Lecture'4:' Pixels'and'Filters Lecture 3: Pixels and Filters

Size: px
Start display at page:

Download "Lecture'4:' Pixels'and'Filters Lecture 3: Pixels and Filters"

Transcription

1 Lecture'4:' SF323: Applications in Machine Learning Pixels'and'Filters Lecture 3: Pixels and Filters Dr.'Juan'Carlos'Niebles Stanford'AI'Lab Krisada Chaiyasarn, PhD Professor'Fei>Fei Li Stanford'Vision'Lab 1

2 What'we'will'learn'today? Images'as'functions Linear'systems'(filters) Convolution'and'correlation Some'background'reading: Forsyth'and'Ponce,'Computer'Vision,'Chapter'7 2

3 An'image'contains'discrete'number'of'pixels A'simple'example Pixel'value: Images'as'functions grayscale ' (or' intensity ):'[0,255]

4 An'image'contains'discrete'number'of'pixels A'simple'example Pixel'value: Images'as'functions grayscale ' (or' intensity ):'[0,255] color [90,'0,'53] RGB:'[R,'G,'B] [249,'215,'203] Lab:'[L,'a,'b] HSV:'[H,'S,'V] [213,'60,'67] 4

5 Images'as'functions An'Image'as'a'function f from'r2 to'rm: f( x, y ) gives'the'intensity at'position'( x, y ) Defined'over'a'rectangle,'with'a'finite'range: f: [a,b] x [c,d ]! [0,255] Domain support range 5

6 Images'as'functions An'Image'as'a'function f from'r 2 to'r M : f( x, y ) gives'the'intensity at'position'( x, y ) Defined'over'a'rectangle,'with'a'finite'range: f: [a,b] x [c,d ]! [0,255] Domain support range A'color'image:' rxy (, ) f( x, y) = g( x, y) bxy (, ) 6

7 Images'as'discrete'functions Images'are'usually'digital'(discrete): Sample the'2d'space'on'a'regular'grid Represented'as'a'matrix'of'integer'values pixel 7

8 Images'as'discrete'functions Cartesian'coordinates Notation'for' discrete' functions 8

9 What'we'will'learn'today? Images'as'functions Linear'systems'(filters) Convolution'and'correlation Some'background'reading: Forsyth'and'Ponce,'Computer'Vision,'Chapter'7 9

10 Filtering: Systems'and'Filters Form'a'new'image'whose'pixels'are'a' combination'original'pixel'values Goals:' >Extract'useful'information'from'the'images Features'(edges,'corners,'blobs ) > Modify'or'enhance'image'properties:' super>resolution;'in>painting;'de>noising 10

11 De>noising Super>resolution In>painting Bertamio et'al' 11

12 2D'discrete>space'systems'(filters) 12

13 * Filter'example'#1:'Moving'Average 2D'DS'moving'average'over'a'3' 3'window'of' neighborhood h ( f 1 * h)[ m, n] = R f [ k, l] h[ m-k, n-l] 9 k, l 13

14 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 14 Courtesy'of'S.'Seitz

15 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 15 15

16 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 16

17 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 17

18 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 18

19 Filter'example'#1:'Moving'Average ( f h)[m, n] = f [k,l] h[m k, n l] k,l 19 Source:*S.*Seitz

20 Filter'example'#1:'Moving'Average In'summary: Replaces'each'pixel' with'an'average'of'its' neighborhood. Achieve'smoothing' effect'(remove'sharp' features) h[, ]

21 Filter'example'#1:'Moving'Average 21

22 Filter'example'#2:'Image'Segmentation Image'segmentation'based'on'a'simple' threshold: 255, 22

23 Classification'of'systems 'Amplitude'properties 'Linearity 'Stability 'Invertibility 'Spatial'properties 'Causality 'Separability 'Memory 'Shift'invariance 'Rotation'invariance 23

24 Shift>invariance If'''''''''''''''''''''''''''''''''''''''''''''then for'every'input'image'f[n,m]'and'shifts'n 0,m 0 24

25 Is'the'moving'average'system'is'shift'invariant?'

26 Is'the'moving'average'system'is'shift'invariant?' Yes! 26

27 Linear'Systems'(filters) Linear'filtering: Form'a'new'image'whose'pixels'are'a'weighted'sum'of' original'pixel'values Use'the'same'set'of'weights'at'each'point S is'a'linear'system'(function)'iff it's#satisfies superposition'property 27

