Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2017

Size: px
Start display at page:

Download "Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2017"

Transcription

1 Introduction to Particle Phyic I relativitic kineatic Rito Orava Sring 07

2 Lecture III_ relativitic kineatic

3 outline Lecture I: Introduction the Standard Model Lecture II: Particle detection Lecture III_: Relativitic kineatic Lecture III_: Non-relativitic Quantu Mechanic Lecture IV: Decay rate and cro ection Lecture V: The Dirac equation Lecture VI: Particle exchange Lecture VII: lectron-oitron annihilation

4 outline continued... Lecture VIII: lectron-roton elatic cattering Lecture IX: Deely inelatic cattering Lecture X: Syetrie and the quark odel

5 Lecture III; Relativitic kineatic Particle decay Two-article cattering Scattering angle latic cattering Angular ditribution Relative velocity Center of a and laboratory yte Croing yetry Interretation of antiarticle-tate

6 relativitic kineatic c c article energy oentu ret a v βc β in natural unit c article velocity γ β / Lorentz factor γ γβ γ β γ /γ

7 relativitic kineatic reference: Nachtann [I.] Hagedorn [II.] Byckling & Kajantie [II.] notation: roer tie Lorentz invariant tenor etric g vector covariant four - x vector contravariant four - 0 γ τ ν ν ν ν dt dt dx - dt dτ x x x x x g x t g x t x t x x x t x x

8 notation The four - velocity: u dx dτ dx dt γ v dt dτ Since u γ v > 0 u i a tie- like vector. The four - oentu i defined a : 0 u γ v By calculating the correonding Lorentzinvariant u we find the energy oentu relation A article i aid to berelativitic if >>. For a non - relativitic article << and i.e. we recover the exreion for v << of Newtonian echanic.

9 article decay The four - oentu of a decaying article - in it ret frae - i given by M 000. xerientally : τ π ν xerientally : τ π ν GeV π π 0 γ The decay tie - lifetie - i : dτ dt v where dt dt γdτ > dτ. i the lifetie in laboratory frae: π 0GeV γ π v π t' π. tπ

10 contraint Contraint: i energy-oentu conervation and ii a-hell condition i i 0 M M

11 contraint... [ ] [ ] can bedirectly calculated. oenta the value of abolute energie and the the while reain unknown and of i.e.only the direction : we get we get By uing: Therefore: M M M M M M M M M M M M i i i i i i

12 Mandelta variable: t u two body cattering. A B è C D A B è C D calar roduct of -vector are invariant oible cobination: A B A C A D total -oentu i conerved > there are only two indeendent Lorentz-invariant kineatic variable on which the reaction cro ection can deend

13 Mandelta variable: t u Three convenient variable: A B t A C u A D for which: t u M M M M A B C D The Mandelta variable nicely relate to the roagator ae in the leading order diagra.

14 t u i two article cattering i i i... For elaticcattering and. Next conider the Lorentz invariant: i i and $ # " 6 invariant linearly indeendent linearly deendent The Mandelta variable t The center of a c... fraei defined by: u 0

15 cro ection and luinoity Cro ection σ can be defined by: or equivalently nuber of event σ L nuber of event er unit tie σ dl/dt where an event i an interaction uch a cattering i the luinoity i.e. nuber of chance of an event er unit area. For a fixed target within the bea of incident article dl/dt NJ where N i the nuber of target article and J i the flux er unit area of article in the incident bea.

