j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

Size: px
Start display at page:

Download "j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1"

Transcription

1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons Law of terated expectatons The Normal dstrbuton Appendx I: Correlaton, ndependence and lnear relatonshps Appendx II: Covarance and ndependence. Random varables a. Random varables:,, Z take on dfferent values wth dfferent probabltes; conventon s to use captal letters for random varables and lower case letters for realzed values. So, for nstance, s a random varable, and x or x, x, and x 3 would be specfc realzed values of b. (Probablty) Densty functons (pdfs): descrbe the dstrbuton of the random varable the probablty that the random varable takes on dfferent values used to determne probabltes. Dscrete random varable (e.g. Bnomal dstrbuton): takes on a fnte or countably nfnte set of values wth postve probablty. densty functon: f ( x j) P( x j) 0 and f ( x j) (note sgma notaton). Contnuous random varable (e.g. Normal dstrbuton). densty functon: f ( x) 0 and f ( x) dx. Use the densty functons to determne the probabltes:. Dscrete: Pa ( < b) P ( x) f( x) a< x b a< x b b. Contnuous: P( a < b) f ( x) dx a

2 c. Examples of random varables. Unform [a,b]: f( x) x [ ab, ] b a and s 0 otherwse. Standard Normal - N(0,): f( x) e π x. Measures of central tendences and varablty a. Expectaton/Mean (measure of central tendency): E ( ), µ. The average value of (observed wth a large number of random samples from the dstrbuton). A weghted average of the dfferent values of (weght the values by ther respectve probabltes). Dscrete: E( ) µ xp( x) x f( x). Contnuous: E( ) µ xf ( x) dx. Propertes. Lnear operator: E( a + b) ae( ) + b a. Extends to many random varables: E( a) Ea ( ) ae ( ) aµ. And for some functon g(.), Eg ( ( )) gx ( ) f( x) or g( x) f ( x) dx for a contnuous dstrbuton b. Varance (measure of varablty or dsperson around the mean): Var( ),. The average squared devaton of from ts mean (observed wth a large number of random samples from the dstrbuton). A weghted average of the dfferent squared devatons of from ts mean (weght the squared devatons by ther respectve probabltes). Dscrete: µ ( µ ) ( µ ) Var( ) E( ) x P( x ) x f ( x ) Var( ) E( µ ) x µ f ( x) dx. Contnuous: ( ) 3. E ( µ ) E ( ) µ. Propertes:. Not a lnear operator: Var a b a Var ( + ) ( ) v. Standard devaton (StdDev): (postve square root)

3 . Lnear operator: f a>0, then StdDev a + b Var a a Var a StdDev ( ) ( ) ( ) ( ) µ c. Standardzng random varables (z-scores): Z (has mean zero and unt varance) µ ( ) ( ) 0. Mean: EZ E ( E µ ). Varance: Var Z E Z Var ( ) ( ) ( ) 3. Jont densty functons a. Consder and, two random varables (e.g. people are randomly drawn from a populaton and ther heghts and weghts are recorded) b. If dscrete, then the jont densty s defned by f ( xy, ) P ( x& y) c. Note that P ( x) f ( x) P ( x& y) f ( xy, ). y y. So, the margnal densty P ( x) f ( x) s the sum over the jont denstes f ( xy, ). y d. Here s an example.. In the followng table, the random varable takes on three values (x, x and x3), and takes on two (y and y). The fgures n the box are the jont probabltes, f ( xy, ) P ( x& y). And so, for example, f ( x, y) P ( x & y)... And the margnal probabltes can be recovered from the jont probabltes by just summng across the rows and columns. So, for example, P ( x) f ( x) P ( x & yj) j, f ( x, y) + f ( x, y) y y x P(x) x P(x) x P(x3) P(y) P(y) 3

