Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2015

Size: px
Start display at page:

Download "Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2015"

Transcription

1 Introducton to Partcle Phyc I relatvtc kneatc Rto Orava Srng 05

2 outlne Lecture I: Orentaton Unt leentary Interacton Lecture II: Relatvtc kneatc Lecture III: Lorentz nvarant catterng cro ecton Lecture IV: Accelerator and collder exerent Lecture V: leent of Quantu lectrodynac

3 outlne contnued... Lecture VI: Tetng QD Lecture VII: Untary yetre and QCD a a gauge theory Lecture VIII: QCD n e e - annhlaton

4 Lecture II; Relatvtc kneatc Partcle decay Two-artcle catterng Scatterng angle latc catterng Angular dtrbuton Relatve velocty Center of a and laboratory yte Crong yetry Interretaton of antartcle-tate

5 relatvtc kneatc reference: Nachtann [I.] Hagedorn [II.] Bycklng & Kajante [II.] notaton: roer te Lorentz nvarant tenor etrc g vector covarant four - x vector contravarant four - 0 γ τ ν ν ν ν dt dt dx - dt dτ x x x x x g x t g x t x t x x x t x x

6 notaton The four - velocty: u dx dτ dx dt γ v dt dτ Snce u γ v > 0 u a te- lke vector. The four - oentu defned a : 0 u γ v By calculatng the correondng Lorentznvarant u we fnd the energy oentu relaton A artcle ad to berelatvtc f >>. For a non - relatvtc artcle << and e. we recover the exreon for v << of Newtonan echanc.

7 energy-oentu energy-oentu four vector 0 x y z where the energy of the artcle and x y and z are the coonent of artcle oentu. x y z length of a four-vector an nvarant t doe not change under Lorentz trnforaton

8 artcle decay The four - oentu of a decayng artcle - n t ret frae - gven by M 000. xerentally : τ π ν xerentally : τ π ν GeV π π 0 γ The decay te - lfete - : dτ dt v where dt dt γdτ > dτ. the lfete n laboratory frae: π 0GeV γ π v π t' π. tπ

9 contrant Contrant: energy-oentu conervaton and a-hell condton 0 M M

10 contrant... [ ] [ ] can bedrectly calculated. oenta the value of abolute energe and the the whle rean unknown and of.e.only the drecton : we get we get By ung: Therefore: M M M M M M M M M M M M

11 two artcle catterng varable Mandelta The u t u t 0 defned by: a c... frae center of The... " $ # deendent lnearly ndeendent lnearly 6 nvarant and Next conder the Lorentz nvarant:. and For elatccatterng

12 Mandelta varable: t u two body catterng. A B è C D A B è C D calar roduct of -vector are nvarant oble cobnaton: A B A C A D total -oentu conerved > there are only two ndeendent Lorentz-nvarant kneatc varable on whch the reacton cro ecton can deend

13 Mandelta varable: t u Three convenent varable: A B t A C u A D for whch: t u M M M M A B C D The Mandelta varable ncely relate to the roagator ae n the leadng order ddagra.

14 cro ecton and lunoty Cro ecton σ can be defned by: or equvalently nuber of event σ L nuber of event er unt te σ dl/dt where an event an nteracton uch a catterng the lunoty.e. nuber of chance of an event er unt area. For a fxed target wthn the bea of ncdent artcle dl/dt NJ where N the nuber of target artcle and J the flux er unt area of artcle n the ncdent bea.

15 cro ecton and lunoty

16 frae of reference ' ' and ' frae: In thec... labelled a ued and artcle oenta 0 Bret yte the DIS In dee nelatc rocee varableare labelled wth an L : the target" 0 "fxed In thelaboratory frae varableare often denoted by an aterx : the frae In thec... 0 defned by: a frae The center of B L lab c

17 two artcle catterng ' Θ ' 0 %"$"# no Lorentz nvarant wherea one. Wecan now exre and ' n ter of eeexcerce no..: λ where we ue the Källén trnglefuncton : λabc a b c -ab-ac-bc [ ] [ ] a b c a b c a a b c b c

18 two artcle catterng The Källén functon ha the followng roerte : yetrc under a b c and aytotc behavour: a >> bc: λ a b c a Th allowoe roerte of n ax the catterng { } 0 roce to bedeterned. Fro ' > 0 t follow: the threhold of the roce n the - channel. At the hgh energy lt >> one obtan: '

19 catterng angle t and or and decrbed by two ndeendent varable : catterng above the On the ba of co co we derve co By ung co ' ' defned by the catterng angle frae In thec... Θ u t t functon t Θ Θ Θ Θ Θ λ λ

20 elatc catterng Θ Θ Θ 0 0 co - hycallyallowed regon yeld: Relaton to the co co gvng for the catterng angle n elatc catterng : ' and e.g. and In elatc catterng t t t e e

21 angular dtrbuton ' co vector.e. - ax defned by the the rotatonally nvarant wth reect to angular dtrbuton The dt d Θ πd d π dφ Ω Ω π λ λ π

22 relatve velocty fro whch we get the artcle flux releance n defnng be of relatve velocty wll The v v v v %"$"# The Moller flux factor. a frae ndeendent quantty Note: The Moller flux factor needed for noralzng the cro ecton nce the clacal volue eleent not Lorentz nvarant.