16 cro ection and luinoity L f n n πσ x σ y σ σ reference N N reference

17 frae of reference ' ' and ' frae: In thec... labelled a ued and article oenta i 0 Breit yte the DIS In dee inelatic rocee variableare labelled with an L : the target" 0 "fixed In thelaboratory frae variableare often denoted by an aterix : the frae In thec... 0 defined by: a fraei The center of B i i L i lab i i c i

18 two article cattering ' Θ ' 0 %"$"# i no Lorentz invariant wherea i one. Wecan now exre i and ' in ter of eeexcercie no..: λ where we ue the Källén tringlefunction : λabc a b c -ab-ac-bc [ ] [ ] a b c a b c a a b c b c

19 two article cattering The Källén function ha the following roertie : yetric under a b c and aytotic behaviour: a >> bc: λ a b c a Thi allowoe roertie of in ax the cattering { } 0 roce to bedeterined. Fro ' > 0 it follow: i the threhold of the roce in the - channel. At the high energy liit >> i one obtain: '

20 cattering angle t and or and decribed by two indeendent variable : cattering i above the On the bai of co co we derive co By uing co ' ' defined by i the cattering angle frae In thec... Θ u t t function t i Θ Θ Θ Θ Θ λ λ

21 elatic cattering Θ Θ Θ 0 0 co - hyicallyallowed region yield: Relation to the co co giving for the cattering angle in elatic cattering : ' and e.g. and In elatic cattering t t t e e

22 angular ditribution ' co vectori.e. - axi defined by the the rotationally invariant with reect to angular ditribution i The dt d Θ πd d π dφ Ω Ω π λ λ π

23 relative velocity The relative velocity will be of relevance in defining the article flux v v v " $ # $ % fro which we get a frae indeendent quantity v The Moller flux factor. Note: The Moller flux factor i needed for noralizing the cro ection ince the claical volue eleent i not Lorentz invariant.

24 CMS and LAB yte For thec... and laboratoryyte : c... total energy lab L L >> L An exale: Fixed target and colliding bea ode at the Ferilab Tevatron bea 980 GeV.

25 CMS and LAB yte N fixed target: - econdary bea collider fixed t arget 960GeV.7GeV > < W W -channel

26 croing yetry t-channel the cattering roce exhibit underlying yetrie

27 croing yetry xale: When we exchange and xaine - channel reaction reviou age : for which the i not affected but t and u interchange their role. - oentu i conerved : The only oitive Mandelta variablefor thi T the reaction i hence the decribe thecattering dynaicof the roce and will be dicued ore later.it deend on three Mandelta variableand i redicted theoretically QCD QCD notation - channel. WSUSY... T t u T t u > 0 t 0 u 0 T can then be extended analytically to the whole range tu R. Deending on the region it can then decribe different croed reaction. For intanceuoe we exchange and we then get naively

28 croing yetry We now ake the interretation : n n in which n tand for the antiarticle of the article n leadingto the exreion : Sinceand are the incoing article we eak of the " t - channel" roce.we have : T t u T t u t 0 t> 0 u 0

29 anti-article tate The article with - oentu - are interreted a antiarticle with The reaon for that becoe clear when we look at the - current - oentu. j ρ QM & e i ϕ ϕ ϕ ϕ %""" $ """# j electron charge robability denity %""""" $ """"" # D charge denity Inerting the wave function of the freeelectron ϕ Ne i x Note: In the hae the ign of both and x can be flied without changing the wave function no lace here for article travelling backward in tie in the definition of the - current weget e e e - - with - oentu with - oentu with - oentu - : : : j j j e e e - - e N e N e N e N e N e N And hence the rule : j e j e with the ubtitution Note: The whole -vector take a inu ign not only the atial art.

30 anti-article tate - A article with -oentu i a rereentation for the correonding antiarticle with -oentu. - Alternatively: iion of a oitron with energy correond to the abortion of an electron with energy figure above.

31 anti-article tate In the Dalitz lot the three reaction -t- and u-channel one are decribed by a ingle diagraatic rereentation. Function Ttu evaluated in the relevant kineatical region decribe all three.

