Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Size: px
Start display at page:

Download "Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58"

Transcription

1 Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of What is the thermal efficiency? Part B ow much heat is discarded in each cycle? Part C What mass of fuel is burned in each cycle? Part D If the engine goes through 0.0 cycles er second, what is its ower outut in kilowatts? Part E If the engine goes through 0.0 cycles er second, what is its ower outut in horseower?

2 E7: What comression ratio must an Otto cycle have to achieve an ideal efficiency of 66. if.4? E: A window air-conditioner unit absorbs same time eriod deosits.0 0 What is the ower consumtion of the unit? of heat er minute from the room being cooled and in the of heat into the outside air. Part B What is the energy efficiency rating of the unit? E: Descrition: A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In five minutes of oeration of the engine, the heat rejected by the engine melts kg of... A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In five minutes of oeration of the engine, the heat rejected by the engine melts of ice. During this time, how much work is erformed by the engine?

3 E8: Descrition: You make tea with 0.0 kg of T water and let it cool to room temerature (0.0 degree(s) C) before drinking it. (a) Calculate the entroy change of the water while it cools. (b) The cooling rocess is essentially isothermal for the air in your... You make tea with 0.0 of 86.0 water and let it cool to room temerature (0.0 ) before drinking it. Calculate the entroy change of the water while it cools. Part B The cooling rocess is essentially isothermal for the air in your kitchen. Calculate the change in entroy of the air while the tea cools, assuming that all the heat lost by the water goes into the air. Part C What is the total entroy change of the system tea + air? Exress your answer using two significant figures.

4 E4: Descrition: A box is searated by a artition into two arts of equal volume. The left side of the box contains 00 molecules of nitrogen gas; the right side contains 00 molecules of oxygen gas. The two gases are at the same temerature. The artition is... A box is searated by a artition into two arts of equal volume. The left side of the box contains 00 molecules of nitrogen gas; the right side contains 00 molecules of oxygen gas. The two gases are at the same temerature. The artition is unctured, and equilibrium is eventually attained. Assume that the volume of the box is large enough for each gas to undergo a free exansion and not change temerature. On average, how many molecules of oxygen will there be in either half of the box? Exress your answer using two significant figures. molecules Part B On average, how many molecules of nitrogen will there be in either half of the box? Exress your answer using two significant figures. molecules Part C What is the change in entroy of the system when the artition is unctured? Part D What is the robability that the molecules will be found in the same distribution as they were before the artition was unctured, that is, 00 nitrogen molecules in the left half and 00 oxygen molecules in the right half? Give the order of magnitude. Exress your answer as the order of magnitude. If your answer is, so you would enter -7, then the order of magnitude is

5 0.40. IDENTIFY: Use the ideal gas law to calculate and for each state. Use the first law and secific exressions for Q, W, and U for each rocess. Use Eq.(0.4) to calculate e. Q is the net heat flow into the gas. SET UP: γ.40 C R /( γ ) 0.79 J/mol K; C C + R 9.0 J/mol K. The cycle is sketched in Figure Figure 0.40 EXECUTE: (a) oint.00 atm.0 0 Pa (given); nrt; nrt (0.0 mol)(8.4 J/mol K)(00 K) m.0 0 Pa oint rocess at constant volume so m nrt and n, R, constant imlies / T / T T T ( / ) (.00 atm)(600 K/00 K).00 atm.0 0 Pa oint Consider the rocess, since it is simler than. Process is at constant ressure so nrt and n, R, constant imlies / T / T.00 atm.0 0 Pa ( T / T ) (8.6 0 m )(49 K/00 K) 4. 0 m (b) rocess constant volume ( 0) Q nc T (0.0 mol)(0.79 J/mol K)(600 K 00 K) 80 J 0 and W 0. Then U Q W 80 J rocess Adiabatic means Q 0. U nc T (any rocess), so U (0.0 mol)(0.79 J/mol K)(49 K 600 K) 780 J T 00 K T 600 K T 49 K Then U Q W gives W Q U J. (It is correct for W to be ositive since is ositive.) rocess For constant ressure W (.0 0 Pa)(8.6 0 m 4. 0 m ) 60 J or W nr T (0.0 mol)(8.4 J/mol K)(00 K 49 K) 60 J, which checks. (It is correct for W to be negative, since is negative for this rocess.) Q nc T (0.0 mol)(9.0 J/mol K)(00 K 49 K) 960 J U Q W 960 J ( 60 K) 400 J or U nc T (0.0 mol)(0.79 J/mol K)(00 K 49 K) 400 J, which checks (c) Wnet W + W + W J 60 J + 0 J (d) Qnet Q + Q + Q 80 J J + 0 J work outut W 0 J (e) e %. heat energy inut Q 80 J e(carnot) T / T 00 K/600 K C EALUATE: For a cycle U 0, so by U Q W it must be that Qnet Wnet for a cycle. We can also check that U net 0: U net U + U + U 80 J 00 J 0 J 0 e < e(carnot), as it must.

