δq T = nr ln(v B/V A )

Size: px
Start display at page:

Download "δq T = nr ln(v B/V A )"

Transcription

1 hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically to state C Finally, it is cooled at constant volume to its original state, A a Each state is characterized by the volume, ressure and temerature of the gas,, and Sketch the cyclic rocess in the, lane and in the, lane b Calculate the change in entroy of the gas in each one of the three rocesses and show that there is no net change in the cyclic rocess, consistent with the fact that entroy is a state function a On the - diagram, oint C is right above oint A but B is to the right and at lower ressure but larger volume he adiabatic curve C-B is steeer than the isothermal curve A-B In the - diagram, oint A is right above oint B and oint C is to the right and above b For simlicity, assume we are dealing with one mol of the gas Ste 1: Isothermal exansion from A to B S 1 B A δq nr ln B/ A Ste : Adiabatic comression from B to C S 0 since it is adiabatic But, we need to find the final temerature for later Use the relationshi between and changes during an adiabatic exansion/comression C B γ 1 B C where γ C /C, the heat caacity ratio For an ideal gas, C C + R, so γ 1 R/C ake the logarithm, to get the relationshi C C ln B R ln B C Ste 3: Cooling at constant volume from C to A S 3 A C δq A C C d C ln A C 1

2 Now use the fact that A B and the relationshi between B / C and B / A found for the adiabatic ste above to rewrite this as S 3 R ln A B Adding u all three contributions to the entroy change gives S tot S 1 + S + S 3 R ln B A R ln A B 0 consistent with the fact that entroy is a state function roblem : Exerimental measurements have been used to determine how the molar heat caacity of CO gas deends on temerature over the temerature range from 00 K to 1000 K and the results can be summarized by the following exression C a + b + c where the constants are a 6648 kj/molk, b kj/molk and c kj/molk 3 Calculate the enthaly and entroy change when one mole of the gas is heated from room temerature to 1000 K H 1 H d C d [a + b 3 ] 1 + c 3334kJ/mol 3 1 S 1 δq rev 1 C d [a ln + b + c ] 1 554J/molK roblem 3: a he basic roerties of gases are tyically described by an equation of state that gives the ressure as a function of volume and temerature,, In many cases, one is interested in evaluating the artial derivative, but this is not readily obtained from, Rewrite this artial derivative using Euler s chain rule in terms of artial derivatives that can be obtained directly from the equation of state, and b Give an exression for when the equation of state is of the van der Waals form

3 a Use Euler s chain rule: For a function zx, y we have hat is, y z z y y z z 1 y x z Making here the corresondance z, y and x, we get b For van der Waals gas, z y y x R m b a m where m /n So, the artial derivatives become and m m Inserting into the result from art a gives R/ m b 1 R n m b + a R NR m b a 1 m b m 3 3 m roblem 4: In this roblem, you will analyse the ressure and volume deendence of the entroy of a certain gas Exerimental measurements have been used to develo an equation of state written as a virial exansion u to second order m R 1 + B where the second virial coefficient is over the limited temerature interval of interest given by B a + b Also, the constant volume heat caacity has been measured and the results summarized by the exression C α + β + γ he arameters a, b, α, β and γ have been determined by the exerimental measurements Considering the entroy to be a function of and, a small change in the entroy can be written as ds S d + S d 3