23 CMS and LAB yte For thec... and laboratoryyte : c... total energy lab L L >> L An exale: Fxed target and colldng bea ode at the Ferlab Tevatron bea 980 GeV.

24 CMS and LAB yte N fxed target: - econdary bea collder fxed t arget 960GeV.7GeV > < W W -channel

25 crong yetry t-channel the catterng roce exhbt underlyng yetre

26 crong yetry xale: When we exchange and xane - channel reacton revou age : for whch the not affected but t and u nterchange ther role. - oentu conerved : The only otve Mandelta varablefor th T the reacton hence the decrbe thecatterng dynacof the roce and wll be dcued ore later.it deend on three Mandelta varableand redcted theoretcally QCD QCD notaton - channel. WSUSY... T t u T t u > 0 t 0 u 0 T can then be extended analytcally to the whole range tu R. Deendng on the regon t can then decrbe dfferent croed reacton. For ntanceuoe we exchange and we then get navely

27 crong yetry We now ake the nterretaton : n n n whch n tand for the antartcle of the artcle n leadngto the exreon : Snceand are the ncong artcle we eak of the " t - channel" roce.we have : T t u T t u t 0 t> 0 u 0

28 ant-artcle tate The artcle wth - oentu - are nterreted a antartcle wth The reaon for that becoe clear when we look at the - current - oentu. j ρ QM & e ϕ ϕ ϕ ϕ %""" $ """# j electron charge robablty denty %""""" $ """"" # D charge denty Inertng the wave functon of the freeelectron ϕ Ne x Note: In the hae the gn of both and x can be fled wthout changng the wave functon no lace here for artcle travellng backward n te n the defnton of the - current weget e e e - - wth - oentu wth - oentu wth - oentu - : : : j j j e e e - - e N e N e N e N e N e N And hence the rule : j e j e wth the ubttuton Note: The whole -vector take a nu gn not only the atal art.

29 ant-artcle tate - A artcle wth -oentu a rereentaton for the correondng antartcle wth -oentu. - Alternatvely: on of a otron wth energy correond to the aborton of an electron wth energy fgure above.

30 ant-artcle tate In the Daltz lot the three reacton -t- and u-channel one are decrbed by a ngle dagraatc rereentaton. Functon Ttu evaluated n the relevant kneatcal regon decrbe all three.

31 exale: Moller & Bhabha catterng Moller: e - e - e - e - -crong yetry- Bhabha: e e - e e -

32

33 NXT: Lecture III; Lorentz nvarant catterng cro ecton and hae ace S-oerator Ferʼ golden rule Total decay rate Scatterng cro ecton Invarant hae ace for n f artcle Dfferental cro ecton catterng cro ecton Phae ace Dfferental cro ecton Untarty of the S-oerator

Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2017

Introduction to Particle Physics I relativistic kinematics. Risto Orava Spring 2017 Introduction to Particle Phyic I relativitic kineatic Rito Orava Sring 07 Lecture III_ relativitic kineatic outline Lecture I: Introduction the Standard Model Lecture II: Particle detection Lecture III_:

More information

The Dirac Equation. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

The Dirac Equation. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year The Drac Equaton Eleentary artcle hyscs Strong Interacton Fenoenology Dego Betton Acadec year - D Betton Fenoenologa Interazon Fort elatvstc equaton to descrbe the electron (ncludng ts sn) Conservaton

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

Quick Visit to Bernoulli Land

Quick Visit to Bernoulli Land Although we have een the Bernoull equaton and een t derved before, th next note how t dervaton for an uncopreble & nvcd flow. The dervaton follow that of Kuethe &Chow ot cloely (I lke t better than Anderon).