4 e. Independence. f, ( x, y) P( xp ) ( y) f ( x) f ( y) for all values of and, (x,y) the jont densty functon s the product of the margnal denstes (apples to dscrete and contnuous dstrbutons). and n the prevous example are not ndependent, snce, for example: ( )( ) f, ( x, y). P( x) P ( y) f( x) f( y) We can extend to many ndependent random varables: f ( x, x,, x) P ( x, x,, x),,, n n n n n f ( ) ( ) ( ) ( ) x f x f x n n f x. Not ndependent means dependent 4. Measures of assocaton a. Consder two random varables, and. b. Covarance: Cov(, ) E( µ )( µ ) ( x µ )( y µ ) f ( x, y) c. Some examples: and both have mean 0 n the followng examples. On the left, most of the data are n quadrants I and III, where ( x µ )( y µ ) > 0, and so when you sum those products you get a postve covarance. Most of the acton on the rght s n quadrants II and IV where ( x µ )( y µ ) < 0, and so those products sum to a negatve covarance. d. Propertes:. Cov(, ) E( ) µ µ. Note that Cov(, ) E( µ )( µ ) Var( ) 4

5 . Measures the extent to whch there s a lnear relatonshp between and v. If Cov(, ) > 0 then as llustrated above, and tend to move together n a postve drecton, so that ncreases s are on average assocated wth ncreases n and f the covarance s negatve, then they tend to move n opposte drectons v. If and are ndependent, then Cov(, ) 0. Opposte need not hold 0 does not necessarly mply ndependence t could just mean that there s a hghly non-lnear relatonshp between and.. Here s an example of & havng zero covarance, but not beng ndependent: Jont & Margnal Denstes Cov Contrbutons E() (0.33) (0.67) Cov(,) E() 0.67 v. Cov( a + b, c + d ) bdcov(, ) the magntude of the covarance s never greater than the product of the magntudes of the standard devatons (ths s an nstance of the Cauchy-Schwartz Inequalty) v. e. Varances of sums of random varables. Var( + ) + Cov(, ) +. More generally: Var( a + a ) a + a a Cov(, ) + a. So f Cov(, ) 0 (so that and are uncorrelated), then Var( + ) Var( ) + Var( ) (the varance of the sum s the sum of the varances) v. And even more generally:. n n n Var a a a Cov(, ) note that when j, the term s j j j (, ) a Cov a. If the s are parwse uncorrelated, then Cov(, j) 0 when j, and so n n n n n n ths case, Var a aajcov(, j) aacov(, ) a j 5

6 f. Correlaton: a. If they are parwse uncorrelated, then the varance of the sum s the sum of the varances. Cov(, ) Corr(, ) ρ StdDev( ) StdDev( ). so ρ. And smlar to above:. If Cov(, ) 0, then ρ 0.. If and are ndependent, then they are uncorrelated and ρ 0 3. ρ captures the extent to whch there s a lnear relatonshp between and whch s smlar to, though not the same as, the extent to whch they move together 4. If a + b, then. Propertes: avar( ) a or a a Cov(, ) Corr(, ) ρ StdDev( ) StdDev( ) and so f and are lnearly related they have a correlaton of + or -.. Corr a b a b Corr aa < 0 ( +, + ) (, ) f aa > 0, and Corr(, ) f. So lnear transformatons of random varables may affect the sgn of the correlaton, but not the magntude. 5. Interestng result a. Suppose that the random varable s a lnear functon of another random varable plus an addtve random error U, whch s uncorrelated wth, then:. a + b + U, where, and U are all random varables and Cov(, U ) 0. Cov(, ) Cov(, a + b + U ) Cov(, a) + bcov(, ) + Cov(, U ). Snce Cov(, a) Cov(, U ) 0, Cov(, ) bcov(, ) Cov(, ) StdDev( ) v. or b ρ Corr(, ) Cov(, ) StdDev( ). Ths s a relatonshp that wll haunt you throughout the semester. 6

7 6. Condtonal dstrbutons a. Recall the defnton of condtonal probabltes: suggest that P ( y x) P ( y& x) P ( x) PA ( B) PA ( B), whch mght PB ( ) f, ( xy, ) b. If dscrete, then f ( y x) P ( y x) f ( x) same formula apples to contnuous dstrbutons. Dvdng by f ( x ) effectvely scales up the margnal denstes. and ensures that you have a vald densty functon, snce f, ( xy, ) f ( x) f ( y x) dy dy f, ( x, y) dy f ( x) f ( x). f ( x) c. If and are ndependent then the condtonal dstrbutons and margnal dstrbutons are the same. f ( y x) f ( y) and f ( x y) f ( x). In words: If and are ndependent than knowng the partcular value of, y, tells you nothng new about, and vce-versa d. Condtonal expectatons and varances. The expected value of condtonal on beng a certan value as the value of changes, the condtonal expectaton of gven x may also change. E ( x) E ( x) yp j ( yj x) yjf ( yj x). If and are ndependent, then E ( x) E ( ) knowng the value of doesn t change the expected value of. Condtonal varances are smlarly defned the expected squared devaton from the condtonal mean:. Var ( x) E( [ E ( x) ] x) E ( x) ( E ( x) ) 7