28 What'we'will'learn'today? Images'as'functions Linear'systems'(filters) Convolution'and'correlation Some'background'reading: Forsyth'and'Ponce,'Computer'Vision,'Chapter'7 32

29 Discrete'convolution'(symbol:''''')' 'Fold'h[k,l]'about'origin'to'form'h[ k, l] 'Shift'the'folded'results'by'n,m to'form'h[n' 'k,m 'l] 'Multiply'h[n' 'k,m 'l]'by'f[k,'l] 'Sum'over'all'k,l 'Repeat'for'every'n,m h[k,l] h[>k,>l] h[n>k,m>l] n 33

30 Discrete'convolution'(symbol:''''')' 'Fold'h[k,l]'about'origin'to'form'h[ k, l] 'Shift'the'folded'results'by'n,m to'form'h[n' 'k,m 'l] 'Multiply'h[n' 'k,m 'l]'by'f[k,'l] 'Sum'over'all'k,l 'Repeat'for'every'n,m h[n>k,m>l] f[k,l]'x'h[n>k,m>l] f[k,l] Sum'(f[k,l]'x'h[n>k,m>l]) 35 n

31 Convolution'in'2D'B examples * =? Original Courtesy'of'D'Lowe 36

32 Convolution'in'2D'B examples * = Original Filtered (no change) Courtesy'of'D'Lowe 37

33 Convolution'in'2D'B examples * =? Original Courtesy'of'D'Lowe 38

34 Convolution'in'2D'B examples * = Original Shifted right By 1 pixel Courtesy'of'D'Lowe 39

35 Convolution'in'2D'B examples * =? Original Courtesy'of'D'Lowe 40

36 Convolution'in'2D'B examples * = Original Blur (with a box filter) Courtesy'of'D'Lowe 41

37 Convolution'in'2D'B examples 2 - =? Original (Note that filter sums to 1) details of the image + - Courtesy'of'D'Lowe 42

38 What'does'blurring'take'away? = original smoothed.(5x5) detail Let s'add'it'back: +*a = original detail sharpened 43

39 Convolution'in'2D' Sharpening.filter 2 - = Original Sharpening'filter: Accentuates'differences'with'local'average Courtesy'of'D'Lowe 44

40 Image'support'and'edge'effect A'computer'will'only'convolve'finite'support' signals.' That'is:'images'that'are'zero'for'n,m outside'some' rectangular'region MATLAB s'conv2'performs'2d'ds'convolution'of'finite> support'signals. * = N2' M2' (N1'+'N2' '1)' (M1'+M2' '1) N1' M1 45

41 Image'support'and'edge'effect A'computer'will'only'convolve'finite'support' signals.' What'happens'at'the'edge? f h 'zero' padding 'edge'value'replication 'mirror'extension 'more'(beyond'the'scope'of'this'class) >>'Matlab conv2'uses' zero>padding 46

42 What'we'will'learn'today? Images'as'functions Linear'systems'(filters) Convolution'and'correlation Some'background'reading: Forsyth'and'Ponce,'Computer'Vision,'Chapter'7 47

43 (Cross)'correlation'(symbol:'''''''')'' Cross'correlation'of'two'2D'signals'f[n,m]'and'g[n,m] Equivalent'to'a'convolution'without'the'flip (k,'l)'is'called'the'lag r fg [n, m] =f[n, m] g [ n, m] (g*'is'defined'as'the'complex#conjugate#of'g.'in'this'class,'g(n,m)'are'real'numbers,'hence'g*=g.)' 48

44 (Cross)'correlation' example MATLAB s' xcorr2 Courtesy'of'J.'Fessler 49

45 (Cross)'correlation' example Left Right scanline Norm.'cross'corr.'score 50

46 Convolution'vs.'(Cross)'Correlation 51

47 Convolution'vs.'(Cross)'Correlation A'convolution is'an'integral'that'expresses'the'amount' of'overlap'of'one'function'as'it'is'shifted'over'another' function.' convolution'is'a'filtering'operation Correlation compares'the'similarity of#two sets#of# data.&correlation'computes'a'measure'of'similarity'of' two'input'signals'as'they'are'shifted'by'one'another.' The'correlation'result'reaches'a'maximum'at'the'time' when'the'two'signals'match'best'. correlation'is'a'measure'of'relatedness'of'two'signals 52

