Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Size: px
Start display at page:

Download "Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference"

Transcription

1 Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed Random Effect. Fnte Populaton Mxed Model 4. Reult on Fnte Populaton Predctor of Realzed Subject True Value 5. llutraton and Dlemma 6. Godambe Lnear Etmator 7. Extence of BLUE for pecal parameter pace 8. Example of SRS w/o Rep. When n, 9. Obervaton/Drecton for the Future 9/5/8. Example: Doe-repone Model Threhold v ormetc Model eat data- 89 chemcal, yeat tran, 5 doe x replcaton- Focu on doe below BMD Repone (% control ormetc Doe-Repone 5 5 Doe Threhold Doe-Repone 9/5/8 4 Repone (% control Doe What orme? Goal: Evaluate orme for each Chemcal ormetc Doe-Repone ormetc Regon Repone (% control Doe Repone (above % Doe The Problem: Data generaton: a) of chemcal b) For elected chemcal, ample doe c) Meaure repone (n replcate) orme Average Repone (over % Control) n ormetc Regon chemcal J doe ( μ ) B E jk jk k replcaton Fxed Random Aume Repone Error heterogeneou (Bologc Aumpton) ow hould we evaluate orme?

2 Bet Lnear Unbaed Predctor from Mxed Model μ B Latent Repone of th Selected Chemcal Predctor ( μ ) P ˆ ˆ μ k ˆ or Shrnkage Contant k e / m Per cent of SC ( μ ) Pˆ ˆ μ k ˆ k e / m %Pr ed ct on nt er val 9/5/8 7 hme7p4. a 9/ / 7 by EJS 9/5/8 8 Per cent of SC Whch predctor hould be ued? f mxed model developed drectly ung amplng from a fnte populaton: Ue Average of Repone Error Varance- Even f RE heterogenou 5 4 f mxed model developed from a heterogenou varance uperpopulaton model: Ue Chemcal Specfc Repone Error Var %Pr ed ct on nt er val 9/5/8 hme7p4. a 9/ / 7 by EJS 9 Bac Reearch Queton Can Fnte Populaton Mxed Model be developed that ncorporate Realzed Random Effect (chemcal) Specfc nformaton n the Predctor? nvolve dentfablty of chemcal n model (abent n mxed model) Very cloely connected to predctng realzed random effect n mxed model. Relate to fnte populaton amplng model where label are dentfable. Fnte Populaton Mxed Model Populaton, ubject, true repone Subject Label:,..., True Repone: Populaton Parameter Mean: μ μ Subject Devaton: β μ μ Varance: μ μ μ on Stochatc Model: μ μ β

3 Data for Subject : Repone Error Model: (, k ) μ β E k k Repone Error k,..., r E E R ( k) ( E ) var R k Samplng Select n of ubject wthout Replacement Aume all ample are equally lkely. # of Set : # of Mean:! n ( n)! n!! n! Sequence: ote dfference wth: k n " ample" n k n 9/5/8 9/5/8 4 a part of a Sequence (part of a Permutaton) Populaton Repreent Poton n a Permutaton:,...,! Aume all Permutaton Equally Lkely: P ( Permutaton " p" ) Defne: poton,..., n n k n Mean: 9/5/8 5 Julo Ed Wenjun 9/5/8 6 Poton n Permutaton Poton n Permutaton 9/5/8 7 9/5/8 8

4 Poton n Permutaton Poton n Permutaton 9/5/8 9 9/5/8 Poton n Permutaton 9/5/8 Remander Remander 9/5/8 Poton n Permutaton Populaton ze () mot lkely > We only ee n ubject n the ample For example: Suppoe n, and 7 We may ee 9/5/ /5/8 4 Poton n Permutaton Remander 4 4

5 Poton n Permutaton 4 7 9/5/8 5 Remander Mean: T Tradtonal Samplng Approach (ung a ample et) " ample" y n " ample" orvtz-thompon Etmator: y π 9/5/8 6 Mng Data y y y y y π π π π Tradtonal Model Approach Wth Repone Error: Mean: (ung a ample equence) μ β E k k n k n,..., n poton equence: k U k 9/5/8 7 k U k Poton n Permutaton k k 9/5/8 8 Poton n Sequence k U U U k U U U Remander k k k U U U k 9/5/8 9 Bac Random Varable U U U U U U U U U k k k k k k k k k 9/5/8 Remander ( ) k k k Populaton k k k Degn Baed Model Baed 5

