Scattering of two identical particles in the center-of. of-mass frame. (b)

Size: px
Start display at page:

Download "Scattering of two identical particles in the center-of. of-mass frame. (b)"

Transcription

1 Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and β Covarant form of the Drac equaton Chapter 3, page Chapter 5, page Branden & Joachan,, Quantum Mechanc Scatterng of two dentcal partcle n the center-of of-ma frame (a) Detector (b) Detector θ π θ θ Partcle cattered n the drecton (θ,φ) Partcle cattered n the drecton (π θ,π+φ) Snce the partcle are dentcal collonal procee (a) and (b) can not be dtnguhed. In center-of-ma ytem µ ( r ) ψ ( r ) Eψ ( r ) + V = where µ=m/ the reduced ma, r=r -r.

2 Scatterng of two dentcal partcle pnle boon (a) Detector (b) Detector θ Partcle cattered n the drecton (θ,φ) π θ θ Partcle cattered n the drecton (π θ,π+φ) In clacal mechanc the dfferental cro ecton for catterng n the drecton (θ,φ) would be mply the um of dfferental cro ecton for obervaton of partcle and n that drecton. If the ame were true n quantum mechanc we would obtan the clacal reult cl k r f ( θ, φ) kr = f ( θ, π ) + f ( π θ, φ + π ) ; ψ ( r) r e + e r Scatterng of two dentcal partcle pnle boon (a) Detector (b) Detector θ Partcle cattered n the drecton (θ,φ) π θ θ Partcle cattered n the drecton (π θ,π+φ) In clacal mechanc the dfferental cro ecton for catterng n the drecton (θ,φ) would be mply the um of dfferental cro ecton for obervaton of partcle and n that drecton. If the ame were true n quantum mechanc we would obtan the clacal reult cl k r f ( θ, φ) kr = f ( θ, π ) + f ( π θ, φ + π ) ; ψ ( r) r e + e r

3 Scatterng of two dentcal partcle: pnle boon cl = f ( θ, π ) + f ( π θ, φ + π ) ncorrect reult Spnle boon: wave functon mut be ymmetrc under r r r r. Clearly, the functon ψ ( r) whch atfe boundary condton k r f ( θ, φ) kr ψ k ( r) r e + e r : not ymmetrc under r - r nterchange. However, we can make a ymmetrc combnaton ψ ( r) = ψ k ( r) + ψ k ( r); ψ ( r) = ψ ( r). The correpondng aymptotc form ( ) ( ) [ (, ) (, )] kr + k r k r e ψ r r e + e + f θ φ + f π θ φ + π r nce r r : ( r, θ, φ) ( r, π θ, φ + π ). Scatterng of two dentcal partcle: pnle boon Therefore, the dfferental cro ecton = f ( θ, π ) + f ( π θ, φ + π ) * = f ( θ, π ) + f ( π θ, φ + π ) + Re f ( θ, π ) f ( π θ, φ + π ) and the total cro ecton σ tot = f ( θ, π ) + f ( π θ, φ + π ) 3

4 Scatterng of two dentcal pn ½ fermon Note: we aume that partcle nteract through central force. Total wave functon mut be antymmetrc wth repect of nterchangng two partcle. Cae : Snglet tate, S=0 the patal wave functon mut be ymmetrc. The correpondng catterng ampltude = f ( θ ) + f ( π θ ) Cae : Trplet tate, S= the patal wave functon mut be antymmetrc. The correpondng catterng ampltude t = ft ( θ ) ft ( π θ ) Scatterng of two dentcal pn ½ fermon If the pn of both partcle are randomly orented the dfferental cro ecton gven by 3 t = = f + f f f ( θ ) ( π θ ) t ( θ ) t ( π θ ) If the nteracton pn-ndependent,.e. f ( θ ) = f ( θ ) = f ( θ ) * = f ( θ ) + f ( π θ ) Re f ( θ ) f ( π θ ) t Agan, the reult dfferent from the clacal reult. 4

5 Relatvtc Quantum Mechanc The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and β Covarant form of the Drac equaton Why Relatvtc Quantum Mechanc? The Schrödnger equaton: correctly decrbe the phenomena only f partcle velocte are v c. It not nvarant under a Lorentz change of the reference frame (requred by the prncple of relatvty). Need: a relatvtc generalzaton! 5