32 exale: Moller & Bhabha cattering Moller: e - e - e - e - -croing yetry- Bhabha: e e - e e -

33 decay & roduction

34 NXT: Lecture III_: Non-relativitic Quantu Mechanic

Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2015

Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2015 Introducton to Partcle Phyc I relatvtc kneatc Rto Orava Srng 05 outlne Lecture I: Orentaton Unt leentary Interacton Lecture II: Relatvtc kneatc Lecture III: Lorentz nvarant catterng cro ecton Lecture IV:

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

Introduction to Particle Physics I

Introduction to Particle Physics I Introuction to Particle Phyic I the Feynan calculu Rito Orava Srin 06 outline Lecture I: Introuction, the Stanar oel Lecture II: Particle etection Lecture III: Relativitic kineatic Lecture IV: Non-relativitic

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Discovery Mass Reach for Excited Quarks at Hadron Colliders

Discovery Mass Reach for Excited Quarks at Hadron Colliders Dicovery Ma Reach for Excited Quark at Hadron Collider Robert M. Harri Fermilab, Batavia, IL 60510 ABSTRACT If quark are comoite article then excited tate are exected. We etimate the dicovery ma reach

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

12.4 Atomic Absorption and Emission Spectra

12.4 Atomic Absorption and Emission Spectra Phyic Tool box 12.4 Atoic Abortion and iion Sectra A continuou ectru given off by a heated olid i caued by the interaction between neighbouring ato or olecule. An eiion ectru or line ectru i eitted fro

More information

Periodic Table of Physical Elements

Periodic Table of Physical Elements Periodic Table of Phyical Eleent Periodic Table of Phyical Eleent Author:Zhiqiang Zhang fro Dalian, China Eail: dlxinzhigao@6.co ABSTRACT Thi i one of y original work in phyic to preent periodic table

More information

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are Teoretical Dynaics Septeber 16, 2010 Instructor: Dr. Toas Coen Hoework 2 Subitte by: Vivek Saxena 1 Golstein 1.22 Taking te point of support as te origin an te axes as sown, te coorinates are x 1, y 1

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

p and transverse momentum p BF

p and transverse momentum p BF Strangene roduction at high Q with the H detector Julia E. Ruiz abaco Centro de Invetigacione y Etio Avanzado del Intituto Politécnico Nacional Antigua carretera a Progreo Km. 6 97, Mérida, Yucatán, México

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 151 Lecture 7 Scattering Problem (Chapter 3) What We Did Lat Time Dicued Central Force Problem l Problem i reduced to one equation mr = + f () r 3 mr Analyzed qualitative behavior Unbounded,

More information

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1 AP CHEM WKST KEY: Atoic Structure Unit Review p. 1 1) a) ΔE = 2.178 x 10 18 J 1 2 nf 1 n 2i = 2.178 x 10 18 1 1 J 2 2 6 2 = 4.840 x 10 19 J b) E = λ hc λ = E hc = (6.626 x 10 34 J )(2.9979 x 10 4.840 x

More information

Relativistic kinematics

Relativistic kinematics Relativistic kineatics 4-oentu or a article o ass : (/c, x, y, z ) where total energy: γc and γv γβc ( cdt) ( dx) ( dy) ( dz The line eleent is an invariant I 4-vectors transor like ds, the scalar roduct

More information

8 Pages, 3 Figures, 2 Tables. Table S1: The reagents used for this study, their CAS registry numbers, their sources, and their stated purity levels.

8 Pages, 3 Figures, 2 Tables. Table S1: The reagents used for this study, their CAS registry numbers, their sources, and their stated purity levels. Suleentary Material for The Feaibility of Photoenitized Reaction with Secondary Organic Aerool Particle in the Preence of Volatile Organic Coound Kurti T. Malecha and Sergey A. Nizkorodov* * nizkorod@uci.edu

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Charge Symmetry Breaking in pn dπ 0

Charge Symmetry Breaking in pn dπ 0 Charge Symmetry Breaking in n dπ 0 reniy Filin Helmholtz-Intitut für Strahlen- und Kernhyik (Theorie), Univerität Bonn, Bonn, Germany Intitute for Theoretical and Exerimental Phyic, ocow, Ruia In collaboration

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9 Even Odd Symmetry Lecture 9 1 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found

More information

Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron

Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron Meaurement of the Mae, Mixing, and Lifetime, of Hadron at the Tevatron Mike Strau The Univerity of Oklahoma for the CDF and DØ Collaboration 5 th Rencontre du Vietnam Hanoi, Vietnam Augut 5-11, 2004 Outline

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Fundamental constants and electroweak phenomenology from the lattice

Fundamental constants and electroweak phenomenology from the lattice Fundaental contant and electroweak phenoenology fro the lattice Lecture II: quark ae Shoji Hahioto KEK @ INT uer chool 007, Seattle, Augut 007. II. Quark ae. How to define Pole a; running a. Heavy quark

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s.

