Chapter 3- Answers to selected exercises

Size: px
Start display at page:

Download "Chapter 3- Answers to selected exercises"

Transcription

1 Chater 3- Anwer to elected exercie. he chemical otential of a imle uid of a ingle comonent i gien by the exreion o ( ) + k B ln o ( ) ; where i the temerature, i the reure, k B i the Boltzmann contant, and the function o ( ) and o ( ) are well behaed. Show that thi ytem obey Boyle law, V Nk B. Obtain an exreion for the eci c heat at contant reure. What are the exreion for the thermal comreibility, the eci c heat at contant olume, and the thermal exanion coe cient? Obtain the denity of Helmholtz free energy, f f (; ). **** Note that (; ) g (; ), where g (; ) i the Gibb free energy er article. hu, k B ; which i the exreion of Boyle law, and d o d + k k B d o B ln o ( ) o ( ) d ; from which we obtain the eci c heat at contant reure. All other exreion are traightforward. In articular, f g You hould gie f in term of and, f f (; ).. Conider a ure uid of one comonent. Show that cv Ue thi reult to how that the eci c heat of an ideal ga doe not deend on olume. Show that ;N ;N

2 *** From the de nition of the eci c heat, we hae cv c V ) Note that (; ) i an equation of tate in the Helmholtz rereentation. hen, we write f f df d d ) ; ) ; which lead to the rt identity. he roof of the econd identity require imilar trick. 3. Conider a ure uid characterized by the grand thermodynamic otential V f o ( ) ex ; k B where f o ( ) i a well-behaed function. Write the equation of tate in thi thermodynamic rereentation. Obtain an exreion for the internal energy a a function of, V, and N. Obtain an exreion for the Helmholtz free energy of thi ytem. Calculate the thermodynamic deriatie and a a function of temerature and reure. *** From Euler relation, we hae hu, we can write V f o ( ) ex k B ln f o ( ) ; k B which i identical to the exreion for the chemical otential in the rt exercie, if we make o 0 and o ( ) f o ( ). herefore, we hae Boyle law and the uual exreion for and. 4. Obtain an exreion for the Helmholtz free energy er article, f f (; ), of a ure ytem gien by the equation of tate u 3 and a 4 ;

3 where a i a contant. *** hee equation of tate can be exlicitly written in the entroy rereentation, 4 3a u 4 and 3 4 3a u 34 ; from which we obtain the fundamental equation a u 34 + c; where c i a contant. he Helmholtz free energy er article i gien by " f (; ) u 3a a 3a c# *** Let u conider a imilar roblem, with a light modi cation in one of the equation of tate, u 3 and a n Note that, intead of 4, we are writing n, where n i an arbitrary integer. I thi a bona de thermodynamic ytem? I it oible to hae n 6 4? Again, we rewrite the equation of tate in the entroy rereentation, n 3a n u n and 3 n 3a +n u n In thi rereentation we hae ; u from which we obtain 3a n n +n u n 3 u ) u u n 3a +n 3 ; u n ; n

4 leading to the only thermodynamic bona de olution, n Obtain an exreion for the Gibb free energy er article, g g (; ), for a ure ytem gien by the fundamental equation S N 4 c a V U N ; 3 where a and c are contant. *** From the fundamental equation a 4 4 u + c; we write the equation of tate u a4 4 u and u 4 a4 34 u he Gibb free energy er article i gien by the Legendre tranformation g u ; where u and come from the equation of tate. Note that g ha to be gien in term of and. 6. Conider an elatic ribbon of length L under a tenion f. In a quaitatic roce, we can write du ds + fdl + dn Suoe that the tenion i increaed ery quickly, from f to f +f, keeing the temerature xed. Obtain an exreion for the change of entroy jut after reaching equilibrium. What i the change of entroy er mole for an elatic ribbon that behae according to the equation of tate LN cf, where c i a contant? *** Uing the Gibb rereentation, we hae the Maxwell relation S L f 4 f