8 7. Law of Iterated Expectatons { x } a. E[ g(, ) ] E E [ g( x, ) x] snce Eg (, ) g x, yj P ( x & yj) and. [ ] ( ) x yj E{ Ex g( x, ) x } g( x, yj) P( yj x) P( x) x yj. [ ] ( ) ( ) g x, y P( y x ) P( x ) g x, y P( x & y ) j j j j x yj x yj b. Ths obvously holds for contnuous random varables as well. Ex g( x, ) x k for some constant k. so that condtonal on x (or the x s), the expected value of g( x, ) s some constant k. And because that expectaton s always k, for any x, the overall expectaton of (, ) Eg (, ) k. c. Why ths s so useful? In many cases, we wll show that [ ] g must be k as well: [ ] d. For example: We wll show that under certan assumptons, and condtonal on the x s, the OLS estmator s an unbased estmator, so that t s expectaton, condtonal on the x s, s n the fact the true parameter value. But snce ths holds for any set of x s, t must also be true overall. And so n ths case, we can just say that the OLS estmator s an unbased estmator, and drop the condtonal on the x s. 8. The Normal dstrbuton a. Standard Normal (Gaussan): ( µ, ) b. If s Ν ( µ, ) c. Propertes:, then Z Ν has mean µ and varance µ s ( 0,). If s Ν ( µ, ) then a + b Ν ( aµ + b, a ). If and + Ν( µ, ) 8 Ν (the Standard Normal dstrbuton) are ndependent wth the same dstrbuton, Ν ( µ, ) + Ν( µ, ).. Ths mples that ( ), then. More generally, assume that n random varables (,, n ) are ndependently and dentcally dstrbuted Ν ( µ, ), then Ν( n µ, n ) and Ν( µ, ). n n

9 v. s a specfc form of the more general weghted average α, n where 0 α for all and α.. wll have mean αµ µ α µ. and varance α α, and wll be Normally dstrbuted. 9. Appendx I - Correlaton and Lnear Relatonshps: ρ P ( β0 + β) a. Lnear mples a correlaton of + or -. Suppose that β0 + β and β 0.. Then cov(, ) cov(, β0 + β ) E(( µ )( β0 + β β0 β µ )) β E(( µ ) ) β var( ).. And snce var( ) E(( β0 + β β0 β µ ) ) β E(( µ ) ) β var( ), the correlaton of and s: cov(, ) β var( ) β ρ + or dependng on the var( ) var( ) var( ) β var( ) β sgn of β 0. b. Non-lnear mples correlaton not + or - here s an example:. Suppose that U ( β0 + β), where µ U 0 and cov(, U ) 0, but var( U ) U 0 (so we don t have a perfectly lnear relatonshp between and ).. Then cov(, ) cov(, β0 + β + U) E(( µ )( β0 + β + U β0 β µ )).. And snce var( ) E(( β0 + β + U β0 βµ ) ) β var( ) + U, the correlaton of β E(( µ ) ) + β cov( U, ) + var( U) and s: ρ v. Snce cov(, ) β var( ) var( ) var( ) var( ) var( ) var( ) 0 ( β + U ) U U, the denomnator wll be larger n magntude than the numerator and so ρ <. v. Notce that f 0, then we have a lnear relatonshp, and as above U ρ + or.. 9

10 0. Appendx II: Covarance and ndependence Not Independent! Independent! ^ margnal marg for % 0% 0% 0% - 4% 8% 8% 0% % 0% 0% 0% % 8% 8% 0% 0 0% 0% 0% 0% 0 4% 8% 8% 0% 0.5 0% 0% 0% 0% 0.5 4% 8% 8% 0% 0% 0% 0% 0% 4% 8% 8% 0% margnal for 0% 40% 40% marg 0% 40% 40% Indep! Covarance calculaton prob 0% - 0% % 0 0 0% % mean varance covarance 0 covar 0 -mu -mu product

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Multiple Choice. Choose the one that best completes the statement or answers the question.