6 0.4. IDENTIFY: Tb Tc and is equal to the maximum temerature. Use the ideal gas law to calculate T a. Aly the aroriate W exression to calculate Q for each rocess. e. U 0 for a comlete cycle and for an isothermal rocess of an ideal gas. Q SET UP: For helium, C R / and C R /. The maximum efficiency is for a Carnot cycle, and ecarnot TC / T. EXECUTE: (a) Qin Qab + Qbc. Qout Q ca. Tmax Tb Tc 7 C 600 K. aa bb a nrt Ta Tb (600 K) 00 K. b ( moles)(8. J/mol K)(600 K) bb nrtb b 0.0 m. T T.0 0 Pa a b b b b c c b c b (0.0 m ) m a. Tb Tc c Qab nc Tab ( ) c c nrtb c Qbc Wbc d d nrtb ln nrtb ln. b b bc ( mol) 8. J/mol K (400 K) J ( ) Q 4 (.00 mol) 8. J/mol K (600 K)ln.0 0 J. b Q Q Q Qout Qca nc Tca ( ) b 4 in ab + bc.0 0 J. 4 (.00 mol) 8. J/mol K (400 K).66 0 J. 4 4 (b) Q U + W 0 + W W Q Q.0 0 J.66 0 J J. in out J e W Qin 0. % J TC (c) e 00 K max ecarnot % T 600 K EALUATE: The thermal efficiency of this cycle is about one-third of the efficiency of a Carnot cycle that oerates between the same two temeratures.

7 0.46. IDENTIFY: Use Eq.(0.4) to calculate e. SET UP: The cycle is sketched in Figure C R / for an ideal gas C C + R 7 R / SET UP: rocess Figure 0.46 Calculate Q and W for each rocess. 0 imlies W 0 & 0 imlies Q nc T nc ( T T ) But nrt and constant says nrt and nrt. ( ) nr( T T ); nr T (true when is constant). Thus Q nc T nc ( / nr) ( C / R) ( C / R) ( ) ( C / R). Q > 0; heat is absorbed by the gas.) Then rocess 0 so W ( ) 0( 0 0 ) 00 (W is ositive since increases.) 0 imlies Q nc ( ) T nc T T But nrt and constant says nrt and nrt. ( ) nr( T T ); nr T (true when is constant). Thus Q nc T nc ( / nr) ( C / R) ( C / R) ( ) ( C / R). ( Q > 0; heat is absorbed by the gas.) Then rocess 4 0 imlies W 0 0 so Q nc T nc ( / nr) ( C / R)( )( ) ( C / R) ( Q < 0 so heat is rejected by the gas.) rocess 4 0 so W ( 4 ) 0( 0 0 ) 00 (W is negative since decreases) 0 so Q nc T nc ( / nr) ( C / R) ( C / R) 0( 0 0 ) ( C / R) 00 ( Q < 0 so heat is rejected by the gas.) total work erformed by the gas during the cycle: W W + W + W + W tot (Note that W equals the area enclosed by the cycle in the -diagram.) tot total heat absorbed by the gas during the cycle C C C + C Q Q + Q + R R R ( Q ): eat is absorbed in rocesses and. C + ( C + R) C + R But C C + R so Q R R total heat rejected by the gas during the cycle ( Q ): eat is rejected in rocesses 4 and 4. C C C + C Q Q + Q R R R C C + ( C + R) C + R But C C + R so QC R R W 00 R R efficiency e Q [C + R]/ R ( ) C + R ( R/) + R 9 ( ) 0 0 C. e % C + R C + R EALUATE: As a check on the calculations note that QC + Q W, as it should. R R