6 Repone Error Model Smple Repone Error Model k β Wk μ β W k k k β W k Fxed Random Fnte Populaton Mxed Model k B W k U UW k μ B W k k B W k 9/5/8 Fxed Random (ung a ample equence) Mxed Model k B W k U k μ B W k k B W k k U k Xα ZB W 9/5/8 B U β Properte of Bac Random Varable () U k U k U k U k U k U k U k U k U k Sum ( k k k) Expected Value Sum k k k y y y Average Expected Value μ μ μ Average 9/5/8 μ Sum Random Varable (n) U U U U U U k k k k k k n n n U U U k k k k k Expected n n n Value y y y k T " ample" π 9/5/8 4 Sum Expected Value μ μ Predcton of Mean n a Smple Cae: o Repone Error (, n) B U μ B B Remander ote: μ ( ) n Crtera: Lnear Functon of ample Unbaed Smallet Mean Squared Error ( n ) 9/5/8 5 Predcton of Mean o Repone Error (, n) μ Β Target P L μ n n y Data Realzed y y Bet Lnear Unbaed ˆ n P y n Predctor: n 9/5/8 n 6 6

7 Target Data Predcton of a Subject Mean n Poton wth o Rep. Error (, n) Bet Lnear Unbaed Predctor: P L μ Β μ Β Realzed y y y 9/5/8 7 Predcton of a Subject Mean n Poton wth Repone Error k k Target P L μ Β L L Realzed Bet Lnear ˆ Pˆ k P y f n ( y ) f n Unbaed Predctor: f > n k 9/5/8 8 f > n e μ Β W y y w UW Xμ ZB W Data Predcton of Realzed Random Effect Other Example SRS Subject Pˆ k( y ) Rep. Error SRS Poton P ˆ k Rep. Error ( y ) Cluter Samplng: Balanced Cluter Samplng: Un-Balanced k k e e n n P ˆ k k e Smlar form, more complcated 9/5/8 9 Per cent of SC %Pr ed ct on nt er val hme7p4. a 9/ / 7 by EJS 9/5/8 4 Per cent of SC Delmma Pooled Subject Repone Error Varance hould be ued for K (Ung theoretcal Reult) Emprcal example llutrate maller MSE reult wth K dependng on realzed Subject -- but no theory! %Pr ed ct on nt er val 9/5/8 hme7p4. a 9/ / 7 by EJS 4 Can fnte populaton model nclude nformaton on realzed ubject? 9/5/8 4 7

8 Godambe Lnear Etmator of a Total: et: h,..., ndcator RV for ample et h : Etmate for ample et h : Godambe Lnear Etmator : h n e β y h hj hj j e h h h E T y Clam Etmator general, wth pecal cae correpondng to degn baed etmator and model baed etmator. Coeffcent n the etmator depend on the ample and the ubject (label) t uffcent to ue ample et of ubject. The equence doe not contrbute addtonal nformaton. There no unque bet lnear unbaed etmator of the populaton total. (on-extance reult) 9/5/8 4 9/5/8 44 Current Reearch dea Godambe etmator (f baed on equence) nclude poton and label. We are tudyng the etmator n a mple cae (SRS wth or wthout replacement, n, ). ntal Obervaton Godambe etmator doe not make ene f y Godambe etmator doe not make ene f y y n ettng where all y and are dtnct, the model over-parameterzed. Removng the overpararmeterzaton, a unque oluton ext wth zero MSE. 9/5/8 45 Example: SRS wthout Replacement: n, otaton otaton (et) h,..., {, } uh uh uh uh uh uh u h β β β h h h e h yu hβh β hj β vec β β β ( ) S h h uhj h {, } h {, } u u u j,..., n h {,} poton n et E S yu h β h y ( S ) u β h 9/5/8 h 46 Example: SRS w/o Rep- Contrant: n, Etmator E y ( S ) u hβ T y h Snce Ep( h) p E S p Unbaed Contrant: E E T y puβ [ ] p p Addtonal Contrant: p u β p β 9/5/8 47 u u u... u Example: SRS w/o Rep.- Etmatng Equaton: n, Contrant Summary: Varance pl β u L ( ) E E T p T p( ) β uh( yy ) u hβ h h φ pβ uh( yy ) u hβ T λ pl β h h Etmatng Equaton: n ˆ uh yy u h L h h β ˆ p L λ 9/5/8 48 8