4 a Obtain an exression for the artial derivative S in terms of the exerimentally determined arameters a, b, α, β and γ recall: q ds and q C d, see notes from lecture b Use a Maxwell relation derived from one of the thermodynamic state functions U, H, G or A to exress S in terms of a artial derivative that can be obtained readily from the exerimentally obtained information given above Evaluate the artial derivative in terms of the exerimentally determined arameters a, b, α, β and γ c Derive a Maxwell relationshi from the second derivative of the entroy in order to gain information about the ressure deendence of the heat caacity C and evaluate this artial derivative in terms of the exerimentally determined arameters arameters a, b, α, β and γ o summarize: Given m R1+B where B a+b and C α+β+γ, where a, b, α, β and γ are constants known from measurements a Since q ds for a reversible rocess by definition of S and q C d for heat flow at constant, we have ds C d and by dividing by d and setting constant get S C α + β + γ b Use the combined first and second law for the Gibbs free energy dg Sd + d to get Maxwell relation S which can be calculated from the virial exansion m R1 + a + b to give So, m R 1 + a + b + R b R S nr 1 + a + b + Ra + Rb c he Maxwell relationshi is obtained from the mixed second derivative of S S S aking the derivative of the result in art a with resect to and the derivative of the result in b with resect to, gives 1 C 4 nrb

5 roblem 5: For a certain chemical, the Gibbs free energy is found to vary with temerature according to G/ a + b/ + c/ over a given interval in temerature Here, a and b are constants determined exerimentally a Find how the enthaly varies with temerature over this temerature range b Find how the entroy varies with temerature c Demonstrate that the three equations are consistent a he Gibbs-Helmholts equation gives G/ 1/ H b + c b From the coefficient of d in the combined first and second law for G, one gets G S so S G a + c c Since G H S, the exressions given in a and b need to add u to the exression given for G in the statement of the roblem o test whether this is true, add a and b H S b + c a + c a + b + c as it should 5

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

whether a process will be spontaneous, it is necessary to know the entropy change in both the

whether a process will be spontaneous, it is necessary to know the entropy change in both the 93 Lecture 16 he entroy is a lovely function because it is all we need to know in order to redict whether a rocess will be sontaneous. However, it is often inconvenient to use, because to redict whether

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Chem340 Physical Chemistry for Biochemists Exam Mar 16, 011 Your Name _ I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade

More information

Internal Energy in terms of Properties

Internal Energy in terms of Properties Lecture #3 Internal Energy in terms of roerties Internal energy is a state function. A change in the state of the system causes a change in its roerties. So, we exress the change in internal energy in

More information

/ p) TA,. Returning to the

/ p) TA,. Returning to the Toic2610 Proerties; Equilibrium and Frozen A given closed system having Gibbs energy G at temerature T, ressure, molecular comosition (organisation ) and affinity for sontaneous change A is described by

More information

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law TMOS 5130 Lecture 7 The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Caacity Secial Cases of the First Law Pressure-Volume Work Exanding Volume Pressure δw = f & dx δw = F ds

More information

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Chemistry 531 Spring 2009 Problem Set 6 Solutions Chemistry 531 Sring 2009 Problem Set 6 Solutions 1. In a thermochemical study of N 2, the following heat caacity data were found: t 0 C,m d 27.2Jmol 1 K 1 f t b f C,m d 23.4Jmol 1 K 1 C,m d 11.4Jmol 1

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong.

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong. hermodynamics I have not roofread these notes; so lease watch out for tyos, anything misleading or just lain wrong. Please read ages 227 246 in Chater 8 of Kittel and Kroemer and ay attention to the first

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

1. Read the section on stability in Wallace and Hobbs. W&H 3.53

1. Read the section on stability in Wallace and Hobbs. W&H 3.53 Assignment 2 Due Set 5. Questions marked? are otential candidates for resentation 1. Read the section on stability in Wallace and Hobbs. W&H 3.53 2.? Within the context of the Figure, and the 1st law of

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5 Contents CONEX FUNCIONS AND HERMODYNAMIC POENIALS 1 Entroy 1 2 Energy Reresentation 2 3 Etensivity 4 4 Fundamental Equations 4 5 Conveity 5 6 Legendre transforms 6 7 Reservoirs and Legendre transforms

More information

02. Equilibrium Thermodynamics II: Engines

02. Equilibrium Thermodynamics II: Engines University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 205 02. Equilibrium Thermodynamics II: Engines Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

THERMODYNAMICS. Prepared by Sibaprasad Maity Asst. Prof. in Chemistry For any queries contact at