8 0.8. IDENTIFY and SET UP: First use the methods of Chater 7 to calculate the final temerature T of the system. EXECUTE: kg of water (cools from 4.0 C to T) Q mc T (0.600 kg)(490 J/kg K)( T 4.0 C) (4 J/K) T. 0 J kg of ice (warms to 0 C, melts, and water warms from 0 C to T) Q mc (0 C (.0 C)) + ml + mc ( T 0 C) ice f water Q Q 7 J J + (09. J/K) T.88 0 J + (09. J/K) T kg (00 J/kg K)(.0 C) 4 0 J/kg (490 J/kg K)( T 0 C) Q system 0 gives 4 (4 J/K) T. 0 J J + (09. J/K) T 0 4 (.74 0 J/K) T J 4 T ( J)/(.74 0 J/K) 4.8 C 08 K EALUATE: The final temerature must lie between.0 C and 4.0 C. A final temerature of 4.8 C is consistent with only liquid water being resent at equilibrium. IDENTIFY and SET UP: Now we can calculate the entroy changes. Use S Q / T for hase changes and the method of Examle 0.6 to calculate S for temerature changes. EXECUTE: ice: The rocess takes ice at C and roduces water at 4.8 C. Calculate S for a reversible rocess between these two states, in which heat is added very slowly. S is ath indeendent, so S for a reversible rocess is the same as S for the actual (irreversible) rocess as long as the initial and final states are the same. S dq / T, where T must be in kelvins For a temerature change dq mc dt so For a hase change, since it occurs at constant T, S dq / T Q / T ± ml / T. T S ( mc / T ) dt mcln( T / T ). Therefore ice ice f water T S mc ln(7 K/8 K) + ml / 7 K + mc ln(08 K/7 K) S ice (0.000 kg)[(00 J/kg K) ln(7 K/8 K) + (4 0 J/kg)/7 K + (490 J/kg K) ln(08 K/7 K)] S ice.9 J/K J/K +.7 J/K 9.4 J/K water: Swater mc ln( T / T ) (0.600 kg)(490 J/kg K)ln(08 K/8 K) 80. J/K For the system, S Sice + Swater 9.4 J/K 80. J/K + J/K EALUATE: Our calculation gives S > 0, as it must for an irreversible rocess of an isolated system.

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter Physics 2A (Fall 2012) Chaters 11:Using Energy and 12: Thermal Proerties of Matter "Kee in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing,

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p ) Examle roblems Chater : he Kinetic heory o Gases Homework:, 8,,, 5, 7 (. 5-5) 9. An automobile tire has a volume o.64 x m and contains air at a gauge ressure (above atmosheric ressure) o 65 kpa when the

More information

Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN.

Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN. HRK 26.7 Summarizing the information given in the question One way of doing this is as follows. W A = 5W Q IN A = Q IN Q OU A = 2Q OU Use e A = W A Q IN = QIN A QOU Q IN A A A and e = W Q IN = QIN QOU

More information

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

02. Equilibrium Thermodynamics II: Engines

02. Equilibrium Thermodynamics II: Engines University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 205 02. Equilibrium Thermodynamics II: Engines Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

Entropy in Macroscopic Systems

Entropy in Macroscopic Systems Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

More information

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

The Second Law of Thermodynamics. (Second Law of Thermodynamics)

The Second Law of Thermodynamics. (Second Law of Thermodynamics) he Second aw of hermodynamics For the free exansion, we have >. It is an irreversible rocess in a closed system. For the reversible isothermal rocess, for the gas > for exansion and < for comression. owever,

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Chem340 Physical Chemistry for Biochemists Exam Mar 16, 011 Your Name _ I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Heat Engines and the Second Law of Thermodynamics

Heat Engines and the Second Law of Thermodynamics Heat Engines and the Second Law of hermodynamics here are three equivalent forms of the second law of thermodynamics; will state all three, discuss: I. (Kelvin-Planck) It is impossible to construct an

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

Sec# Wave Motion - Superposition and Interference of Waves Grade# 50

Sec# Wave Motion - Superposition and Interference of Waves Grade# 50 Coordinator: Dr. A. Naqvi Saturday, August 0, 009 Page: Q. The function y(x,t) = 5.0 cos (x- 0 t) with x and y in meters and t in seconds, describes a wave on a taut string. What is the mass of one meter

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong.