6 The Klen-Gordon equaton So, how to come up wth uch an equaton? Free partcle of pn zero For the relatvtc partcle wth ret ma m and momentum p, 4 E = m c + p c. Ung the correpondence rule E Eop = ; p pop = 4 one can wrte: Ψ = ( m c c ) / Ψ. Problem:. It not clear how to nterpret the operator on rght-hand de. If expanded n power ere t lead to dfferental operator of nfnte order.. The tme and pace coordnate do not appear n a ymmetrc way (no relatvtc nvarance?). Free partcle of pn zero The Klen-Gordon equaton So we remove the quare root and try agan (there wll be conequence of removng th quare root!) 4 E = m c + p c E Eop = ; p pop = Ψ = Ψ 4 ( m c c ). The Klen-Gordon equaton Note: t econd-order dfferental equaton wth repect to the tme unlke the Schrödnger equaton. 6

7 Probabltc nterpretaton of nonrelatvtc quantum mechanc * P( r, t) = Ψ ( r, t) = Ψ ( r, t) Ψ( r, t) Poton probablty denty Probablty conerved: P(, t) d = 0 r r Ψ( r, t) Ung the Schrödnger equaton = + V ( r, t) Ψ( r, t) m P( r, t) we obtan + j( r, t) = 0, where j can be nterpreted a probablty current denty j r m ( ) ( ) * * (, t) = Ψ Ψ Ψ Ψ. Interpretaton of the Klen-Gordon equaton: Problem We try to contruct a poton probablty denty P(r,t) and probablty current denty j(r,t) whch atfy the contnuty equaton: Ψ P( r, t) + j( r, t) = 0. * Ψ 4 multply by Ψ = ( m c c ) Ψ multply by Ψ * Ψ 4 * Ψ = ( m c c ) Ψ * * * * Ψ Ψ = c Ψ Ψ Ψ Ψ ( ) 7

8 Interpretaton of the Klen-Gordon equaton: Problem If we requre that the expreon from j(r,t) and P(r,t) had correct non-relatvtc lmt we defne j r m ( ) ( ) * * (, t) = Ψ Ψ Ψ Ψ. P( r, t) Then, we obtan the equaton + j( r, t) = 0. wth P Ψ Ψ mc * * ( r, t) = Ψ Ψ. P(r,t) not potve-defnte and can not be nterpreted a poton probablty denty. Interpretaton of the Klen-Gordon equaton: Problem Free partcle Klen-Gordon equaton: Plane wave oluton: E = ω p = k Ψ = Ψ ( kr ωt ) Ψ ( r, t) = Ae. 4 ( m c c ). ω = m c + c k 4 We get addtonal negatve-energy 4 E = ± m c + c p oluton and energy pectrum not bound from below. Then, arbtrary large energy can be extracted from the ytem f external perturbaton lead to tranton between potve and negatve energy tate. mc 0 E = -mc mc 8

9 Interpretaton of the Klen-Gordon equaton In 934 W. Paul and V. Wekopf renterpreted Klen-Gordon equaton a a feld equaton and quantzed t ung the formalm of quantum feld theory. Klen-Gordon equaton Relatvtc wave equaton for pnle partcle n the framework of many-partcle theory; negatve energy tate are nterpreted n term of antpartcle. Stll, t poble to defne potve-defnte poton probablty denty wthn the framework of the relatvtc theory? Drac equaton Note: we wll tll get negatve-energy tate Drac equaton P.A. Drac (98) We tart from the wave equaton n the form Ψ = H Ψ. Ψ Ψ Ψ = Spatal coordnate (x =x, x =y, x 3 =z) of a pace-tme pont (event) Ψ N and the tme coordnate (x 4 =ct) have to enter on the ame footng. Therefore, the hamltonan H mut be lnear n pace dervatve a well. Free partcle α, α, α3 and β Smplet Hamltonan: ) Mut be ndependent of r and t ) Mut be lnear n p and m H = c + β mc = pop op ) are ndependent of r, t, p, and E ) do not have to commute wth each other p 9