THERMODYNAMICS. Prepared by Sibaprasad Maity Asst. Prof. in Chemistry For any queries contact at HERMODYNAMIS reared by Sibarasad Maity Asst. rof. in hemistry For any queries contact at 943445393 he word thermo-dynamic, used first by illiam homson (later Lord Kelvin), has Greek origin, and is translated

More information

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p ) Examle roblems Chater : he Kinetic heory o Gases Homework:, 8,,, 5, 7 (. 5-5) 9. An automobile tire has a volume o.64 x m and contains air at a gauge ressure (above atmosheric ressure) o 65 kpa when the

More information

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58 Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in.80 0 4 and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of 4.60 0 4.

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

Prediction of Vapour Pressures of Dioxin Congeners. R & D Center, Baoshan Iron & Steel Co., Ltd., Fujin Rd., Baoshan District, Shanghai , China

Prediction of Vapour Pressures of Dioxin Congeners. R & D Center, Baoshan Iron & Steel Co., Ltd., Fujin Rd., Baoshan District, Shanghai , China Prediction of Vaour Pressures of Dioxin Congeners Xian-Wei Li, 1 Etsuro Shibata, 2 Eiki Kasai, 2 Takashi Nakamura 2 1 R & D Center, Baoshan Iron & Steel Co., Ltd., Fujin Rd., Baoshan District, Shanghai

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

THERMODYNAMICS CONTENTS

THERMODYNAMICS CONTENTS 1. Introduction HERMODYNAMICS CONENS. Maxwell s thermodynamic equations.1 Derivation of Maxwell s equations 3. Function and derivative 3.1 Differentiation 4. Cyclic Rule artial Differentiation 5. State

More information

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1 First law of thermodynamics (Jan 12, 2016) age 1/7 Here are some comments on the material in Thomkins Chater 1 1) Conservation of energy Adrian Thomkins (eq. 1.9) writes the first law as: du = d q d w

More information

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter.

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter. .4. Determination of the enthaly of solution of anhydrous and hydrous sodium acetate by anisothermal calorimeter, and the enthaly of melting of ice by isothermal heat flow calorimeter Theoretical background

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

Thermodynamics in combustion

Thermodynamics in combustion Thermodynamics in combustion 2nd ste in toolbox Thermodynamics deals with a equilibrium state and how chemical comosition can be calculated for a system with known atomic or molecular comosition if 2 indeendent

More information

4. A Brief Review of Thermodynamics, Part 2

4. A Brief Review of Thermodynamics, Part 2 ATMOSPHERE OCEAN INTERACTIONS :: LECTURE NOTES 4. A Brief Review of Thermodynamics, Part 2 J. S. Wright jswright@tsinghua.edu.cn 4.1 OVERVIEW This chater continues our review of the key thermodynamics

More information

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Reading: Martin, Section 4.1 PRESSURE COORDINATES ESCI 342 Atmosheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Pressure is often a convenient vertical coordinate to use in lace of altitude.

More information

AT 25 C! CH10090 Thermodynamics (part 2) Enthalpy changes during reactions. Let s remember what we did in CH10089

AT 25 C! CH10090 Thermodynamics (part 2) Enthalpy changes during reactions. Let s remember what we did in CH10089 CH10090 hermodynamics (art ) Let s remember what we did in CH10089 Enthaly changes during reactions o o o H98 ( reaction) = νi Hf, 98( roducts) νi Hf, 98( reactants) ν i reresents the stoichiometric coefficient.

More information

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property hater-6: Entroy When the first law of thermodynamics was stated, the existence of roerty, the internal energy, was found. imilarly, econd law also leads to definition of another roerty, known as entroy.

More information

Maximum Power Output of Quantum Heat Engine. with Energy Bath

Maximum Power Output of Quantum Heat Engine. with Energy Bath Maximum Power Outut of Quantum Heat Engine with Energy Bath Shengnan Liu, Congjie Ou, College of Information Science and Engineering, Huaqiao University, Xiamen 360, China; 30008003@hqu.edu.cn Corresondence:

More information

Mathematics as the Language of Physics.