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong. hermodynamics I have not roofread these notes; so lease watch out for tyos, anything misleading or just lain wrong. Please read ages 227 246 in Chater 8 of Kittel and Kroemer and ay attention to the first

More information

S = S(f) S(i) dq rev /T. ds = dq rev /T

S = S(f) S(i) dq rev /T. ds = dq rev /T In 1855, Clausius proved the following (it is actually a corollary to Clausius Theorem ): If a system changes between two equilibrium states, i and f, the integral dq rev /T is the same for any reversible

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

5. We use the following relation derived in Sample Problem Entropy change of two blocks coming to equilibrium:

5. We use the following relation derived in Sample Problem Entropy change of two blocks coming to equilibrium: Chapter 20 5. We use the following relation derived in Sample Problem Entropy change of two blocks coming to equilibrium: Tf S = mc ln. Ti (a) The energy absorbed as heat is given by Eq. 19-14. Using Table

More information

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Chemistry 531 Spring 2009 Problem Set 6 Solutions Chemistry 531 Sring 2009 Problem Set 6 Solutions 1. In a thermochemical study of N 2, the following heat caacity data were found: t 0 C,m d 27.2Jmol 1 K 1 f t b f C,m d 23.4Jmol 1 K 1 C,m d 11.4Jmol 1

More information

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

More information

T ice T water T water = T ice =0 0 C. e =1

T ice T water T water = T ice =0 0 C. e =1 Given 1 kg of water at 100 0 C and a very large (very very large) block of ice at 0 0 C. A reversible heat engine absorbs heat from the water and expels heat to the ice until work can no longer be extracted

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

For the refrigerator of this problem, T H = 96 F = 309 K and T L = 70 F = 294 K, so K = (294 K)/(309 K 294 K) = 19.6.

For the refrigerator of this problem, T H = 96 F = 309 K and T L = 70 F = 294 K, so K = (294 K)/(309 K 294 K) = 19.6. 39. A Carnot refrigerator working between a hot reservoir at temperature H and a cold reservoir at temperature L has a coefficient of performance K that is given by K L = H L For the refrigerator of this

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

ln. 1 We substitute V 2 = 2.00V 1 to obtain

ln. 1 We substitute V 2 = 2.00V 1 to obtain 1. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the volume V, and the temperature T by p = nrt/v. The work done by the gas during the isothermal expansion is V2

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

CHAPTER 19: Heat and the First Law of Thermodynamics

CHAPTER 19: Heat and the First Law of Thermodynamics CHAPTER 9: Heat and the First Law of Thermodynamics Responses to Questions. (a) No. Because the ernal energies of solids and liquids are complicated and include potential energies associated with the bonds

More information

第 1 頁, 共 6 頁 Chap20 1. Test Bank, Question 5 Which of the following is NOT a state variable? Work Internal energy Entropy Temperature Pressure 2. Test Bank, Question 18 Let denote the change in entropy

More information

EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

Physics 202 Homework 5

Physics 202 Homework 5 Physics 202 Homework 5 Apr 29, 2013 1. A nuclear-fueled electric power plant utilizes a so-called boiling water reac- 5.8 C tor. In this type of reactor, nuclear energy causes water under pressure to boil

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W

Lecture Thermodynamics 9. Entropy form of the 1 st law. Let us start with the differential form of the 1 st law: du = d Q + d W Lecture hermodnamics 9 Entro form of the st law Let us start with the differential form of the st law: du = d Q + d W Consider a hdrostatic sstem. o know the required d Q and d W between two nearb states,

More information

The laws of Thermodynamics. Work in thermodynamic processes

The laws of Thermodynamics. Work in thermodynamic processes The laws of Thermodynamics ork in thermodynamic processes The work done on a gas in a cylinder is directly proportional to the force and the displacement. = F y = PA y It can be also expressed in terms

