2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Size: px
Start display at page:

Download "2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi"

Transcription

1 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi

2 Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial atom 3. Quantum optics with superconducting circuits 4. Single atom scattering

3 Introduction to quantum electrical circuits

4 Quantum electrical circuits Coherent superposition states: Charge Flux Q Φ Macrosopic system Properties: The superposition states collapse when measure. Probabilistic character. Charge on a capacitor: Current or magnetic flux in an inductor: ( ) ( )

5 Basic elements: Conventional electrical circuits First transistor 1947 Dual-core Intel processor Fig. from Intel Introduced 2007 Clock speed >3GHz Number of transistors 820million Manufacturing technology 45nm Fig. from Intel

6 Introduction to superconducting artificial atom

7 Superconducting circuits are like LEGOS

8 Basic Elements of Superconducting Circuits Josephson Junction: Non-disspative nonlinear inductance Al Tunnel barrier between two superconductors C L L J Capacitance Inductance Al

9 Fabrication of Josephson Junction

10 Constructing linear quantum electrical circuits U Quantization +Q Q Classical physics: H = Q2 2C + Φ2 2L H = p2 2m kx2 C Φ L Analogy with a moving particle in a harmonic potential ω = 1 LC GHz H = ˆQ 2 2C + ˆΦ 2 2L Quantum mechanics: H = ω(a a ) ω Φ ˆΦ, ˆQ = i M. H. Devoret, A. Wallraff, and J. M. Martinis. Superconducting qubits: A short review

11 Constructing nonlinear Quantum circuit: Artificial atom Replace linear inductance by Josephson junction (Nonlinear inductance) U = E J cosφ U Energy(EJ) L J = C 4eI c cos π Φ ext Φ 0 L J Transition become addressable! Anharmonicity: α = ω 01 ω 12 Emission spectrum Phi (rad) ω 12 ω 01 0 φ Frequency

12 How to operate electrical circuits quantum mechanically? Avoid dissipation Avoid broaden energy levels Work at low temperatures Provide reset of the circuit(ground state) k B T << ω << Δ s Superconducting gap energy ω /2π 4 8GHz

13 Family of superconducting artificial atom Fig. from Michel Devoret. Linneaus summer school in quantum engineering Focus on Cooper Pair Box and Transmon! J. Clarke and F. K. Wilhelm. Nature, 453: , G. Wendin and V. S. Shumeiko Low Temp. Phys., 33(9): , 2007.

14 Artificial atom I: The Single-Cooper Pair Box E J / E c < 1 H = 1 2 E chσ z 1 2 E Jσ x Map to a spin 1/2 particle in magnetic field. 4 1> EJ/Ec=0.5 0> Depends on external flux 3 Energy(Ec) 2 1 1/ 2( 0>- 1>) > 0.2 1/ 2( 0>+ 1>) ng 0.8 1> 1.0 E ch = E Q (1 2n g ) C Σ = C g + C J E Q = 4E C = (2e)2 2C Σ σ z,σ x :Pauli matrix n g = C g V g /(2e) Coherent oscillations between ground state and excited state in time domain, demonstrated by Y. Nakamura et al. Nature, 398: , But the coherence time is short (few ns)due to charge noise!

15 Decoherence of artificial atom (Effect from the environment) Relaxation rate Γ 01 Pure dephasing rate Γ ϕ Enviroment Enviroment ω 01 Random switching 1 0 ω 01 ω 01 + δω 01 (t) Phase randomization e iω 01t

16 Artificial atom II: The transmon 20 < E J / E c < EJ/Ec=30 C S Energy(Ec) ng Insensitive to the charge noise Long coherence time. Jens Koch et al. Physical Review A, 76(4):042319, 2007.

17 Energy(Ec) ng EJ/Ec= Energy(Ec) ng EJ/Ec= Energy(Ec) ng EJ/Ec= Energy(Ec) ng EJ/Ec=30

18 Energy(EJ) Natural atom Optical photons Phi (rad) Superconducting artificial atom Microwave photons Compare with optical photon, the frequency of microwave photon is 10 6 less.