9 Example: SRS w/o Rep.- General Soluton: n, Ung QR Decompoton of L We olve the etmatng equaton: where XX L S L S T ( ) Q Q XXQ Q R L Q ˆ n XX L β ˆ L λ p SQR -Q QXXQ QXXQR ˆ β S 9/5/8 49 Example: SRS w/o Rep.- Specfc Soluton: n, y y Ung QR Decompoton of L y y ˆ β () y y ˆ β y y Q L R 4 y y ˆ β () y y ˆ β ˆ β y y ˆ β y y 9/5/8 5 Obervaton: The oluton unque, but the coeffcent depend on all populaton value. Emprcal oluton (formed by replacng unknown value by an etmate equal to the ample mean) wll reult n an etmator equal to the ample mean. Dfferent oluton wll reult when the populaton ha zero value or nclude te. on-homogeneou etmator eem to be poble (ubtractng a contant). A oluton can be explctly developed for mple random amplng wth replacement where n and. That oluton requre the ame addtonal over-parameterzaton contrant. 9/5/8 5 Addtonal Obervaton: t appear poble to generalze the oluton to n and when amplng wthout replacement. Coeffcent n Godambe lnear etmator can be factored nto coeffcent that depend on poton, coeffcent that depend on ubject, common factor, and cro term. Repone error can be added. Un-equal probablty amplng can be ncorporated. Specal ettng where repone or wll gve re to pecal oluton. Auxlary varable attached to ubject may be ncorporated. 9/5/8 5 All thee area and more need addtonal work! Thank 9/5/8 5 9

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction

Statistical Properties of the OLS Coefficient Estimators. 1. Introduction ECOOMICS 35* -- OTE 4 ECO 35* -- OTE 4 Stattcal Properte of the OLS Coeffcent Etmator Introducton We derved n ote the OLS (Ordnary Leat Square etmator ˆβ j (j, of the regreon coeffcent βj (j, n the mple

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information Internatonal Journal of Stattc and Analy. ISSN 2248-9959 Volume 6, Number 1 (2016), pp. 9-16 Reearch Inda Publcaton http://www.rpublcaton.com Etmaton of Fnte Populaton Total under PPS Samplng n Preence

More information

Predictors Using Partially Conditional 2 Stage Response Error Ed Stanek

Predictors Using Partially Conditional 2 Stage Response Error Ed Stanek Predctor ng Partally Condtonal Stage Repone Error Ed Stane TRODCTO We explore the predctor that wll relt n a mple random ample wth repone error when a dfferent model potlated The model we decrbe here cloely

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

Predicting Random Effects from a Finite Population of Unequal Size Clusters based on Two Stage Sampling

Predicting Random Effects from a Finite Population of Unequal Size Clusters based on Two Stage Sampling Predctng Random Effect from a Fnte Populaton of Unequal Sze Cluter baed on Two Stage Samplng Edward J. Stanek Department of Publc Health 40 Arnold Houe Unverty of aachuett 75 orth Pleaant Street Amhert,

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

Predicting Random Effects from a Finite Population of Unequal Size Clusters based. on Two-Stage Sampling. Edward J. Stanek III

Predicting Random Effects from a Finite Population of Unequal Size Clusters based. on Two-Stage Sampling. Edward J. Stanek III Predctng Random Effect from a Fnte Populaton of Unequal Sze Cluter baed on To-Stage Samplng Edard J. Stanek III Department of Publc Health 40 Arnold Houe Unverty of Maachuett 75 orth Pleaant Street Amhert,

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Confidence intervals for the difference and the ratio of Lognormal means with bounded parameters

Confidence intervals for the difference and the ratio of Lognormal means with bounded parameters Songklanakarn J. Sc. Technol. 37 () 3-40 Mar.-Apr. 05 http://www.jt.pu.ac.th Orgnal Artcle Confdence nterval for the dfference and the rato of Lognormal mean wth bounded parameter Sa-aat Nwtpong* Department

More information

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek Dscusson of Extensons of the Gauss-arkov Theorem to the Case of Stochastc Regresson Coeffcents Ed Stanek Introducton Pfeffermann (984 dscusses extensons to the Gauss-arkov Theorem n settngs where regresson