Mathematics as the Language of Physics. Mathematics as the Language of Physics. J. Dunning-Davies Deartment of Physics University of Hull Hull HU6 7RX England. Email: j.dunning-davies@hull.ac.uk Abstract. Courses in mathematical methods for

More information

The temperature dependence of the isothermal bulk modulus at 1 bar pressure

The temperature dependence of the isothermal bulk modulus at 1 bar pressure he temerature deendence of the isothermal bulk modulus at bar ressure J. Garai a) Det. of Earth Sciences, Florida International University, University Park, PC 344, Miami, FL 3399, USA A. Laugier IdPCES

More information

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter Physics 2A (Fall 2012) Chaters 11:Using Energy and 12: Thermal Proerties of Matter "Kee in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing,

More information

df da df = force on one side of da due to pressure

df da df = force on one side of da due to pressure I. Review of Fundamental Fluid Mechanics and Thermodynamics 1. 1 Some fundamental aerodynamic variables htt://en.wikiedia.org/wiki/hurricane_ivan_(2004) 1) Pressure: the normal force er unit area exerted

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

F = U TS G = H TS. Availability, Irreversibility S K Mondal s Chapter 5. max. actual. univ. Ns =

F = U TS G = H TS. Availability, Irreversibility S K Mondal s Chapter 5. max. actual. univ. Ns = Availability, Irreversibility S K Mondal s Chater 5 I = W W 0 max ( S) = Δ univ actual 7. Irreversibility rate = I = rate of energy degradation = rate of energy loss (Wlost) = 0 S gen for all rocesses

More information

Lecture 7: Thermodynamic Potentials

Lecture 7: Thermodynamic Potentials Lecture 7: Thermodynamic Potentials Chater II. Thermodynamic Quantities A.G. Petukhov, PHY 743 etember 27, 2017 Chater II. Thermodynamic Quantities Lecture 7: Thermodynamic Potentials A.G. Petukhov, etember

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4 Atmoshere, Ocean and Climate Dynamics Answers to Chater 4 1. Show that the buoyancy frequency, Eq.(4.22), may be written in terms of the environmental temerature rofile thus N 2 = g µ dte T E dz + Γ d

More information

Isothermal vs. adiabatic compression

Isothermal vs. adiabatic compression Isothermal vs. adabatc comresson 1. One and a half moles of a datomc gas at temerature 5 C are comressed sothermally from a volume of 0.015 m to a volume of 0.0015 m. a. Sketch the rocess on a dagram and

More information

Grain elevator. You need to convince your boss that this is a very inefficient system.

Grain elevator. You need to convince your boss that this is a very inefficient system. Grain elevator You are working for a grain storage comany over the summer, and they have a roblem with the grain elevator, that kees breaking down. This morning, your boss woke u feeling like a genius

More information

Actual exergy intake to perform the same task

Actual exergy intake to perform the same task CHAPER : PRINCIPLES OF ENERGY CONSERVAION INRODUCION Energy conservation rinciles are based on thermodynamics If we look into the simle and most direct statement of the first law of thermodynamics, we

More information

Phase Equilibrium Calculations by Equation of State v2

Phase Equilibrium Calculations by Equation of State v2 Bulletin of Research Center for Comuting and Multimedia Studies, Hosei University, 7 (3) Published online (htt://hdl.handle.net/4/89) Phase Equilibrium Calculations by Equation of State v Yosuke KATAOKA

More information

3 More applications of derivatives

3 More applications of derivatives 3 More alications of derivatives 3.1 Eact & ineact differentials in thermodynamics So far we have been discussing total or eact differentials ( ( u u du = d + dy, (1 but we could imagine a more general

More information

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor:

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor: Week 8 lectures. Equations for motion of fluid without incomressible assumtions Recall from week notes, the equations for conservation of mass and momentum, derived generally without any incomressibility