More information

Chapter 5: Root Locus

Chapter 5: Root Locus Chater 5: Root Locu ey condton for Plottng Root Locu g n G Gven oen-loo tranfer functon G Charactertc equaton n g,,.., n Magntude Condton and Arguent Condton 5-3 Rule for Plottng Root Locu 5.3. Rule Rule

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Scattering cross section (scattering width)

Scattering cross section (scattering width) Scatterng cro ecton (catterng wdth) We aw n the begnnng how a catterng cro ecton defned for a fnte catterer n ter of the cattered power An nfnte cylnder, however, not a fnte object The feld radated by

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

The gravitational field energy density for symmetrical and asymmetrical systems

The gravitational field energy density for symmetrical and asymmetrical systems The ravtatonal eld enery denty or yetrcal and ayetrcal yte Roald Sonovy Techncal Unverty 90 St. Peterbur Rua E-al:roov@yandex Abtract. The relatvtc theory o ravtaton ha the conderable dculte by decrpton

More information

Chapter 8. Momentum, Impulse and Collisions (continued) 10/22/2014 Physics 218

Chapter 8. Momentum, Impulse and Collisions (continued) 10/22/2014 Physics 218 Chater 8 Moentu, Iulse and Collsons (contnued 0//04 Physcs 8 Learnng Goals The eanng of the oentu of a artcle(syste and how the ulse of the net force actng on a artcle causes the oentu to change. The condtons

More information

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences Tutoral Letter 06//018 Specal Relatvty and Reannan Geoetry APM3713 Seester Departent of Matheatcal Scences IMPORTANT INFORMATION: Ths tutoral letter contans the solutons to Assgnent 06. BAR CODE Learn

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Parton Model. 2 q Q, 1

Parton Model. 2 q Q, 1 Parton Model How do we exect the structure functons w and w to behave? It s nstructve to consder some secal cases: ) e e elastc scatterng from a ont-lke roton w, q q q w, q q m m m Defnng and notng that

More information

3. Tensor (continued) Definitions

3. Tensor (continued) Definitions atheatcs Revew. ensor (contnued) Defntons Scalar roduct of two tensors : : : carry out the dot roducts ndcated ( )( ) δ δ becoes becoes atheatcs Revew But, what s a tensor really? tensor s a handy reresentaton

More information

Design of Recursive Digital Filters IIR

Design of Recursive Digital Filters IIR Degn of Recurve Dgtal Flter IIR The outut from a recurve dgtal flter deend on one or more revou outut value, a well a on nut t nvolve feedbac. A recurve flter ha an nfnte mule reone (IIR). The mulve reone

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

Phys 402: Raman Scattering. Spring Introduction: Brillouin and Raman spectroscopy. Raman scattering: how does it look like?

Phys 402: Raman Scattering. Spring Introduction: Brillouin and Raman spectroscopy. Raman scattering: how does it look like? Phy 402: Raman Scatterng Sprng 2008 1 Introducton: Brlloun and Raman pectrocopy Inelatc lght catterng medated by the electronc polarzablty of the medum a materal or a molecule catter rradant lght from

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Departure Process from a M/M/m/ Queue

Departure Process from a M/M/m/ Queue Dearture rocess fro a M/M// Queue Q - (-) Q Q3 Q4 (-) Knowledge of the nature of the dearture rocess fro a queue would be useful as we can then use t to analyze sle cases of queueng networs as shown. The

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH Vol.6.Iue..8 (July-Set.) KY PUBLICATIONS BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH A Peer Revewed Internatonal Reearch Journal htt:www.bor.co Eal:edtorbor@gal.co RESEARCH ARTICLE A GENERALISED NEGATIVE

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

8 Waves in Uniform Magnetized Media

8 Waves in Uniform Magnetized Media 8 Wave n Unform Magnetzed Meda 81 Suceptblte The frt order current can be wrtten j = j = q d 3 p v f 1 ( r, p, t) = ɛ 0 χ E For Maxwellan dtrbuton Y n (λ) = f 0 (v, v ) = 1 πvth exp (v V ) v th 1 πv th

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

THERMODYNAMICS of COMBUSTION

THERMODYNAMICS of COMBUSTION Internal Cobuston Engnes MAK 493E THERMODYNAMICS of COMBUSTION Prof.Dr. Ce Soruşbay Istanbul Techncal Unversty Internal Cobuston Engnes MAK 493E Therodynacs of Cobuston Introducton Proertes of xtures Cobuston

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

A Quadratic Cumulative Production Model for the Material Balance of Abnormally-Pressured Gas Reservoirs F.E. Gonzalez M.S.

A Quadratic Cumulative Production Model for the Material Balance of Abnormally-Pressured Gas Reservoirs F.E. Gonzalez M.S. Natural as Engneerng A Quadratc Cumulatve Producton Model for the Materal Balance of Abnormally-Pressured as Reservors F.E. onale M.S. Thess (2003) T.A. Blasngame, Texas A&M U. Deartment of Petroleum Engneerng

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

EP523 Introduction to QFT I

EP523 Introduction to QFT I EP523 Introducton to QFT I Toc 0 INTRODUCTION TO COURSE Deartment of Engneerng Physcs Unversty of Gazante Setember 2011 Sayfa 1 Content Introducton Revew of SR, QM, RQM and EMT Lagrangan Feld Theory An

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

A Quadratic Cumulative Production Model for the Material Balance of Abnormally-Pressured Gas Reservoirs F.E. Gonzalez M.S.