10 How to determne α and β? Ψ = c Ψ + β mc Ψ or Eop c op β mc Ψ = 0 p The oluton of the Drac equaton alo mut be a oluton of the Klen-Gordon equaton E 4 c p m c Ψ = 0. op op We ue t to determne the retrcton on the value of α and β by matchng the coeffcent n Eop c pop β mc Eop c pop βmc Ψ = 0 and 4 E c p m c Ψ = 0. op op Note: we drop the ndex op n the dervaton below. How to determne α and β? Some tranformaton E c p β mc E c p β mc Ψ = 0 ( p) β ( p) ( p )( p) ( p) E Ec E mc c E + c + c β mc ( p) β β β 3 4 mc E + mc + m c Ψ = ( p ) ( p )( p) ( p) ( p) ( p )( p) ( p) ( p) E E c β mc c mc β β β m c Ψ = E c mc β + β β m c Ψ = 0 E 3 3 ( ) ( ) c α p c α α + α α p p mc α β + βα p β m c Ψ = j j j = < j = 0

11 How to determne α and β? Now we can match the coeffcent of E c α p c ( αα j + α jα ) p p j mc ( αβ + βα ) p β m c Ψ = 0 = < j = and α = β = 4 E c p m c Ψ = 0. α β + βα = 0, =,, 3 α α + α α = 0 j j j Properte of α and β α = α = α = 3 β = { α β} { α β} { α β}, = 0 3, = 0, = 0 { α α} { α α3} { α α }, = 0, = 0, = 0 3 Therefore, α, α, α 3,and β antcommute n par and ther quare are equal to unty. Clearly, they mut be matrce. The egenvalue of α and β are ±. βα = α β ( ) α = βα β = α ββ = α β Tr α Tr βα β Tr α β Tr βα β = ( ) = ( ) = ( ) = 0 Tr α ( α ) = Tr ( β ) = 0 = α β = β

12 Tr What f the lowet rank of α and β? Drac repreentaton of α and β. What the lowet rank of the repreentaton for α and β? ( α ) Tr ( β ) 0 = = Therefore, rank N mut be even. For x matrce we can not fnd a repreentaton of more than 3 antcommutng matrce. Therefore, the lowet repreentaton ha N=4. Drac repreentaton: 0 σ I 0 α = β =, σ 0 0 I where σ (=,,3) are Paul matrce σ x = σ y = σ z = Drac equaton Ψ Ψ For N=4, the wave functon Ψ = Ψ N and decrbe pn ½ partcle. a four-component pnor We note that th reult may be foreeen a n non-relatvtc quantum mechanc pn ½ partcle are decrbed by -component pnor and each pn ½ partcle ha an antpartcle wth the ame ma and pn, whch lead to 4-component wave functon. Hgher rank matrx repreentaton correpond to partcle wth pn greater than ½.

13 Covarant form of the Drac equaton Ψ = c Ψ + β mc Ψ xµ ( x, ct) 3 Ψ β + α Ψ β mcψ = 0 x4 = x 3 mc βα + β + Ψ = 0 = x x4 mc γ µ + Ψ = 0 γ = βα γ 4 = β xµ γ, γ = δ, µ, ν =,,3, 4 { } µ ν µν From the Drac repreentaton 0 σ I 0 γ = γ 4, for the α and β = σ 0 0 I 3

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Scattering cross section (scattering width)

Scattering cross section (scattering width) Scatterng cro ecton (catterng wdth) We aw n the begnnng how a catterng cro ecton defned for a fnte catterer n ter of the cattered power An nfnte cylnder, however, not a fnte object The feld radated by

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

2. SINGLE VS. MULTI POLARIZATION SAR DATA

2. SINGLE VS. MULTI POLARIZATION SAR DATA . SINGLE VS. MULTI POLARIZATION SAR DATA.1 Scatterng Coeffcent v. Scatterng Matrx In the prevou chapter of th document, we dealt wth the decrpton and the characterzaton of electromagnetc wave. A t wa hown,