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s. THE VIBRATION ABSORBER Preable - A NEED arie: Lui San Andre (c) 8 MEEN 363-617 Conider the periodic forced repone of a yte (Kp-Mp) defined by : 1 1 5 lbf in : 1 3 lb (t) It natural frequency i: : ec F(t)

More information

Homework #6. 1. Continuum wave equation. Show that for long wavelengths the equation of motion,, reduces to the continuum elastic wave equation dt

Homework #6. 1. Continuum wave equation. Show that for long wavelengths the equation of motion,, reduces to the continuum elastic wave equation dt Hoework #6 Continuu wave equation Show that for long wavelength the equation of otion, d u M C( u u u, reduce to the continuu elatic wave equation u u v t x where v i the velocity of ound For a, u u i

More information

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension Phyic 30 Leon 1 Moentu and Conervation of Moentu in One Dienion I. Phyic rincile Student often ak e if Phyic 30 i harder than Phyic 0. Thi, of coure, deend on the atitude, attitude and work ethic of the

More information

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

On spinors and their transformation

On spinors and their transformation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, Science Huβ, htt:www.scihub.orgajsir ISSN: 5-69X On sinors and their transforation Anaitra Palit AuthorTeacher, P5 Motijheel Avenue, Flat C,Kolkata

More information

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course ecture 1 Two tye of otical amlifier: Erbium-doed fiber amlifier (EDFA) Raman amlifier Have relaced emiconductor otical amlifier in the coure Fiber Otical Communication ecture 1, Slide 1 Benefit and requirement

More information

or hadrons. In the latter case the state was observed in production in a Drell-Yan-like channel pn J X X X

or hadrons. In the latter case the state was observed in production in a Drell-Yan-like channel pn J X X X Physics 557 Lecture 12 Even More particles heavy flavors: The exciteent of the 1970 s continued with the observation in 1974 (continuing through 1976) of a new quark flavor (recall that the sae period

More information

PHY492: Nuclear & Particle Physics. Lecture 23. HW Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 23. HW Particle Detectors PHY49: Nuclear & Particle Phyic Lecture 3 HW Particle Detector Homework 13.1 x min = mω λ 1 x min = mω λ ; x 3 = mω min λ V ( x min + x, y) = 1 mω x min + x ( ) + y + λ 4 3 ; 4 xmin = m ω 4 λ x min + x

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria,

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria, Adanced Studie in Contemorary Mathematic, (006), No, 47-54 DISTRIBUTIONS OF JOINT SAMPLE CORRELATION COEFFICIENTS OF INDEPEENDENT NORMALLY DISTRIBUTED RANDOM VARIABLES Eelina I Velea, Tzetan G Ignato Roue

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binoial and Poisson Probability Distributions There are a few discrete robability distributions that cro u any ties in hysics alications, e.g. QM, SM. Here we consider TWO iortant and related cases, the

More information

Quantum Field Theory 2011 Solutions

Quantum Field Theory 2011 Solutions Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki

More information

5.4 Conservation of Momentum in Two Dimensions

5.4 Conservation of Momentum in Two Dimensions Phyic Tool bo 5.4 Coneration of Moentu in Two Dienion Law of coneration of Moentu The total oentu before a colliion i equal to the total oentu after a colliion. Thi i written a Tinitial Tfinal If the net

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

arxiv: v2 [hep-th] 16 Mar 2017

arxiv: v2 [hep-th] 16 Mar 2017 SLAC-PUB-6904 Angular Moentu Conservation Law in Light-Front Quantu Field Theory arxiv:70.07v [hep-th] 6 Mar 07 Kelly Yu-Ju Chiu and Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University,

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6.