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

C e. Negative. In a clockwise cycle, the work done on the gas is negative. Or for the cycle Qnet = +600 J and U = 0 so W = Q = 600 J

C e. Negative. In a clockwise cycle, the work done on the gas is negative. Or for the cycle Qnet = +600 J and U = 0 so W = Q = 600 J AP Physics Free Response Practice Thermodynamics ANSWERS 1983B4 Since T is constant, pbv B = p 0 V 0 and V B = 2V 0 gives p B = ½ p0 U = Q + W, since AB is isothermal, U = 0 and W = Q = 1000 J c. The entropy

More information

CHEM 305 Solutions for assignment #4

CHEM 305 Solutions for assignment #4 CEM 05 Solutions for assignment #4 5. A heat engine based on a Carnot cycle does.50 kj of work per cycle and has an efficiency of 45.0%. What are q and q C for one cycle? Since the engine does work on

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CH. 19 PRACTICE Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a fixed amount of ideal gas goes through an isobaric expansion, A) its

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter.

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter. .4. Determination of the enthaly of solution of anhydrous and hydrous sodium acetate by anisothermal calorimeter, and the enthaly of melting of ice by isothermal heat flow calorimeter Theoretical background

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

More information

Q(J) Wen = 0 &UCD = QCD - WCD ~ QCD = -60 L atm. .<.-^-l- M -«K

Q(J) Wen = 0 &UCD = QCD - WCD ~ QCD = -60 L atm. .<.-^-l- M -«K Lea & Burke & 'i-ye Physics: The Nature of Things 22.5 GIveu^rT^N CD: Isochoric = - (2 aim) (20 L) = 60 L atm T c =^"410 K, T H = 750 K, Q H = 3.0 x 10 3 J Find: -WOT\

More information

A short note on Reitlinger thermodynamic cycles

A short note on Reitlinger thermodynamic cycles short note on Reitlinger thermodynamic cycles melia arolina Saravigna eartment of lied Science and echnology, Politecnico di orino, orino, Italy bstract: It is well known that arnot cycle is the thermodynamic

More information

Chapter 20 Entropy and the 2nd Law of Thermodynamics

Chapter 20 Entropy and the 2nd Law of Thermodynamics Chapter 20 Entropy and the 2nd Law of Thermodynamics A one-way processes are processes that can occur only in a certain sequence and never in the reverse sequence, like time. these one-way processes are

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Module - 1: Thermodynamics

Module - 1: Thermodynamics Thermodynamics: Module - : Thermodynamics Thermodynamics (Greek: thermos = heat and dynamic = change) is the study of the conversion of energy between heat and other forms, mechanical in particular. All

More information

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas.

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas. 10.1 Thermodynamics 10.2 Processes 10 10.3 The second law of thermodynamics and entroy 10.1 Thermodynamics From the combined gas laws, we determined that: P/T = k or P = kt 10.1.1 State the equation of

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

Example problems. Chapter 2: Temperature, heat, and the 1 st law of Thermodynamic. Homework: 2, 3, 4, 5, 6, 10, 15, 19, 21 (pages )

Example problems. Chapter 2: Temperature, heat, and the 1 st law of Thermodynamic. Homework: 2, 3, 4, 5, 6, 10, 15, 19, 21 (pages ) Examle roblems Chater : emerature, heat, and the 1 st law of hermodynamic Homework:,, 4, 5, 6, 1, 15, 19, 1 (ages 5-51) . (Page 5) wo constant-volume gas thermometers are assembled, one with nitrogen and

More information

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees Phys10 - First Major 071 Zero Version Q1. Two identical sinusoidal traveling waves are sent along the same string in the same direction. What should be the phase difference between the two waves so that

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

11/15/2017. F GonP. F PonG THERMAL ENERGY OF IDEAL GAS HIGH PRESSURE GAS IN A CYLINDER REMEMBER HIGH PRESSURE GAS IN A CYLINDER

11/15/2017. F GonP. F PonG THERMAL ENERGY OF IDEAL GAS HIGH PRESSURE GAS IN A CYLINDER REMEMBER HIGH PRESSURE GAS IN A CYLINDER UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory A HYSICS THERMAL ENERGY OF IDEAL GAS IDEAL GAS ASSUMTION Ideal gas particles do not interact at a distance; thus the system

More information

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN FINIE IME HERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE AKINSON CYCLE By Yanlin GE, Lingen CHEN, and Fengrui SUN Performance of an air-standard Atkinson cycle is analyzed by using finite-time

More information

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for.