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

FE FORMULATIONS FOR PLASTICITY

FE FORMULATIONS FOR PLASTICITY G These slides are designed based on the book: Finite Elements in Plasticity Theory and Practice, D.R.J. Owen and E. Hinton, 1970, Pineridge Press Ltd., Swansea, UK. 1 Course Content: A INTRODUCTION AND

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure Paer received: 7.10.008 UDC 61.64 Paer acceted: 0.04.009 Determination of Pressure Losses in Hydraulic Pieline Systems by Considering Temerature and Pressure Vladimir Savi 1,* - Darko Kneževi - Darko Lovrec

More information

Entransy analysis of open thermodynamic systems

Entransy analysis of open thermodynamic systems Article Engineering hermohysics August 0 Vol.57 No.: 934940 doi: 0.007/s434-0-54-x Entransy analysis of oen thermodynamic systems CHENG Xueao, WANG WenHua & LIANG XinGang * Key Laboratory for hermal Science

More information

Lecture 8, the outline

Lecture 8, the outline Lecture, the outline loose end: Debye theory of solids more remarks on the first order hase transition. Bose Einstein condensation as a first order hase transition 4He as Bose Einstein liquid Lecturer:

More information

Compressible Flow Introduction. Afshin J. Ghajar

Compressible Flow Introduction. Afshin J. Ghajar 36 Comressible Flow Afshin J. Ghajar Oklahoma State University 36. Introduction...36-36. he Mach Number and Flow Regimes...36-36.3 Ideal Gas Relations...36-36.4 Isentroic Flow Relations...36-4 36.5 Stagnation

More information

MODULE 2: DIFFUSION LECTURE NO. 2

MODULE 2: DIFFUSION LECTURE NO. 2 PTEL Chemical Mass Transfer Oeration MODULE : DIFFUSIO LECTURE O.. STEDY STTE MOLECULR DIFFUSIO I FLUIDS UDER STGT D LMIR FLOW CODITIOS.. Steady state diffusion through a constant area Steady state diffusion

More information

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2 Unit 43: Plant and Process Princiles Unit code: H/60 44 QCF level: 5 Credit value: 5 OUCOME - HERMODYNAMIC SYSEMS UORIAL Understand thermodynamic systems as alied to lant engineering rocesses hermodynamic

More information

Session 12 : Monopropellant Thrusters

Session 12 : Monopropellant Thrusters Session 12 : Monoroellant Thrusters Electrothermal augmentation of chemical rockets was the first form of electric roulsion alied in sace vehicles. In its original imlementation, resistojets were used

More information

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self Problem : Units : Q-a Mathematically exress the relationshi between the different units of the hysical variables: i) Temerature: ) Fahrenheit and Celsius; 2) Fahrenheit and Kelvin ii) Length: ) foot and

More information

REVIEW & SUMMARY. Molar Specific Heats The molar specific heat C V of a gas at constant volume is defined as

REVIEW & SUMMARY. Molar Specific Heats The molar specific heat C V of a gas at constant volume is defined as REIEW & SUMMARY 59 PART Kinetic Theory of Gases The kinetic theory of gases relates the macroscoic roerties of gases (for examle, ressure and temerature) to the microscoic roerties of gas molecules (for

More information

602 ZHANG Zhi and CHEN Li-Rong Vol Gibbs Free Energy From the thermodynamics, the Gibbs free energy of the system can be written as G = U ; TS +

602 ZHANG Zhi and CHEN Li-Rong Vol Gibbs Free Energy From the thermodynamics, the Gibbs free energy of the system can be written as G = U ; TS + Commun. Theor. Phys. (Beijing, China) 37 (2002) 601{606 c International Academic Publishers Vol. 37, No. 5, May 15, 2002 The 2D Alternative Binary L J System: Solid-Liquid Phase Diagram ZHANG Zhi and CHEN