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6. â â x Ψn Hx Ε Ψn Hx 35 (6.7) he solutions of this equation are plane waves Ψn Hx A exphä n x (6.8) he eigen-energy Εn is n (6.9) Εn For a D syste with length and periodic boundary conditions, Ψn Hx Ψn

More information

5. Dimensional Analysis. 5.1 Dimensions and units

5. Dimensional Analysis. 5.1 Dimensions and units 5. Diensional Analysis In engineering the alication of fluid echanics in designs ake uch of the use of eirical results fro a lot of exerients. This data is often difficult to resent in a readable for.

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Chapter 3- Answers to selected exercises

Chapter 3- Answers to selected exercises Chater 3- Anwer to elected exercie. he chemical otential of a imle uid of a ingle comonent i gien by the exreion o ( ) + k B ln o ( ) ; where i the temerature, i the reure, k B i the Boltzmann contant,

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6 Lecture 16: Scattering States and the Step Potential B. Zwiebach April 19, 2016 Contents 1 The Step Potential 1 2 Step Potential with E>V 0 2 3 Step Potential with E

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr Lecture #5: 5-0735: Dynamic behavior of material and tructure Introduction to Continuum Mechanic Three-dimenional Rate-indeendent Platicity by Dirk Mohr ETH Zurich, Deartment of Mechanical and Proce Engineering,

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Symmetry Lecture 9. 1 Gellmann-Nishijima relation

Symmetry Lecture 9. 1 Gellmann-Nishijima relation Symmetry Lecture 9 1 Gellmann-Nihijima relation In the lat lecture we found that the Gell-mann and Nihijima relation related Baryon number, charge, and the third component of iopin. Q = [(1/2)B + T 3 ]

More information

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS 4.1 General Several tud trength rediction method have been develoed ince the 1970. Three o thee method are art o

More information

Related Rates section 3.9

Related Rates section 3.9 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip

More information

The Features For Dark Matter And Dark Flow Found.

The Features For Dark Matter And Dark Flow Found. The Feature For Dark Matter And Dark Flow Found. Author: Dan Vier, Alere, the Netherland Date: January 04 Abtract. Fly-By- and GPS-atellite reveal an earth-dark atter-halo i affecting the orbit-velocitie

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Electrodynamics Part 1 12 Lectures

Electrodynamics Part 1 12 Lectures NASSP Honour - Electrodynamic Firt Semeter 2014 Electrodynamic Part 1 12 Lecture Prof. J.P.S. Rah Univerity of KwaZulu-Natal rah@ukzn.ac.za 1 Coure Summary Aim: To provide a foundation in electrodynamic,

More information

arxiv: v1 [hep-ph] 14 Apr 2019

arxiv: v1 [hep-ph] 14 Apr 2019 Production of the D 0 (2317) and D 1 (2460) by kaon-induced reaction on a roton target arxiv:1904.06641v1 [he-h] 14 Ar 2019 HongQiang Zhu 1 and Yin Huang 2, 1 College of Phyic and Electronic Engineering,

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

S-P wave phase shift extraction procedure in D + K - π + e + ν decay channel ( & c.c.) with BaBar João Costa, LAL Orsay

S-P wave phase shift extraction procedure in D + K - π + e + ν decay channel ( & c.c.) with BaBar João Costa, LAL Orsay S-P wave hae hift extraction rocedure in D + - π + e + ν decay channe ( & c.c. with BaBar João Cota, LAL Oray LNF Sring Schoo Bruno Touchek What are you going to hear now? S P wave hift? How ha thi hae

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

arxiv:hep-ph/ v1 7 May 2001

arxiv:hep-ph/ v1 7 May 2001 A Grand Canonical Enemble Approach to the Thermodynamic Propertie of the Nucleon in the Quark-Gluon Coupling Model arxiv:hep-ph/0105050v1 7 May 2001 Hai Lin (April 2001) Department of P hyic, P eking Univerity,