48 What'we'have'learned'today? Images'as'functions Linear'systems'(filters) Convolution'and'correlation 56

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning EE 637 Study Solutions - Assignment 3 Topics: Discrete transforms; and D Filters, sampling, and scanning Spring 00 Exam : Problem 3 (sampling Consider a sampling system were the input, s(t = sinc(t, is

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Outline. Convolution. Filtering

Outline. Convolution. Filtering Filtering Outline Convolution Filtering Logistics HW1 HW2 - out tomorrow Recall: what is a digital (grayscale) image? Matrix of integer values Images as height fields Let s think of image as zero-padded

More information

Image processing and nonparametric regression

Image processing and nonparametric regression Image processing and nonparametric regression Rencontres R BoRdeaux 2012 B. Thieurmel Collaborators : P.A. Cornillon, N. Hengartner, E. Matzner-Løber, B. Wolhberg 2 Juillet 2012 Rencontres R BoRdeaux 2012

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Sept 2009 Lecture 8: Pyramids and image derivatives Goals Images as functions Derivatives of images Edges and gradients Laplacian pyramids Code for lecture

More information

LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

Digital Image Processing: Sharpening Filtering in Spatial Domain CSC Biomedical Imaging and Analysis Dr. Kazunori Okada

Digital Image Processing: Sharpening Filtering in Spatial Domain CSC Biomedical Imaging and Analysis Dr. Kazunori Okada Homework Exercise Start project coding work according to the project plan Adjust project plans according to my comments (reply ilearn threads) New Exercise: Install VTK & FLTK. Find a simple hello world

More information

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 68: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Point Descriptors Point Descriptors Describe image properties in the neighborhood of a keypoint Descriptors

More information

Lecture 22: Reconstruction and Admissibility

Lecture 22: Reconstruction and Admissibility WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 22: Reconstruction and Admissibility Prof.V.M.Gadre, EE, IIT Bombay Tutorials Q 1. Construct the STFT, CWT of the signal x(t) using Matlab and discuss

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 Machine Learning for Signal Processing Sparse and Overcomplete Representations Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 1 Key Topics in this Lecture Basics Component-based representations

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA Review for Exam Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 0003 March 26, 204 Abstract Here are some things you need to know for the in-class

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc Linear Diffusion Derivation of Heat equation Consider a 2D hot plate with Initial temperature profile I 0 (x, y) Uniform (isotropic) conduction coefficient c Unit thickness (along z) Problem: What is temperature

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Digital Image Processing. Filtering in the Frequency Domain

Digital Image Processing. Filtering in the Frequency Domain 2D Linear Systems 2D Fourier Transform and its Properties The Basics of Filtering in Frequency Domain Image Smoothing Image Sharpening Selective Filtering Implementation Tips 1 General Definition: System

More information

Introduction to Sparsity in Signal Processing

Introduction to Sparsity in Signal Processing 1 Introduction to Sparsity in Signal Processing Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 212 2 Under-determined linear equations Consider a system

More information

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017 Image Processing 2 Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 This week What is an image? What is image processing? Point processing Linear (Spatial) filters Frequency domain Deep

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

Taking derivative by convolution

Taking derivative by convolution Taking derivative by convolution Partial derivatives with convolution For 2D function f(x,y), the partial derivative is: For discrete data, we can approximate using finite differences: To implement above

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 009 Outline Image Enhancement in Spatial Domain Spatial Filtering Smoothing Filters Median Filter

More information

Introduction to Sparsity in Signal Processing

Introduction to Sparsity in Signal Processing 1 Introduction to Sparsity in Signal Processing Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 212 2 Under-determined linear equations Consider a system

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Partial Differential Equations and Image Processing. Eshed Ohn-Bar

Partial Differential Equations and Image Processing. Eshed Ohn-Bar Partial Differential Equations and Image Processing Eshed Ohn-Bar OBJECTIVES In this presentation you will 1) Learn what partial differential equations are and where do they arise 2) Learn how to discretize

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 BME I5000: Biomedical Imaging Lecture FT Fourier Transform Review Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ Fourier Transform (1D) The Fourier Transform (FT) is

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Lecture 14: Convolution and Frequency Domain Filtering

Lecture 14: Convolution and Frequency Domain Filtering Lecture 4: Convolution and Frequency Domain Filtering Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu October 7, 005 Abstract The impulse