More information

Test Date: (Saturday) Test Time: 09:45 AM to 11:45 AM

Test Date: (Saturday) Test Time: 09:45 AM to 11:45 AM Test ate: 8..5 (Saturday) Test Time: 9:5 M to :5 M Test Venue: Lajat hawan, Madhya Marg, Sector 5-, handigarh r. Sangeeta Khanna Ph. HEMISTRY OHING IRLE r. Sangeeta Khanna Ph. TEST TE: 8..5 RE THE INSTRUTIONS

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Cheistry I Lecture 12 Aleksey Kocherzhenko Aril 2, 2015" Last tie " Gibbs free energy" In order to analyze the sontaneity of cheical reactions, we need to calculate the entroy changes

More information

Quasi-particle Contribution in Thermal Expansion and Thermal Conductivity in Metals

Quasi-particle Contribution in Thermal Expansion and Thermal Conductivity in Metals e-issn:-459 -ISSN:47-6 Quasi-article Contribution in Thermal Exansion and Thermal Conductivity in Metals Edema OG * and Osiele OM ederal Polytechnic, Auchi, Nigeria Delta State University, Abraka, Nigeria

More information

Chapter 6. Thermodynamics and the Equations of Motion

Chapter 6. Thermodynamics and the Equations of Motion Chater 6 hermodynamics and the Equations of Motion 6.1 he first law of thermodynamics for a fluid and the equation of state. We noted in chater 4 that the full formulation of the equations of motion required

More information

arxiv: v1 [math-ph] 21 Dec 2007

arxiv: v1 [math-ph] 21 Dec 2007 Dynamic Phase ransitions in PV Systems ian Ma Deartment of Mathematics, Sichuan Uniersity, Chengdu, P. R. China Shouhong Wang Deartment of Mathematics, Indiana Uniersity, Bloomington, IN 4745 (Dated: February

More information

Foundations of thermodynamics Fundamental thermodynamical concepts

Foundations of thermodynamics Fundamental thermodynamical concepts Foundations of thermodynamics Fundamental thermodynamical concets System is the macrohysical entity under consideration Surrounding is the wld outside of the system Oen system can exchange matter heat

More information

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas.

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas. 10.1 Thermodynamics 10.2 Processes 10 10.3 The second law of thermodynamics and entroy 10.1 Thermodynamics From the combined gas laws, we determined that: P/T = k or P = kt 10.1.1 State the equation of

More information

Churilova Maria Saint-Petersburg State Polytechnical University Department of Applied Mathematics

Churilova Maria Saint-Petersburg State Polytechnical University Department of Applied Mathematics Churilova Maria Saint-Petersburg State Polytechnical University Deartment of Alied Mathematics Technology of EHIS (staming) alied to roduction of automotive arts The roblem described in this reort originated

More information

Application of Automated Ball Indentation for Property Measurement of Degraded Zr2.5Nb

Application of Automated Ball Indentation for Property Measurement of Degraded Zr2.5Nb Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.7,.661-669, 011 jmmce.org Printed in the USA. All rights reserved Alication of Automated Ball Indentation for Proerty Measurement

More information

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable BASIC CONCEPTAND DEFINITIONS1 2 THERMODYNAMICS CHAPTER 2 Thermodynamic Concets Lecturer Axel GRONIEWSKY, PhD 11 th of February2019 Thermodynamics study of energy and its transformation describes macroscoic

More information

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels Module Lectures 6 to 1 High Seed Wind Tunnels Keywords: Blow down wind tunnels, Indraft wind tunnels, suersonic wind tunnels, c-d nozzles, second throat diffuser, shocks, condensation in wind tunnels,

More information

Modeling and Simulation a Catalytic Fixed Bed Reactor to Produce Ethyl Benzene from Ethanol

Modeling and Simulation a Catalytic Fixed Bed Reactor to Produce Ethyl Benzene from Ethanol Journal of Physical Chemistry and Electrochemistry Vol. No.3 (20) 55-6 Journal of Physical Chemistry and Electrochemistry Islamic Azad University Marvdasht ranch Journal homeage: htt://journals.miau.ac.ir/je