Multiple Choice. Choose the one that best completes the statement or answers the question. ECON 56 Homework Multple Choce Choose the one that best completes the statement or answers the queston ) The probablty of an event A or B (Pr(A or B)) to occur equals a Pr(A) Pr(B) b Pr(A) + Pr(B) f A

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012 Effects of Ignorng Correlatons When Computng Sample Ch-Square John W. Fowler February 6, 0 It can happen that ch-square must be computed for a sample whose elements are correlated to an unknown extent.

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

7. Multivariate Probability

7. Multivariate Probability 7. Multvarate Probablty Chrs Pech and Mehran Saham May 2017 Often you wll work on problems where there are several random varables (often nteractng wth one another). We are gong to start to formally look

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

PROBABILITY PRIMER. Exercise Solutions

PROBABILITY PRIMER. Exercise Solutions PROBABILITY PRIMER Exercse Solutons 1 Probablty Prmer, Exercse Solutons, Prncples of Econometrcs, e EXERCISE P.1 (b) X s a random varable because attendance s not known pror to the outdoor concert. Before

More information

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering Statstcs and Probablty Theory n Cvl, Surveyng and Envronmental Engneerng Pro. Dr. Mchael Havbro Faber ETH Zurch, Swtzerland Contents o Todays Lecture Overvew o Uncertanty Modelng Random Varables - propertes

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

On mutual information estimation for mixed-pair random variables

On mutual information estimation for mixed-pair random variables On mutual nformaton estmaton for mxed-par random varables November 3, 218 Aleksandr Beknazaryan, Xn Dang and Haln Sang 1 Department of Mathematcs, The Unversty of Msssspp, Unversty, MS 38677, USA. E-mal:

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table: SELECTED PROOFS DeMorgan s formulas: The frst one s clear from Venn dagram, or the followng truth table: A B A B A B Ā B Ā B T T T F F F F T F T F F T F F T T F T F F F F F T T T T The second one can be

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients ECON 5 -- NOE 15 Margnal Effects n Probt Models: Interpretaton and estng hs note ntroduces you to the two types of margnal effects n probt models: margnal ndex effects, and margnal probablty effects. It

More information

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown 9.07 Introducton to Probablty and Statstcs for Bran and Cogntve Scences Emery N. Brown Lecture 6: Epectaton and Varance, Covarance and Correlaton, And Movement Generatng Functons I. Objectves Understand

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

7. Multivariate Probability

7. Multivariate Probability 7. Multvarate Probablty Chrs Pech and Mehran Saham Oct 2017 Often you wll work on problems where there are several random varables (often nteractng wth one another). We are gong to start to formally look

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Statistics Spring MIT Department of Nuclear Engineering

Statistics Spring MIT Department of Nuclear Engineering Statstcs.04 Sprng 00.04 S00 Statstcs/Probablty Analyss of eperments Measurement error Measurement process systematc vs. random errors Nose propertes of sgnals and mages quantum lmted mages.04 S00 Probablty

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

DS-GA 1002 Lecture notes 5 Fall Random processes

DS-GA 1002 Lecture notes 5 Fall Random processes DS-GA Lecture notes 5 Fall 6 Introducton Random processes Random processes, also known as stochastc processes, allow us to model quanttes that evolve n tme (or space n an uncertan way: the trajectory of

More information

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne ( ( ( t as ( + ( + + ( ( ( Consder a sequence of ndependent random proceses t, t, dentcal to some ( t. Assume t = 0. Defne the sum process t t t t = ( t = (; t

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006 Due Tme: 5:00PM Thursda, on /09/006 Problem (8 ponts) Book problem 45 Let U = X + and V = X, then the jont pmf of ( UV, ) s θ λ θ e λ e f( u, ) = ( = 0, ; u =, +, )! ( u )! Then f( u, ) u θ λ f ( x x+

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables 1.4. Experments, Outcome, Sample Space, Events, and Random Varables In Secton 1.2.5, we dscuss how to fnd probabltes based on countng. Whle the probablty of any complex event s bult on countng, brute force

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

CS 798: Homework Assignment 2 (Probability)

CS 798: Homework Assignment 2 (Probability) 0 Sample space Assgned: September 30, 2009 In the IEEE 802 protocol, the congeston wndow (CW) parameter s used as follows: ntally, a termnal wats for a random tme perod (called backoff) chosen n the range

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information