5 From the equation of tate, LN cf, we hae S N cf f 7. A magnetic comound behae according to the Curie law, m CH, where C i a contant, H i the alied magnetic eld, m i the magnetization er article (with correction due to reumed urface e ect), and i temerature. In a quai-tatic roce, we hae du d + Hdm; where u u (; m) lay the role of an internal energy. For an in niteimal adiabatic roce, how that we can write CH c H H; where c H i the eci c heat at contant magnetic eld. *** We hae to calculate the artial deriatie ( ) at xed entroy. Uing Jacobian, it i eay to write (; ) (; ) (; H) (H; ) (; H) (H; ) All deriatie are written in term of the indeendent ariable and H. We then introduce the Legendre tranformation from which we hae g g u Hm ) dg d mdh; H ; m g ) H m H Inerting the equation of tate in thi Maxwell relation, it i eay to comlete the roof. 8. From tability argument, how that the enthaly of a ure uid i a conex function of entroy and a concae function of reure. 5

6 *** he entaly er article i gien by from which we hae dh d + d ) It i eay to how that h h u + ; h and > 0 c h Alo, we hae h < 0 It i traightforward to ue tandard trick (Jacobian, for examle) to write an exreion for the adiabatic modulu of comreibility, in term of oitie quantitie. *9. Show that the entroy er mole of a ure uid, (u; ), i a concae function of it ariable. Note that we hae to analyze the ign of the quadratic form d u (du) + u dud + (d) ; *** hi quadratic form can be written in the matrix notation du d u du d d u u he eigenalue of the matrix are the root of the quadratic equation u u u 6

7 For a concae function, the eigenalue are negatie, that i, u > 0 u and u + > 0 Now it i traightforward to relate thee deriatie of the entroy with oitie hyical quantitie (a the comreibilitie and the eci c heat). Feb. 0, 00 7

Lecture 7: Thermodynamic Potentials

Lecture 7: Thermodynamic Potentials Lecture 7: Thermodynamic Potentials Chater II. Thermodynamic Quantities A.G. Petukhov, PHY 743 etember 27, 2017 Chater II. Thermodynamic Quantities Lecture 7: Thermodynamic Potentials A.G. Petukhov, etember

More information

Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes

Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes Anai da Academia Braileira de Ciência (017 89(: 1313-1337 (Annal of the Brazilian Academy of Science Printed erion ISSN 0001-3765 / Online erion ISSN 1678-690 htt://dx.doi.org/10.1590/0001-376501701609

More information

Thermodynamic Relations

Thermodynamic Relations 7 hermodynamic elation 7.1. General aect. 7.. undamental of artial differentiation. 7.3. Some general thermodynamic relation. 7.4. Entroy equation (d equation). 7.5. Equation f internal energy and enthaly.

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

Recursion tables for thermostatic derivatives

Recursion tables for thermostatic derivatives Recurion table for thermotatic deriatie Any eron working on thermodynamic mut eentually mater the kill of conerting thermodynamic deriatie into exreion inoling only meaurable material tate ariable and

More information

Thermostatic derivative recursion table (expressing derivatives in terms of material properties)

Thermostatic derivative recursion table (expressing derivatives in terms of material properties) See dicuion, tat, and author rofile for thi ublication at: htt://www.reearchgate.net/ublication/28009244 hermotatic deriatie recurion table (exreing deriatie in term of material roertie) Reearch July 205

More information

Lecture 13. Thermodynamic Potentials (Ch. 5)

Lecture 13. Thermodynamic Potentials (Ch. 5) Lecture 13. hermodynamic Potential (Ch. 5) So far we have been uing the total internal energy U and ometime the enthalpy H to characterize variou macrocopic ytem. hee function are called the thermodynamic

More information

Lecture 3. Dispersion and waves in cold plasma. Review and extension of the previous lecture. Basic ideas. Kramers-Kronig relations

Lecture 3. Dispersion and waves in cold plasma. Review and extension of the previous lecture. Basic ideas. Kramers-Kronig relations Lecture 3 Dierion and wave in cold lama Review and extenion of the reviou lecture Baic idea At the reviou lecture, we dicued how to roerly earch for eigenmode (or quai-eigenmode) of a dierive medium. In

More information

whether a process will be spontaneous, it is necessary to know the entropy change in both the

whether a process will be spontaneous, it is necessary to know the entropy change in both the 93 Lecture 16 he entroy is a lovely function because it is all we need to know in order to redict whether a rocess will be sontaneous. However, it is often inconvenient to use, because to redict whether

More information

Midterm 3 Review Solutions by CC

Midterm 3 Review Solutions by CC Midterm Review Solution by CC Problem Set u (but do not evaluate) the iterated integral to rereent each of the following. (a) The volume of the olid encloed by the arabaloid z x + y and the lane z, x :

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

THE THERMOELASTIC SQUARE

THE THERMOELASTIC SQUARE HE HERMOELASIC SQUARE A mnemonic for remembering thermodynamic identitie he tate of a material i the collection of variable uch a tre, train, temperature, entropy. A variable i a tate variable if it integral

More information

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property hater-6: Entroy When the first law of thermodynamics was stated, the existence of roerty, the internal energy, was found. imilarly, econd law also leads to definition of another roerty, known as entroy.