More information

1. Foundations of thermodynamics 1.1. Fundamental thermodynamical concepts. Introduction. Summary of contents:

1. Foundations of thermodynamics 1.1. Fundamental thermodynamical concepts. Introduction. Summary of contents: Introduction hermodynamics: henomenological descrition of equilibrium bulk roerties of matter in terms of only a few state variables thermodynamical laws Statistical hysics: microscoic foundation of thermodynamics

More information

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD Vishwakarma J.P. and Prerana Pathak 1 Deartment of Mathematics

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

NOTICE: This is the author's version of a work that was accepted for publication in Chemical Engineering Research and Design. Changes resulting from

NOTICE: This is the author's version of a work that was accepted for publication in Chemical Engineering Research and Design. Changes resulting from NOTICE: This is the author's version of a work that was acceted for ublication in Chemical Engineering Research and Design. Changes resulting from the ublishing rocess, such as eer review, editing, corrections,

More information

Exam 2, Chemistry 481, 4 November 2016

Exam 2, Chemistry 481, 4 November 2016 1 Exam, Chemistry 481, 4 November 016 Show all work for full credit Useful constants: h = 6.66 10 34 J s; c (speed of light) =.998 10 8 m s 1 k B = 1.3807 10 3 J K 1 ; R (molar gas constant) = 8.314 J

More information

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation Paer C Exact Volume Balance Versus Exact Mass Balance in Comositional Reservoir Simulation Submitted to Comutational Geosciences, December 2005. Exact Volume Balance Versus Exact Mass Balance in Comositional

More information

A NEW COMPACT HEAT ENGINE

A NEW COMPACT HEAT ENGINE A NEW COMPACT HEAT ENGINE by Miodrag NOVAKOVI] Original scientific aer UDC: 536.8:621.4 BIBLID: 0354 9836, 6 (2002), 1, 45 51 The Differential Cylinder Heat Engine (DCHE) reorted consists of two different

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Study of the circulation theory of the cooling system in vertical evaporative cooling generator

Study of the circulation theory of the cooling system in vertical evaporative cooling generator 358 Science in China: Series E Technological Sciences 006 Vol.49 No.3 358 364 DOI: 10.1007/s11431-006-0358-1 Study of the circulation theory of the cooling system in vertical evaorative cooling generator

More information

Setting up the Mathematical Model Review of Heat & Material Balances

Setting up the Mathematical Model Review of Heat & Material Balances Setting u the Mathematical Model Review of Heat & Material Balances Toic Summary... Introduction... Conservation Equations... 3 Use of Intrinsic Variables... 4 Well-Mixed Systems... 4 Conservation of Total

More information

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas Lecture 14: Thermal conductivity Review: honons as articles In chater 5, we have been considering quantized waves in solids to be articles and this becomes very imortant when we discuss thermal conductivity.

More information

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W Lecture hermodnamics 9 Entro form of the st law Let us start with the differential form of the st law: du = d Q + d W Consider a hdrostatic sstem. o know the required d Q and d W between two nearb states,

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation

Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation JULY 2014 M C DOUGLL ET L. 1751 Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation TREVOR J. MCDOUGLL ND PUL M. BRKER School of Mathematics and Statistics, University of New South Wales,

More information

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1 558 CHAPTER 0 THE KINETIC THEORY OF GASES CHAPTER 0 Answer to Checkoint Questions. all but c. (a) all tie; (b) 3,, 3. gas A 4. 5 (greatest change in T ), then tie of,, 3, and 4 5.,, 3 (Q 3 0, Q goes into

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes

Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes VOLUME 33 JOURNAL OF PHYSICAL OCEANOGRAPHY MAY 23 Potential Enthaly: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes TREVOR J. MCDOUGALL* Antarctic CRC, University of Tasmania,

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information