoscopic SQUID measured using a small Josephson junction, Physical Review B 68, 052506 (2003). 2003 American Physical

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

Cotunneling and Kondo effect in quantum dots. Part I/II

Cotunneling and Kondo effect in quantum dots. Part I/II & NSC Cotunneling and Kondo effect in quantum dots Part I/II Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010 Dias 1 Lecture plan Part I 1. Basics of Coulomb blockade

More information

Persistent orbital degeneracy in carbon nanotubes

Persistent orbital degeneracy in carbon nanotubes PHYSICAL REVIEW B 74, 155431 26 Persistent orbital degeneracy in carbon nanotubes A. Makarovski, 1 L. An, 2 J. Liu, 2 and G. Finkelstein 1 1 Department of Physics, Duke University, Durham, North Carolina

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise Part 2 : Nanostuctures Lecture 1 : Coulomb blockade and single electron tunneling Module 8 : Coulomb blockade and single electron tunneling Coulomb blockade and single electron tunneling A typical semiconductor

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

arxiv:cond-mat/ v1 22 Nov 1993

arxiv:cond-mat/ v1 22 Nov 1993 Parity Effects on Electron Tunneling through Small Superconducting Islands arxiv:cond-mat/9311051v1 22 Nov 1993 Gerd Schön a and Andrei D. Zaikin a,b a) Institut für Theoretische Festkörperphysik, Universität

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999 Coherent control of macroscopic quantum states in a single-cooper-pair box arxiv:cond-mat/9904003v1 [cond-mat.mes-hall] 1 Apr 1999 Y. Nakamura, Yu. A. Pashkin & J. S. Tsai NEC Fundamental Research Laboratories,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Observation of ionic Coulomb blockade in nanopores

Observation of ionic Coulomb blockade in nanopores Observation of ionic Coulomb blockade in nanopores Jiandong Feng 1 *, Ke Liu 1, Michael Graf 1, Dumitru Dumcenco 2, Andras Kis 2, Massimiliano Di Ventra 3, & Aleksandra Radenovic 1 * 1 Laboratory of Nanoscale

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot S. Amasha, 1 A. J. Keller, 1 I. G. Rau, 2, A. Carmi, 3 J. A. Katine, 4 H. Shtrikman,

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information