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

Solved problems 4 th exercise

Solved problems 4 th exercise Soled roblem th exercie Soled roblem.. On a circular conduit there are different diameter: diameter D = m change into D = m. The elocity in the entrance rofile wa meaured: = m -. Calculate the dicharge

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Chemistry 531 Spring 2009 Problem Set 6 Solutions Chemistry 531 Sring 2009 Problem Set 6 Solutions 1. In a thermochemical study of N 2, the following heat caacity data were found: t 0 C,m d 27.2Jmol 1 K 1 f t b f C,m d 23.4Jmol 1 K 1 C,m d 11.4Jmol 1

More information

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong.

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong. hermodynamics I have not roofread these notes; so lease watch out for tyos, anything misleading or just lain wrong. Please read ages 227 246 in Chater 8 of Kittel and Kroemer and ay attention to the first

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

Lect-19. In this lecture...

Lect-19. In this lecture... 19 1 In this lecture... Helmholtz and Gibb s functions Legendre transformations Thermodynamic potentials The Maxwell relations The ideal gas equation of state Compressibility factor Other equations of

More information

Last Time. A new conjugate pair: chemical potential and particle number. Today

Last Time. A new conjugate pair: chemical potential and particle number. Today Last Time LECTURE 9 A new conjugate air: chemical otential and article number Definition of chemical otential Ideal gas chemical otential Total, Internal, and External chemical otential Examle: Pressure

More information

ROOT LOCUS. Poles and Zeros

ROOT LOCUS. Poles and Zeros Automatic Control Sytem, 343 Deartment of Mechatronic Engineering, German Jordanian Univerity ROOT LOCUS The Root Locu i the ath of the root of the characteritic equation traced out in the - lane a a ytem

More information

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria,

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria, Adanced Studie in Contemorary Mathematic, (006), No, 47-54 DISTRIBUTIONS OF JOINT SAMPLE CORRELATION COEFFICIENTS OF INDEPEENDENT NORMALLY DISTRIBUTED RANDOM VARIABLES Eelina I Velea, Tzetan G Ignato Roue

More information

Technical Appendix: Auxiliary Results and Proofs

Technical Appendix: Auxiliary Results and Proofs A Technical Appendix: Auxiliary Reult and Proof Lemma A. The following propertie hold for q (j) = F r [c + ( ( )) ] de- ned in Lemma. (i) q (j) >, 8 (; ]; (ii) R q (j)d = ( ) q (j) + R q (j)d ; (iii) R

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

If y = Bx n (where B = constant)

If y = Bx n (where B = constant) Pages 87-90 of ext Book 361-18 Lec 14 Mon 24se18 First: One variable: Calculus Review: If y Bx n (where B constant) dy n? Bnx 1 dx How do you KNOW (not memorize) that it is x n-1? What are the units of

More information

Thermodynamics in combustion

Thermodynamics in combustion Thermodynamics in combustion 2nd ste in toolbox Thermodynamics deals with a equilibrium state and how chemical comosition can be calculated for a system with known atomic or molecular comosition if 2 indeendent

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS SR7-9 he International Aociation for the Proertie of Water and Steam Doorwerth, he Netherland Setember 9 Sulementary Releae on a Comutationally Efficient hermodynamic Formulation for Liquid Water

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Übung zu Globale Geophysik I 05 Answers

Übung zu Globale Geophysik I 05 Answers Übung zu Globale Geohyik I 05 Anwer Übung zu Globale Geohyik I: Wedneday, 6:00 8:00, Thereientr. 4, Room C49 Lecturer: Heather McCreadie Comanion cla to Globale Geohyik I: Monday, :00 4:00, Thereientr.