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for. Chapter 12 Solutions Q12.12. Reason: Assume the gas is an ideal gas, and use the ideal gas law pv = nrt. Since the number of moles doesn t change and R is a constant, then Equation 12.14 gives In each

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

Chapter 20. and the corresponding change in entropy is 1 absorbed (see Eq. 20-2). S T dq Q T, where Q is the heat

Chapter 20. and the corresponding change in entropy is 1 absorbed (see Eq. 20-2). S T dq Q T, where Q is the heat Chapter 0 1. INK If the expansion of the gas is reversible and isothermal, then there s no change in internal energy. owever, if the process is reversible and adiabatic, then there would be no change in

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, WORK, ND THE FIRST LW OF THERMODYNMICS 8 EXERCISES Section 8. The First Law of Thermodynamics 5. INTERPRET We identify the system as the water in the insulated container. The problem involves calculating

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Non-Equilibrium Thermodynamics for Engineers

Non-Equilibrium Thermodynamics for Engineers Non-Equilibrium Thermodynamics for Engineers How do we find the otimal rocess unit? Signe Kjelstru, Chair of Engineering Thermodynamics Deartment of Process and Energy TU Delft ecture no. 7 Why is the

More information

Phys102 First Major-182 Zero Version Coordinator: A A Naqvi Thursday, February 14, 2019 Page: 1

Phys102 First Major-182 Zero Version Coordinator: A A Naqvi Thursday, February 14, 2019 Page: 1 Coordinator: A A Naqvi Thursday February 14 2019 Page: 1 Q1. Figure 1 shows a graph of a wave traveling to the left along a string at a speed of 34 m/s. At this instant what is the transverse velocity

More information

Actual exergy intake to perform the same task

Actual exergy intake to perform the same task CHAPER : PRINCIPLES OF ENERGY CONSERVAION INRODUCION Energy conservation rinciles are based on thermodynamics If we look into the simle and most direct statement of the first law of thermodynamics, we

More information

Class 22 - Second Law of Thermodynamics and Entropy

Class 22 - Second Law of Thermodynamics and Entropy Class 22 - Second Law of Thermodynamics and Entropy The second law of thermodynamics The first law relates heat energy, work and the internal thermal energy of a system, and is essentially a statement

More information

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees First major ( 043 ) 1) The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t) = y m sin( kx ωt ϕ ). At time t = 0 the point at x = 0 has a displacement of zero and is moving

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz on Chapter 12 Quiz 10 1. C&J page 365 (top), Check Your Understanding #12: Consider an ob A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz 10 1. C&J page 365 (top), Check Your Understanding

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58 PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 6, 7, 37, 44, 46, 5, 58 14.1 An ideal gas is sealed in a rigid container at 5 C and. What will its temperature be when the pressure is incresed

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13 Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

Grain elevator. You need to convince your boss that this is a very inefficient system.

Grain elevator. You need to convince your boss that this is a very inefficient system. Grain elevator You are working for a grain storage comany over the summer, and they have a roblem with the grain elevator, that kees breaking down. This morning, your boss woke u feeling like a genius

More information

Questions and Problems

Questions and Problems 668 Chapter 15 Thermodynamics II Q = 0 and so U = 2W. For process a S b we have U 7 0 (the internal energy increases because the temperature increases) and W 7 0 (the gas expands), so Q = U + W is positive

More information

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall Physics 231 Topic 14: Laws of Thermodynamics Alex Brown Dec 7-11 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 Name: Section: Seat Assignment: Specify your EXAM ID on the right. Use 000 if you do not know your exam ID. 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

More information

Thermal Conductivity, k

Thermal Conductivity, k Homework # 85 Specific Heats at 20 C and 1 atm (Constant Pressure) Substance Specific Heat, c Substance Specific Heat, c kcal/kg C J/kg C kcal/kg C J/kg C Solids Aluminum 0.22 900 Brass 0.090 377 Copper

More information