More information

Sampling in 1D ( ) Continuous time signal f(t) Discrete time signal. f(t) comb

Sampling in 1D ( ) Continuous time signal f(t) Discrete time signal. f(t) comb Sampling in 2D 1 Sampling in 1D Continuous time signal f(t) Discrete time signal t ( ) f [ k] = f( kt ) = f( t) δ t kt s k s f(t) comb k 2 Nyquist theorem (1D) At least 2 sample/period are needed to represent

More information

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters Sobel Filters Note that smoothing the image before applying a Sobel filter typically gives better results. Even thresholding the Sobel filtered image cannot usually create precise, i.e., -pixel wide, edges.

More information

Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department

Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department Tutorial 9 The Discrete Fourier Transform (DFT) SIPC 236327, Spring 2017 Technion, CS Department The DFT Matrix The DFT matrix of size M M is defined as DFT = 1 M W 0 0 W 0 W 0 W where W = e i2π M i =

More information

Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures. Lecture 04

Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures. Lecture 04 Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures Lecture 04 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Self-Taught Learning 1. Learn

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 11 Oct 3 rd, 2017 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review: 2D Discrete Fourier Transform If I is an image of size N then Sin

More information

Part III Super-Resolution with Sparsity

Part III Super-Resolution with Sparsity Aisenstadt Chair Course CRM September 2009 Part III Super-Resolution with Sparsity Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Super-Resolution with Sparsity Dream: recover high-resolution

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

CS4495/6495 Introduction to Computer Vision. 2A-L6 Edge detection: 2D operators

CS4495/6495 Introduction to Computer Vision. 2A-L6 Edge detection: 2D operators CS4495/6495 Introduction to Computer Vision 2A-L6 Edge detection: 2D operators Derivative theorem of convolution - 1D This saves us one operation: ( ) ( ) x h f h f x f h h x h x ( ) f Derivative of Gaussian

More information

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Image Processing Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Ch3. Image Enhancement in the Spatial Domain Note that T (m) = 0.5 E. The general law of contrast

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Tikhonov Regularization in General Form 8.1

Tikhonov Regularization in General Form 8.1 Tikhonov Regularization in General Form 8.1 To introduce a more general formulation, let us return to the continuous formulation of the first-kind Fredholm integral equation. In this setting, the residual

More information

264 CHAPTER 4. FRACTIONS cm in cm cm ft pounds

264 CHAPTER 4. FRACTIONS cm in cm cm ft pounds 6 CHAPTER. FRACTIONS 9. 7cm 61. cm 6. 6ft 6. 0in 67. 10cm 69. pounds .. DIVIDING FRACTIONS 6. Dividing Fractions Suppose that you have four pizzas and each of the pizzas has been sliced into eight equal

More information

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat Geometric View of Machine Learning Nearest Neighbor Classification Slides adapted from Prof. Carpuat What we know so far Decision Trees What is a decision tree, and how to induce it from data Fundamental

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Matrix Notation Mark Schmidt University of British Columbia Winter 2017 Admin Auditting/registration forms: Submit them at end of class, pick them up end of next class. I need

More information

Matrix Algebra. Learning Objectives. Size of Matrix

Matrix Algebra. Learning Objectives. Size of Matrix Matrix Algebra 1 Learning Objectives 1. Find the sum and difference of two matrices 2. Find scalar multiples of a matrix 3. Find the product of two matrices 4. Find the inverse of a matrix 5. Solve a system

More information

Introduction to Multigrid Methods

Introduction to Multigrid Methods Introduction to Multigrid Methods Chapter 9: Multigrid Methodology and Applications Gustaf Söderlind Numerical Analysis, Lund University Textbooks: A Multigrid Tutorial, by William L Briggs. SIAM 1988

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

Techniques for Dimensionality Reduction. PCA and Other Matrix Factorization Methods

Techniques for Dimensionality Reduction. PCA and Other Matrix Factorization Methods Techniques for Dimensionality Reduction PCA and Other Matrix Factorization Methods Outline Principle Compoments Analysis (PCA) Example (Bishop, ch 12) PCA as a mixture model variant With a continuous latent

More information

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing ΗΥ418 Διδάσκων Δημήτριος Κατσαρός @ Τμ. ΗΜΜΥ Πανεπιστήμιο Θεσσαλίαρ Διάλεξη 21η BackProp for CNNs: Do I need to understand it? Why do we have to write the