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

Problem Fundamental relation from the equations of state

Problem Fundamental relation from the equations of state roblem.-. Fndamental relation from the eqation of tate Eqation of tate: a) o find the chemical potential, let e the Gibb-Dhem relation. Since the independent ariable are and, it i conenient to e the Gibb-Dhem

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

1 inhibit5.mcd. Product Inhibition. Instructor: Nam Sun Wang

1 inhibit5.mcd. Product Inhibition. Instructor: Nam Sun Wang Product Inhibition. Intructor: Nam Sun Wang inhibit5.mcd Mechanim. nzyme combine with a ubtrate molecule for form a complex, which lead to product. The product can alo combine with an enzyme in a reerible

More information

Solutions to exercises week 45 FYS2160

Solutions to exercises week 45 FYS2160 Solution to exercie week 45 FYS2160 Kritian Bjørke, Knut Oddvar Høie Vadla November 29, 2017 Schroeder 5.23 a) Writing Φ = U T S µn in term of infiniteimal change of the quantitie involved: dφ = du T ds

More information

AT 25 C! CH10090 Thermodynamics (part 2) Enthalpy changes during reactions. Let s remember what we did in CH10089

AT 25 C! CH10090 Thermodynamics (part 2) Enthalpy changes during reactions. Let s remember what we did in CH10089 CH10090 hermodynamics (art ) Let s remember what we did in CH10089 Enthaly changes during reactions o o o H98 ( reaction) = νi Hf, 98( roducts) νi Hf, 98( reactants) ν i reresents the stoichiometric coefficient.

More information

skipping section 6.6 / 5.6 (generating permutations and combinations) concludes basic counting in Chapter 6 / 5

skipping section 6.6 / 5.6 (generating permutations and combinations) concludes basic counting in Chapter 6 / 5 kiing ection 6.6 / 5.6 generating ermutation and combination conclude baic counting in Chater 6 / 5 on to Chater 7 / 6: Dicrete robability before we go to trickier counting in Chater 8 / 7 age 431-475

More information

Analysis of Feedback Control Systems

Analysis of Feedback Control Systems Colorado Shool of Mine CHEN403 Feedbak Control Sytem Analyi of Feedbak Control Sytem ntrodution to Feedbak Control Sytem 1 Cloed oo Reone 3 Breaking Aart the Problem to Calulate the Overall Tranfer Funtion

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

3 More applications of derivatives

3 More applications of derivatives 3 More alications of derivatives 3.1 Eact & ineact differentials in thermodynamics So far we have been discussing total or eact differentials ( ( u u du = d + dy, (1 but we could imagine a more general

More information

HOMOGENEOUS CLOSED SYSTEM

HOMOGENEOUS CLOSED SYSTEM CHAE II A closed system is one that does not exchange matter with its surroundings, although it may exchange energy. W n in = 0 HOMOGENEOUS CLOSED SYSEM System n out = 0 Q dn i = 0 (2.1) i = 1, 2, 3,...

More information

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Foundations of thermodynamics Fundamental thermodynamical concepts

Foundations of thermodynamics Fundamental thermodynamical concepts Foundations of thermodynamics Fundamental thermodynamical concets System is the macrohysical entity under consideration Surrounding is the wld outside of the system Oen system can exchange matter heat

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Systems Analysis. Prof. Cesar de Prada ISA-UVA Sytem Analyi Prof. Cear de Prada ISAUVA rada@autom.uva.e Aim Learn how to infer the dynamic behaviour of a cloed loo ytem from it model. Learn how to infer the change in the dynamic of a cloed loo ytem

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

66 Lecture 3 Random Search Tree i unique. Lemma 3. Let X and Y be totally ordered et, and let be a function aigning a ditinct riority in Y to each ele

66 Lecture 3 Random Search Tree i unique. Lemma 3. Let X and Y be totally ordered et, and let be a function aigning a ditinct riority in Y to each ele Lecture 3 Random Search Tree In thi lecture we will decribe a very imle robabilitic data tructure that allow inert, delete, and memberhi tet (among other oeration) in exected logarithmic time. Thee reult

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW # Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed [1.] Problem 7. from Griffith A capacitor capacitance, C i charged to potential

More information

Operational transconductance amplifier based voltage-mode universal filter

Operational transconductance amplifier based voltage-mode universal filter Indian Journal of Pure & Alied Phyic ol. 4, etember 005,. 74-79 Oerational tranconductance amlifier baed voltage-mode univeral filter Naeem Ahmad & M R Khan Deartment of Electronic and Communication Engineering,