19

20 Comparison of the toolboxes Quantum optics Superconducting circuits Detect I, Q Optical photons Microwave photons

21 Advantages of quantum circuit E 0 d Atom-light interaction on single photon level 1. Photons and atom interaction can be engineered 2. The photons can be guided by waveguides; beam alignment is not needed. 3. Large vacuum field E 0,rms 0.2V / m due to small mode volume 4. Standard on-chip fabrication technique 5. Tunable transition energy of the atom 6. Mechanical stable

22 Quantum optics with superconducting circuits

23

24 Resonant scattering Fig: O. Astafiev, et al. 327, 840 Science (2010)

25 Resonant scattering in 3D space Incoming light Atom/dipole emits light

26 Resonant scattering in 3D space Incoming light Atom/dipole emits light Sum The extinction signal is due to interference G. Wrigge et al. Nature Phys. 4, 60 (2008). M. Tey et al. Nature Phys. 4, 924 (2008). Fig. from U. Håkanson

27 Resonant scattering in 1D waveguide D.E. Chang et al. Nature Physics 3, 807(2007) Fully coherent: no transmission, perfect reflection.

28 Resonant scattering in 1D waveguide D.E. Chang et al. Nature Physics 3, 807(2007) Fully coherent: no transmission, perfect reflection. Al λ >> d Point like atom/dipole! λ cm Wavelength of EM field d μm Size of atom Relaxation dominated by transmission line. O. Astafiev, et al. 327, 840 Science (2010) IoChun, Hoi et al. PRL 107, (2011) Al

29 Resonant scattering in 1D waveguide D.E. Chang et al. Nature Physics 3, 807(2007) Fully coherent: no transmission, perfect reflection. Fig. from E. Olsson & S. M. Nik JJ Al 2nm λ >> d Point like atom/dipole! λ cm Wavelength of EM field d μm Size of atom Relaxation dominated by transmission line. O. Astafiev, et al. 327, 840 Science (2010) IoChun, Hoi et al. PRL 107, (2011) Al

30 Quantum circuit model φ 2 L L 0 L 0 L 0 L 0 φ 1L φ 0 φ 1R φ 2 R C C C JS φ J C 0 C 0 C 0 C 0 Relaxation rate into 1D transmission line, indicates the strength of coupling! Γ 10 ω 2 01C 2 c Z C Σ = C c + C Z = JS 4C Σ L 0 C 0

31

32

33 Transmission and reflection Strong interaction limit: Fully coherent.

34

35 Saturation of transmission Nonlinear nature of the atom!

36 Transmission comparing to theory

37 Coherent vs Incoherent scattering Ω p / 2π [MHz] Output Power (nw) Total scattered 2 V R BW=10MHz BW=100MHz V R 2 Elastic scattered Input field ω 10 Ω p Ω p /2π 30 MHz 83 MHz 250 MHz [dbm] P p BW δω p /2π I.-C. Hoi et al.

38 Low power Tunable artificial atom Only 0-1 transition occurs! High power Only two-photon transition occurs! f 12 f 01 Extract: E J,Max = 13GHz E c = 590MHz E J / E c = 23 ( f 12 + f 01 )/2 Φ ext / Φ 0 Φ ext / Φ 0 Two-Photon Transition

39 Fully coherent: perfect reflected by the atom. measure the phase coherent signal.

40

41 Two-Tone Spectroscopy

42 Two-Tone Spectroscopy

43 Higher level effect 1.0 T ω p = ω GHz Pump off -135dBm -131dBm -127dBm -123dBm -119dBm -115dBm (Low Power) GHz ω p /2π 7.4 Anharmonicity: α = ω 01 ω MHz ω 12 /2π = 6.38GHz ω 10 /2π = 7.1GHz

44 Mollow triplet T p,1 P 01 [dbm] ω p /2π [GHz] ω 10 Ω p B.R. Mollow, Phys.Rev. 188, 1969 (1969) O. Astafiev, et al. 327, 840 Science (2010)

45 T P c [dbm] ω p /2π [GHz] A. A. Abdumalikov, Jr et al. PRL 104, (2010)

46 To be continued

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Interaction between surface acoustic waves and a transmon qubit

Interaction between surface acoustic waves and a transmon qubit Interaction between surface acoustic waves and a transmon qubit Ø Introduction Ø Artificial atoms Ø Surface acoustic waves Ø Interaction with a qubit on GaAs Ø Nonlinear phonon reflection Ø Listening to

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Quantize electrical circuits