More information

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian, HW #6, due Oct 5. Toy Drac Model, Wck s theorem, LSZ reducton formula. Consder the followng quantum mechancs Lagrangan, L ψ(σ 3 t m)ψ, () where σ 3 s a Paul matrx, and ψ s defned by ψ ψ σ 3. ψ s a twocomponent

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom. The Drac Equaton for a One-electron atom In ths secton we wll derve the Drac equaton for a one-electron atom. Accordng to Ensten the energy of a artcle wth rest mass m movng wth a velocty V s gven by E

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction ECOOMICS 35* -- OTE 4 ECO 35* -- OTE 4 Stattcal Properte of the OLS Coeffcent Etmator Introducton We derved n ote the OLS (Ordnary Leat Square etmator ˆβ j (j, of the regreon coeffcent βj (j, n the mple

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

HW #3. 1. Spin Matrices. HW3-soln-improved.nb 1. We use the spin operators represented in the bases where S z is diagonal:

HW #3. 1. Spin Matrices. HW3-soln-improved.nb 1. We use the spin operators represented in the bases where S z is diagonal: HW3-oln-mproved.nb HW #3. Spn Matrce We ue the pn operator repreented n the bae where S dagonal: S x = 880,

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2 Note 2 Lng fong L Contents Ken Gordon Equaton. Probabty nterpretaton......................................2 Soutons to Ken-Gordon Equaton............................... 2 2 Drac Equaton 3 2. Probabty nterpretaton.....................................

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Classical Field Theory

Classical Field Theory Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

More information

Physics 443, Solutions to PS 7

Physics 443, Solutions to PS 7 Physcs 443, Solutons to PS 7. Grffths 4.50 The snglet confguraton state s χ ) χ + χ χ χ + ) where that second equaton defnes the abbrevated notaton χ + and χ. S a ) S ) b χ â S )ˆb S ) χ In sphercal coordnates

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal end-pont constrants δ t ( )

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbaton Theory In Moller-Plesset (MP) perturbaton theory one taes the unperturbed Hamltonan for an atom or molecule as the sum of the one partcle Foc operators H F() where the egenfunctons

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Recursive Construction of the Bosonic Bogoliubov Vacuum State

Recursive Construction of the Bosonic Bogoliubov Vacuum State Quant. Phy. Lett. 2, No. 1, 11-15 2013 11 Quantum Phyc Letter An Internatonal Journal http://dx.do.org/10.12785/qpl/020102 Recurve Contructon of the Boonc Bogolubov Vacuum State Drceu Porte Jr 1, Marco

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

2.3 Least-Square regressions

2.3 Least-Square regressions .3 Leat-Square regreon Eample.10 How do chldren grow? The pattern of growth vare from chld to chld, o we can bet undertandng the general pattern b followng the average heght of a number of chldren. Here

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Homework & Solution. Contributors. Prof. Lee, Hyun Min. Particle Physics Winter School. Park, Ye

Homework & Solution. Contributors. Prof. Lee, Hyun Min. Particle Physics Winter School. Park, Ye Homework & Soluton Prof. Lee, Hyun Mn Contrbutors Park, Ye J(yej.park@yonse.ac.kr) Lee, Sung Mook(smlngsm0919@gmal.com) Cheong, Dhong Yeon(dhongyeoncheong@gmal.com) Ban, Ka Young(ban94gy@yonse.ac.kr) Ro,

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

8 Waves in Uniform Magnetized Media

8 Waves in Uniform Magnetized Media 8 Wave n Unform Magnetzed Meda 81 Suceptblte The frt order current can be wrtten j = j = q d 3 p v f 1 ( r, p, t) = ɛ 0 χ E For Maxwellan dtrbuton Y n (λ) = f 0 (v, v ) = 1 πvth exp (v V ) v th 1 πv th

More information

QED: Quantum Electrodynamics

QED: Quantum Electrodynamics Chapter 2 QED: Quantum Electrodynamcs 2. Negatve-Energy States: Antpartcles 2.. Settng the Stage: Non-Relatvstc Quantum Mechancs In non-relatvstc Quantum Mechancs, t was seen that (n the standard poston