More information

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

First of all, because the base kets evolve according to the wrong sign Schrödinger equation (see pp ), HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because

More information

arxiv:hep-ph/ Nov 1995

arxiv:hep-ph/ Nov 1995 DESY 95-6 ISSN 048-9833 he-h/95405 November 995 Incluive Dijet Production at HERA: Direct Photon Cro Section in Next-To-Leading Order QCD arxiv:he-h/95405 4 Nov 995 M. Klaen, G. Kramer II. Intitut für

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

SUPPORTING INFORMATION FOR. Mass Spectrometrically-Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au 25 L 18 Nanoparticles

SUPPORTING INFORMATION FOR. Mass Spectrometrically-Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au 25 L 18 Nanoparticles SUPPORTIG IFORMATIO FOR Mass Sectroetrically-Detected Statistical Asects of Lig Poulations in Mixed Monolayer Au 25 L 8 anoarticles Aala Dass,,a Kennedy Holt, Joseh F. Parer, Stehen W. Feldberg, Royce

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Quadratic Reciprocity. As in the previous notes, we consider the Legendre Symbol, defined by

Quadratic Reciprocity. As in the previous notes, we consider the Legendre Symbol, defined by Math 0 Sring 01 Quadratic Recirocity As in the revious notes we consider the Legendre Sybol defined by $ ˆa & 0 if a 1 if a is a quadratic residue odulo. % 1 if a is a quadratic non residue We also had

More information

6.641 Electromagnetic Fields, Forces, and Motion

6.641 Electromagnetic Fields, Forces, and Motion MIT OpenCoureWare http://ocw.it.edu 6.64 Electroagnetic Field, Force, and Motion Spring 009 For inforation about citing thee aterial or our Ter of Ue, viit: http://ocw.it.edu/ter. 6.64 Electroagnetic Field,

More information

Ch. 6 Single Variable Control ES159/259

Ch. 6 Single Variable Control ES159/259 Ch. 6 Single Variable Control Single variable control How o we eterine the otor/actuator inut o a to coan the en effector in a eire otion? In general, the inut voltage/current oe not create intantaneou

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Physics 57 Proble Set 8 Solutions Proble The decays in question will be given by soe Hadronic atric eleent: Γ i V f where i is the initial state, V is an interaction ter, f is the final state. The strong

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

ROOT LOCUS. Poles and Zeros

ROOT LOCUS. Poles and Zeros Automatic Control Sytem, 343 Deartment of Mechatronic Engineering, German Jordanian Univerity ROOT LOCUS The Root Locu i the ath of the root of the characteritic equation traced out in the - lane a a ytem

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

Angular Momentum Properties

Angular Momentum Properties Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1)

More information

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER 6/0/06 FI 3 ELECTROMAGNETIC INTERACTION IN MATTER Alexander A. Ikandar Phyic of Magnetim and Photonic CATTERING OF LIGHT Rayleigh cattering cattering quantitie Mie cattering Alexander A. Ikandar Electromagnetic

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics Lecture 4 When nondiensionalizing an equation, nondiensional araeters often aear. Exale Consider an object falling due to gravity in a vacuu d z ays: (1) the conventional diensional aroach, and () diensionless

More information

Outline Solutions to Particle Physics Problem Sheet 1

Outline Solutions to Particle Physics Problem Sheet 1 2010 Subatomic: Particle Physics 1 Outline Solutions to Particle Physics Problem Sheet 1 1. List all fundamental fermions in the Standard Model There are six letons and six quarks. Letons: e, ν e, µ, ν

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

m 0 are described by two-component relativistic equations. Accordingly, the noncharged

m 0 are described by two-component relativistic equations. Accordingly, the noncharged Generalized Relativitic Equation of Arbitrary Ma and Spin and Bai Set of Spinor Function for It Solution in Poition, Moentu and Four-Dienional Space Abtract I.I.Gueinov Departent of Phyic, Faculty of Art

More information