Quantize electrical circuits Quantize electrical circuits a lecture in Quantum Informatics the 4th and 7th of September 017 Thilo Bauch and Göran Johansson In this lecture we will discuss how to derive the quantum mechanical hamiltonian

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Quantum magnonics with a macroscopic ferromagnetic sphere

Quantum magnonics with a macroscopic ferromagnetic sphere Quantum magnonics with a macroscopic ferromagnetic sphere Yasunobu Nakamura Superconducting Quantum Electronics Team Center for Emergent Matter Science (CEMS), RIKEN Research Center for Advanced Science

More information

Tunable Resonators for Quantum Circuits

Tunable Resonators for Quantum Circuits J Low Temp Phys (2008) 151: 1034 1042 DOI 10.1007/s10909-008-9774-x Tunable Resonators for Quantum Circuits A. Palacios-Laloy F. Nguyen F. Mallet P. Bertet D. Vion D. Esteve Received: 26 November 2007

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Circuit quantum electrodynamics with transmon qubits

Circuit quantum electrodynamics with transmon qubits TECHNISCHE UNIVERSITÄT MÜNCHEN WMI WALTHER - MEISSNER - INSTITUT FÜR TIEF - TEMPERATURFORSCHUNG BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Circuit quantum electrodynamics with transmon qubits Master s Thesis

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005 Observation of quantum capacitance in the Cooper-pair transistor arxiv:cond-mat/0503531v4 [cond-mat.supr-con] 13 Jun 2005 T. Duty, G. Johansson, K. Bladh, D. Gunnarsson, C. Wilson, and P. Delsing Microtechnology

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS GUSTAF ANDERS OLSON DISSERTATION

GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS GUSTAF ANDERS OLSON DISSERTATION GROWTH OF TITANIUM-NITRIDE THIN FILMS FOR LOW-LOSS SUPERCONDUCTING QUANTUM CIRCUITS BY GUSTAF ANDERS OLSON DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

A transmon-based quantum switch for a quantum random access memory

A transmon-based quantum switch for a quantum random access memory A transmon-based quantum switch for a quantum random access memory THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in PHYSICS Author : Arnau Sala Cadellans

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Superconducting Quantum Circuits

Superconducting Quantum Circuits http:// DPG-Frühjahrstagung Sektion Kondensierte Materie Berlin, 11.03. - 16.03.2018 Superconducting Quantum Circuits Rudolf Gross Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften and Technische

More information

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03 Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores.

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores. B I A S T E E 2. 0 Reducing the Size of the Filtering Hardware for Josephson Junction Qubit Experiments Using Iron Powder Inductor Cores. Daniel Staudigel Table of Contents Bias Tee 2.0 Daniel Staudigel

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Superconducting Metamaterials

Superconducting Metamaterials Superconducting Metamaterials P. Jung 1, S. Butz 1, N. Maleeva 1,2, A. Averkin 2, N. Abramov 2, K. Shulga 2,3 V. P. Koshelets 2,4, L. V. Filippenko 2,4, V. Chichkov 2 A. Karpov 2, S. V. Shitov 2,4, V.

More information

A Superconducting Quantum Simulator for Topological Order and the Toric Code. Michael J. Hartmann Heriot-Watt University, Edinburgh qlightcrete 2016

A Superconducting Quantum Simulator for Topological Order and the Toric Code. Michael J. Hartmann Heriot-Watt University, Edinburgh qlightcrete 2016 A Superconducting Quantum Simulator for Topological Order and the Toric Code Michael J. Hartmann Heriot-Watt University, Edinburgh qlightcrete 2016 Topological Order (in 2D) A 2-dimensional physical system

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009 Coherent oscillations between classically separable quantum states of a superconducting loop Vladimir E. Manucharyan, 1 Jens Koch, 1 Markus Brink, 1 Leonid I. Glazman, 1 and Michel H. Devoret 1 1 Departments

More information

6.4 Physics of superconducting quantum circuits

6.4 Physics of superconducting quantum circuits AS-Chap. 6.4-1 6.4 Physics of superconducting quantum circuits 6.4 Physics of Superconducting Quantum Circuits AS-Chap. 6.4-3 General Hamiltonian H HO = E kin + E pot = p m + 1 mω r x k x e.g., 1 k x for

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information