More information

Lecture 10. Reading: Notes and Brennan Chapter 5

Lecture 10. Reading: Notes and Brennan Chapter 5 Lecture tatstcal Mechancs and Densty of tates Concepts Readng: otes and Brennan Chapter 5 Georga Tech C 645 - Dr. Alan Doolttle C 645 - Dr. Alan Doolttle Georga Tech How do electrons and holes populate

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution 10.40 Appendx Connecton to Thermodynamcs Dervaton of Boltzmann Dstrbuton Bernhardt L. Trout Outlne Cannoncal ensemble Maxmumtermmethod Most probable dstrbuton Ensembles contnued: Canoncal, Mcrocanoncal,

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

The gravitational field energy density for symmetrical and asymmetrical systems

The gravitational field energy density for symmetrical and asymmetrical systems The ravtatonal eld enery denty or yetrcal and ayetrcal yte Roald Sonovy Techncal Unverty 90 St. Peterbur Rua E-al:roov@yandex Abtract. The relatvtc theory o ravtaton ha the conderable dculte by decrpton

More information

CHAPTER X PHASE-CHANGE PROBLEMS

CHAPTER X PHASE-CHANGE PROBLEMS Chapter X Phae-Change Problem December 3, 18 917 CHAPER X PHASE-CHANGE PROBLEMS X.1 Introducton Clacal Stefan Problem Geometry of Phae Change Problem Interface Condton X. Analytcal Soluton for Soldfcaton

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electromagnetc catterng Graduate Coure Electrcal Engneerng (Communcaton) 1 t Semeter, 1390-1391 Sharf Unverty of Technology Content of lecture Lecture : Bac catterng parameter Formulaton of the problem

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006 arxv:cond-mat/0210519v2 [cond-mat.mes-hall] 3 Jan 2006 Non Equlbrum Green s Functons for Dummes: Introducton to the One Partcle NEGF equatons Magnus Paulsson Dept. of mcro- and nano-technology, NanoDTU,

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Physics 111. CQ1: springs. con t. Aristocrat at a fixed angle. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111. CQ1: springs. con t. Aristocrat at a fixed angle. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. c Announcement day, ober 8, 004 Ch 8: Ch 10: Work done by orce at an angle Power Rotatonal Knematc angular dplacement angular velocty angular acceleraton Wedneday, 8-9 pm n NSC 118/119 Sunday, 6:30-8 pm

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Srednicki Chapter 34

Srednicki Chapter 34 Srednck Chapter 3 QFT Problems & Solutons A. George January 0, 203 Srednck 3.. Verfy that equaton 3.6 follows from equaton 3.. We take Λ = + δω: U + δω ψu + δω = + δωψ[ + δω] x Next we use equaton 3.3,

More information

CHAPTER 5: Lie Differentiation and Angular Momentum

CHAPTER 5: Lie Differentiation and Angular Momentum CHAPTER 5: Le Dfferentaton and Angular Momentum Jose G. Vargas 1 Le dfferentaton Kähler s theory of angular momentum s a specalzaton of hs approach to Le dfferentaton. We could deal wth the former drectly,

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Change. Flamenco Chuck Keyser. Updates 11/26/2017, 11/28/2017, 11/29/2017, 12/05/2017. Most Recent Update 12/22/2017

Change. Flamenco Chuck Keyser. Updates 11/26/2017, 11/28/2017, 11/29/2017, 12/05/2017. Most Recent Update 12/22/2017 Change Flamenco Chuck Keyser Updates /6/7, /8/7, /9/7, /5/7 Most Recent Update //7 The Relatvstc Unt Crcle (ncludng proof of Fermat s Theorem) Relatvty Page (n progress, much more to be sad, and revsons

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

This appendix presents the derivations and proofs omitted from the main text.

This appendix presents the derivations and proofs omitted from the main text. Onlne Appendx A Appendx: Omtted Dervaton and Proof Th appendx preent the dervaton and proof omtted from the man text A Omtted dervaton n Secton Mot of the analy provded n the man text Here, we formally

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1)

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1) 5.76 Lecture #5 /07/94 Page 1 of 10 pages 1e Atoms: H, H + e, L +, etc. coupled and uncoupled bass sets Lecture #5: Atoms: 1e and Alkal centrfugal term (+1) r radal Schrödnger Equaton spn-orbt l s r 3

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information