A Quadratic Cumulative Production Model for the Material Balance of Abnormally-Pressured Gas Reservoirs F.E. Gonzalez M.S. Formaton Evaluaton and the Analyss of Reservor Performance A Quadratc Cumulatve Producton Model for the Materal Balance of Abnormally-Pressured as Reservors F.E. onale M.S. Thess (2003) T.A. Blasngame,

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction ECOOMICS 35* -- OTE 4 ECO 35* -- OTE 4 Stattcal Properte of the OLS Coeffcent Etmator Introducton We derved n ote the OLS (Ordnary Leat Square etmator ˆβ j (j, of the regreon coeffcent βj (j, n the mple

More information

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration Managng Caacty Through eward Programs on-lne comanon age Byung-Do Km Seoul Natonal Unversty College of Busness Admnstraton Mengze Sh Unversty of Toronto otman School of Management Toronto ON M5S E6 Canada

More information

Hidden Markov Model Cheat Sheet

Hidden Markov Model Cheat Sheet Hdden Markov Model Cheat Sheet (GIT ID: dc2f391536d67ed5847290d5250d4baae103487e) Ths document s a cheat sheet on Hdden Markov Models (HMMs). It resembles lecture notes, excet that t cuts to the chase

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Chapter 1. Theory of Gravitation

Chapter 1. Theory of Gravitation Chapter 1 Theory of Gravtaton In ths chapter a theory of gravtaton n flat space-te s studed whch was consdered n several artcles by the author. Let us assue a flat space-te etrc. Denote by x the co-ordnates

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulc Head and Flud Potental What makes water flow? Consder ressure Water Level o A Water Level C o o + B Pressure at A atmosherc (

More information

10/9/2003 PHY Lecture 11 1

10/9/2003 PHY Lecture 11 1 Announcements 1. Physc Colloquum today --The Physcs and Analyss of Non-nvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials.

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials. Power-sum roblem, Bernoull Numbers and Bernoull Polynomals. Arady M. Alt Defnton 1 Power um Problem Fnd the sum n : 1... n where, n N or, usng sum notaton, n n n closed form. Recurrence for n Exercse Usng

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

Pentaquarks in a relativistic quark model and nature of Theta-states.

Pentaquarks in a relativistic quark model and nature of Theta-states. Pentaquark n a reatvtc quark ode and nature of Theta-tate. Gerayuta S.M. Kochkn V.I.. Deartent of Theoretca Phyc St. Peterburg State Unverty 989 St. Peterburg Rua.. Deartent of Phyc LTA 9 St. Peterburg

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution 10.40 Appendx Connecton to Thermodynamcs Dervaton of Boltzmann Dstrbuton Bernhardt L. Trout Outlne Cannoncal ensemble Maxmumtermmethod Most probable dstrbuton Ensembles contnued: Canoncal, Mcrocanoncal,

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Problem 10.1: One-loop structure of QED

Problem 10.1: One-loop structure of QED Problem 10.1: One-loo structure of QED In Secton 10.1 we argued form general rncles that the hoton one-ont and three-ont functons vansh, whle the four-ont functon s fnte. (a Verfy drectly that the one-loo

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

UNIT 7. THE FUNDAMENTAL EQUATIONS OF HYPERSURFACE THEORY

UNIT 7. THE FUNDAMENTAL EQUATIONS OF HYPERSURFACE THEORY UNIT 7. THE FUNDAMENTAL EQUATIONS OF HYPERSURFACE THEORY ================================================================================================================================================================================================================================================

More information

A Tale of Friction Student Notes

A Tale of Friction Student Notes Nae: Date: Cla:.0 Bac Concept. Rotatonal Moeent Kneatc Anular Velocty Denton A Tale o Frcton Student Note t Aerae anular elocty: Intantaneou anular elocty: anle : radan t d Tanental Velocty T t Aerae tanental

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

THERMODYNAMICS. Temperature

THERMODYNAMICS. Temperature HERMODYNMICS hermodynamcs s the henomenologcal scence whch descrbes the behavor of macroscoc objects n terms of a small number of macroscoc arameters. s an examle, to descrbe a gas n terms of volume ressure

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

A Quantum Gauss-Bonnet Theorem

A Quantum Gauss-Bonnet Theorem A Quantum Gauss-Bonnet Theorem Tyler Fresen November 13, 2014 Curvature n the plane Let Γ be a smooth curve wth orentaton n R 2, parametrzed by arc length. The curvature k of Γ s ± Γ, where the sgn s postve

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,

More information