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

AP Statistics Ch 3 Examining Relationships

AP Statistics Ch 3 Examining Relationships Introducton To tud relatonhp between varable, we mut meaure the varable on the ame group of ndvdual. If we thnk a varable ma eplan or even caue change n another varable, then the eplanator varable and

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

Estimating Realized Random Effects in Mixed Models

Estimating Realized Random Effects in Mixed Models Etimating Realized Random Effect in Mixed Model (Can parameter for realized random effect be etimated in mixed model?) Edward J. Stanek III Dept of Biotatitic and Epidemiology, UMASS, Amhert, MA USA Julio

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function On Outler Robust Small Area Mean Estmate Based on Predcton of Emprcal Dstrbuton Functon Payam Mokhtaran Natonal Insttute of Appled Statstcs Research Australa Unversty of Wollongong Small Area Estmaton

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Lecture outline. Optimal Experimental Design: Where to find basic information. Theory of D-optimal design

Lecture outline. Optimal Experimental Design: Where to find basic information. Theory of D-optimal design v I N N O V A T I O N L E C T U R E (I N N O l E C) Lecture outlne Bndng and Knetc for Expermental Bologt Lecture 8 Optmal degn of experment The problem: How hould we plan an experment uch we learn the

More information

2.3 Least-Square regressions

2.3 Least-Square regressions .3 Leat-Square regreon Eample.10 How do chldren grow? The pattern of growth vare from chld to chld, o we can bet undertandng the general pattern b followng the average heght of a number of chldren. Here

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm Start Pont and Trajectory Analy for the Mnmal Tme Sytem Degn Algorthm ALEXANDER ZEMLIAK, PEDRO MIRANDA Department of Phyc and Mathematc Puebla Autonomou Unverty Av San Claudo /n, Puebla, 757 MEXICO Abtract:

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor Reduced sldes Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor 1 The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned

More information

Bias-correction under a semi-parametric model for small area estimation

Bias-correction under a semi-parametric model for small area estimation Bas-correcton under a sem-parametrc model for small area estmaton Laura Dumtrescu, Vctora Unversty of Wellngton jont work wth J. N. K. Rao, Carleton Unversty ICORS 2017 Workshop on Robust Inference for

More information

Adaptive Centering with Random Effects in Studies of Time-Varying Treatments. by Stephen W. Raudenbush University of Chicago.

Adaptive Centering with Random Effects in Studies of Time-Varying Treatments. by Stephen W. Raudenbush University of Chicago. Adaptve Centerng wth Random Effect n Stde of Tme-Varyng Treatment by Stephen W. Radenbh Unverty of Chcago Abtract Of wdepread nteret n ocal cence are obervatonal tde n whch entte (peron chool tate contre

More information

Properties of Umass Boston

Properties of Umass Boston Fle name hould be LatName_labNumber.doc or LatName_labNumber.doc.l. 0 pont wll be taken for wrong fle name. Follow the format of report and data heet. Both are poted n the web. MS Word and Ecel 003 format.

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients ECON 5 -- NOE 15 Margnal Effects n Probt Models: Interpretaton and estng hs note ntroduces you to the two types of margnal effects n probt models: margnal ndex effects, and margnal probablty effects. It

More information

j=0 s t t+1 + q t are vectors of length equal to the number of assets (c t+1 ) q t +1 + d i t+1 (1) (c t+1 ) R t+1 1= E t β u0 (c t+1 ) R u 0 (c t )

j=0 s t t+1 + q t are vectors of length equal to the number of assets (c t+1 ) q t +1 + d i t+1 (1) (c t+1 ) R t+1 1= E t β u0 (c t+1 ) R u 0 (c t ) 1 Aet Prce: overvew Euler equaton C-CAPM equty premum puzzle and rk free rate puzzle Law of One Prce / No Arbtrage Hanen-Jagannathan bound reoluton of equty premum puzzle Euler equaton agent problem X

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

A New Inverse Reliability Analysis Method Using MPP-Based Dimension Reduction Method (DRM)

A New Inverse Reliability Analysis Method Using MPP-Based Dimension Reduction Method (DRM) roceedng of the ASME 007 Internatonal Degn Engneerng Techncal Conference & Computer and Informaton n Engneerng Conference IDETC/CIE 007 September 4-7, 007, La Vega, eada, USA DETC007-35098 A ew Inere Relablty