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

CONGRUENCES FOR RAMANUJAN S f AND ω FUNCTIONS VIA GENERALIZED BORCHERDS PRODUCTS. April 10, 2013

CONGRUENCES FOR RAMANUJAN S f AND ω FUNCTIONS VIA GENERALIZED BORCHERDS PRODUCTS. April 10, 2013 CONGRUENCES FOR RAMANUJAN S f AND ω FUNCTIONS VIA GENERALIZED BORCHERDS PRODUCTS JEN BERG, ABEL CASTILLO, ROBERT GRIZZARD, VÍTĚZSLAV KALA, RICHARD MOY, AND CHONGLI WANG Aril 0, 0 Abtract. Bruinier and

More information

RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE

RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE XVII IMEKO World Congre Metrology in the 3rd Millennium June 22 27, 2003, Dubrovnik, Croatia RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE Tohru Iuchi, Tohru Furukawa and Nobuharu Sato Deartment

More information

arxiv: v2 [math.nt] 1 Jan 2018

arxiv: v2 [math.nt] 1 Jan 2018 A CONTINUOUS ANALOGUE OF LATTICE PATH ENUMERATION: PART II TANAY WAKHARE AND CHRISTOPHE VIGNAT arxiv:66986v [mathnt] Jan 8 Abtract Following the work of Cano and Díaz, we tudy continuou binomial coefficient

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Internal Energy in terms of Properties

Internal Energy in terms of Properties Lecture #3 Internal Energy in terms of roerties Internal energy is a state function. A change in the state of the system causes a change in its roerties. So, we exress the change in internal energy in

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

online learning Unit Workbook 4 RLC Transients

online learning Unit Workbook 4 RLC Transients online learning Pearon BTC Higher National in lectrical and lectronic ngineering (QCF) Unit 5: lectrical & lectronic Principle Unit Workbook 4 in a erie of 4 for thi unit Learning Outcome: RLC Tranient

More information

THE DYNAMICS OF DIFFERENT REGIMES OF DEMAND-LED EXPANSION. Any redistribution of income between profits and wages would have contradictory

THE DYNAMICS OF DIFFERENT REGIMES OF DEMAND-LED EXPANSION. Any redistribution of income between profits and wages would have contradictory THE DYNAMC OF DFFERENT REGME OF DEMAND-LED EXPANON. by Amit Baduri Profeor, Deartment of Economic, Univerity of Pavia 7100 Pavia, taly Any reditribution of income between rofit and wage would ave contradictory

More information

As in the book. Each of the other thermopotentials yield similar and useful relations. Let s just do the Legendre Transformations and list them all:

As in the book. Each of the other thermopotentials yield similar and useful relations. Let s just do the Legendre Transformations and list them all: hysics 430 Solutions to roblem Set 9 1. Schroeder roblem 5.1. Mixed derivatives are fun and useful. One of the most important things that we have yet to see is that thermodynamics INSISS that certain things,

More information

3. High Temperature Gases FPK1 2009/MZ 1/23

3. High Temperature Gases FPK1 2009/MZ 1/23 3. High Temerature Gases FP 9/MZ /3 Terms and Concets Dissociation Diatomic element gases Bond energy, dissociation energy (enthali) Flood s dissociation diagram Vaorization, eaoration, boiling, sublimation

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Thermodynamics I Chapter 6 Entropy

Thermodynamics I Chapter 6 Entropy hermodynamics I hater 6 Entroy Mohsin Mohd ies Fakulti Keuruteraan Mekanikal, Uniersiti eknologi Malaysia Entroy (Motiation) he referred direction imlied by the nd Law can be better understood and quantified

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

One Class of Splitting Iterative Schemes

One Class of Splitting Iterative Schemes One Cla of Splitting Iterative Scheme v Ciegi and V. Pakalnytė Vilniu Gedimina Technical Univerity Saulėtekio al. 11, 2054, Vilniu, Lithuania rc@fm.vtu.lt Abtract. Thi paper deal with the tability analyi

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

Estimating Conditional Mean and Difference Between Conditional Mean and Conditional Median

Estimating Conditional Mean and Difference Between Conditional Mean and Conditional Median Etimating Conditional Mean and Difference Between Conditional Mean and Conditional Median Liang Peng Deartment of Ri Management and Inurance Georgia State Univerity and Qiwei Yao Deartment of Statitic,

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN THE LABORATORY OF THE UNIVERSITY OF TENNESSEE AT CHATANOOGAA.

USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN THE LABORATORY OF THE UNIVERSITY OF TENNESSEE AT CHATANOOGAA. USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN TE LABORATORY OF TE UNIVERSITY OF TENNESSEE AT CATANOOGAA. Jim enry *, Joé Alberto González Guerrero, Benito Serrano Roale..