More information

Solution Methods for Time-indexed MIP Models for Chemical Production Scheduling

Solution Methods for Time-indexed MIP Models for Chemical Production Scheduling Ian Davd Lockhart Bogle and Mchael Farweather (Edtor), Proceedng of the 22nd European Sympoum on Computer Aded Proce Engneerng, 17-2 June 212, London. 212 Elever B.V. All rght reerved. Soluton Method for

More information

Two Approaches to Proving. Goldbach s Conjecture

Two Approaches to Proving. Goldbach s Conjecture Two Approache to Provng Goldbach Conecture By Bernard Farley Adved By Charle Parry May 3 rd 5 A Bref Introducton to Goldbach Conecture In 74 Goldbach made h mot famou contrbuton n mathematc wth the conecture

More information

17 - LINEAR REGRESSION II

17 - LINEAR REGRESSION II Topc 7 Lnear Regresson II 7- Topc 7 - LINEAR REGRESSION II Testng and Estmaton Inferences about β Recall that we estmate Yˆ ˆ β + ˆ βx. 0 μ Y X x β0 + βx usng To estmate σ σ squared error Y X x ε s ε we

More information

Introduction. Modeling Data. Approach. Quality of Fit. Likelihood. Probabilistic Approach

Introduction. Modeling Data. Approach. Quality of Fit. Likelihood. Probabilistic Approach Introducton Modelng Data Gven a et of obervaton, we wh to ft a mathematcal model Model deend on adutable arameter traght lne: m + c n Polnomal: a + a + a + L+ a n Choce of model deend uon roblem Aroach

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10) I. Defnton and Problems Econ7 Appled Econometrcs Topc 9: Heteroskedastcty (Studenmund, Chapter ) We now relax another classcal assumpton. Ths s a problem that arses often wth cross sectons of ndvduals,

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

T E C O L O T E R E S E A R C H, I N C.

T E C O L O T E R E S E A R C H, I N C. T E C O L O T E R E S E A R C H, I N C. B rdg n g En g neern g a nd Econo mcs S nce 1973 THE MINIMUM-UNBIASED-PERCENTAGE ERROR (MUPE) METHOD IN CER DEVELOPMENT Thrd Jont Annual ISPA/SCEA Internatonal Conference

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Scattering cross section (scattering width)

Scattering cross section (scattering width) Scatterng cro ecton (catterng wdth) We aw n the begnnng how a catterng cro ecton defned for a fnte catterer n ter of the cattered power An nfnte cylnder, however, not a fnte object The feld radated by

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2 Chapter 4 Smple Lnear Regresson Page. Introducton to regresson analyss 4- The Regresson Equaton. Lnear Functons 4-4 3. Estmaton and nterpretaton of model parameters 4-6 4. Inference on the model parameters

More information

Optimal inference of sameness Supporting information

Optimal inference of sameness Supporting information Optmal nference of amene Supportng nformaton Content Decon rule of the optmal oberver.... Unequal relablte.... Equal relablte... 5 Repone probablte of the optmal oberver... 6. Equal relablte... 6. Unequal

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Estimation of a proportion under a certain two-stage sampling design

Estimation of a proportion under a certain two-stage sampling design Etmaton of a roorton under a certan two-tage amng degn Danutė Kraavcatė nttute of athematc and nformatc Lthuana Stattc Lthuana Lthuana e-ma: raav@tmt Abtract The am of th aer to demontrate wth exame that

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Variance Estimation for Measures of Income Inequality and Polarization ± The Estimating Equations Approach

Variance Estimation for Measures of Income Inequality and Polarization ± The Estimating Equations Approach Journal of Of cal Stattc, Vol. 13, No. 1, 1997, pp. 41±58 Varance Etmaton for Meaure of Income Inequalty and Polarzaton ± The Etmatng Equaton Approach Mlorad S. KovacÆevc 1 and Davd A. Bnder 2 The etmatng

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Physics 120. Exam #1. April 15, 2011

Physics 120. Exam #1. April 15, 2011 Phyc 120 Exam #1 Aprl 15, 2011 Name Multple Choce /16 Problem #1 /28 Problem #2 /28 Problem #3 /28 Total /100 PartI:Multple Choce:Crclethebetanwertoeachqueton.Anyothermark wllnotbegvencredt.eachmultple

More information