More information

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5 Contents CONEX FUNCIONS AND HERMODYNAMIC POENIALS 1 Entroy 1 2 Energy Reresentation 2 3 Etensivity 4 4 Fundamental Equations 4 5 Conveity 5 6 Legendre transforms 6 7 Reservoirs and Legendre transforms

More information

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2 8.044 Lecture Notes Chapter 5: hermodynamcs, Part 2 Lecturer: McGreevy 5.1 Entropy is a state function............................ 5-2 5.2 Efficiency of heat engines............................. 5-6 5.3

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor:

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor: Week 8 lectures. Equations for motion of fluid without incomressible assumtions Recall from week notes, the equations for conservation of mass and momentum, derived generally without any incomressibility

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

LAPLACE EQUATION IN A DOMAIN WITH A RECTILINEAR CRACK: HIGHER ORDER DERIVATIVES OF THE ENERGY WITH RESPECT TO THE CRACK LENGTH

LAPLACE EQUATION IN A DOMAIN WITH A RECTILINEAR CRACK: HIGHER ORDER DERIVATIVES OF THE ENERGY WITH RESPECT TO THE CRACK LENGTH LAPLACE EQUATION IN A DOMAIN WITH A RECTILINEAR CRACK: HIGHER ORDER DERIVATIVES OF THE ENERGY WITH RESPECT TO THE CRACK LENGTH GIANNI DAL MASO, GIANLUCA ORLANDO, AND RODICA TOADER Abtract We conider the

More information

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course ecture 1 Two tye of otical amlifier: Erbium-doed fiber amlifier (EDFA) Raman amlifier Have relaced emiconductor otical amlifier in the coure Fiber Otical Communication ecture 1, Slide 1 Benefit and requirement

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

Conservation of Energy Thermodynamic Energy Equation

Conservation of Energy Thermodynamic Energy Equation Conseration of Energy Thermodynamic Energy Equation The reious two sections dealt with conseration of momentum (equations of motion) and the conseration of mass (continuity equation). This section addresses

More information

Efficiency Optimal of Inductive Power Transfer System Using the Genetic Algorithms Jikun Zhou *, Rong Zhang, Yi Zhang

Efficiency Optimal of Inductive Power Transfer System Using the Genetic Algorithms Jikun Zhou *, Rong Zhang, Yi Zhang International Conference on echanical Science and Engineering (ICSE5 Efficiency Otimal of Inductive Power Tranfer Sytem Uing the Genetic Algorithm Jikun Zhou *, ong Zhang, Yi Zhang Intitute of ytem engineering,

More information

CHAPTER 6. Estimation

CHAPTER 6. Estimation CHAPTER 6 Etimation Definition. Statitical inference i the procedure by which we reach a concluion about a population on the bai of information contained in a ample drawn from that population. Definition.

More information

A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problems *

A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problems * ISSN 76-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 35-33 A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problem * Lipu Zhang and Yinghong

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

arxiv: v1 [math-ph] 21 Dec 2007

arxiv: v1 [math-ph] 21 Dec 2007 Dynamic Phase ransitions in PV Systems ian Ma Deartment of Mathematics, Sichuan Uniersity, Chengdu, P. R. China Shouhong Wang Deartment of Mathematics, Indiana Uniersity, Bloomington, IN 4745 (Dated: February

More information

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr Lecture #5: 5-0735: Dynamic behavior of material and tructure Introduction to Continuum Mechanic Three-dimenional Rate-indeendent Platicity by Dirk Mohr ETH Zurich, Deartment of Mechanical and Proce Engineering,

More information

Do Dogs Know Bifurcations?

Do Dogs Know Bifurcations? Do Dog Know Bifurcation? Roland Minton Roanoke College Salem, VA 4153 Timothy J. Penning Hoe College Holland, MI 4943 Elvi burt uon the mathematical cene in May, 003. The econd author article "Do Dog Know

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

F = U TS G = H TS. Availability, Irreversibility S K Mondal s Chapter 5. max. actual. univ. Ns =

F = U TS G = H TS. Availability, Irreversibility S K Mondal s Chapter 5. max. actual. univ. Ns = Availability, Irreversibility S K Mondal s Chater 5 I = W W 0 max ( S) = Δ univ actual 7. Irreversibility rate = I = rate of energy degradation = rate of energy loss (Wlost) = 0 S gen for all rocesses

More information