More information

Image Characteristics

Image Characteristics 1 Image Characteristics Image Mean I I av = i i j I( i, j 1 j) I I NEW (x,y)=i(x,y)-b x x Changing the image mean Image Contrast The contrast definition of the entire image is ambiguous In general it is

More information

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods Fourier Analysis 1992 2008 R. C. Gonzalez & R. E. Woods Properties of δ (t) and (x) δ : f t) δ ( t t ) dt = f ( ) f x) δ ( x x ) = f ( ) ( 0 t0 x= ( 0 x0 1992 2008 R. C. Gonzalez & R. E. Woods Sampling

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis CS 593 / 791 Computer Science and Electrical Engineering Dept. West Virginia University 23rd January 2006 Outline 1 Recap 2 Edge Enhancement 3 Experimental Results 4 The rest of

More information

Equations of fluid dynamics for image inpainting

Equations of fluid dynamics for image inpainting Equations of fluid dynamics for image inpainting Evelyn M. Lunasin Department of Mathematics United States Naval Academy Joint work with E.S. Titi Weizmann Institute of Science, Israel. IMPA, Rio de Janeiro

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

ECE Lecture 1. Terminology. Statistics are used much like a drunk uses a lamppost: for support, not illumination

ECE Lecture 1. Terminology. Statistics are used much like a drunk uses a lamppost: for support, not illumination ECE471-571 Lecture 1 Introduction Statistics are used much like a drunk uses a lamppost: for support, not illumination -- Vin Scully ECE471/571, Hairong Qi 2 Terminology Feature Sample Dimension Pattern

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sharpening, image derivatives, Laplacian, edges Revision: 1.2, dated: May 25, 2007 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center

More information

Linear Classification: Perceptron

Linear Classification: Perceptron Linear Classification: Perceptron Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong 1 / 18 Y Tao Linear Classification: Perceptron In this lecture, we will consider

More information

Chapter 10: Random Fields

Chapter 10: Random Fields LEARNING AND INFERENCE IN GRAPHICAL MODELS Chapter 10: Random Fields Dr. Martin Lauer University of Freiburg Machine Learning Lab Karlsruhe Institute of Technology Institute of Measurement and Control

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Numerical Analysis. Carmen Arévalo Lund University Arévalo FMN011

Numerical Analysis. Carmen Arévalo Lund University Arévalo FMN011 Numerical Analysis Carmen Arévalo Lund University carmen@maths.lth.se Discrete cosine transform C = 2 n 1 2 1 2 1 2 cos π 2n cos 3π 2n cos (2n 1)π 2n cos 6π 2n cos 2(2n 1)π 2n cos 2π 2n... cos (n 1)π 2n

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Lecture 9 Numerical optimization and deep learning Niklas Wahlström Division of Systems and Control Department of Information Technology Uppsala University niklas.wahlstrom@it.uu.se

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Modeling Natural Images with Higher-Order Boltzmann Machines

Modeling Natural Images with Higher-Order Boltzmann Machines Modeling Natural Images with Higher-Order Boltzmann Machines Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu joint work with Geoffrey Hinton and Vlad Mnih CIFAR

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 04 Greyscale Image Analysis Lecture 03 Summary Images as 2-D signals

More information

Lesson 04. KAZE, Non-linear diffusion filtering, ORB, MSER. Ing. Marek Hrúz, Ph.D.

Lesson 04. KAZE, Non-linear diffusion filtering, ORB, MSER. Ing. Marek Hrúz, Ph.D. Lesson 04 KAZE, Non-linear diffusion filtering, ORB, MSER Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 04 KAZE ORB: an efficient alternative

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer Wilhelm Burger Mark J. Burge Digital Image Processing An algorithmic introduction using Java Second Edition ERRATA Springer Berlin Heidelberg NewYork Hong Kong London Milano Paris Tokyo 5 Filters K K No

More information

2 Regularized Image Reconstruction for Compressive Imaging and Beyond

2 Regularized Image Reconstruction for Compressive Imaging and Beyond EE 367 / CS 448I Computational Imaging and Display Notes: Compressive Imaging and Regularized Image Reconstruction (lecture ) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications Edge Detection Roadmap Introduction to image analysis (computer vision) Its connection with psychology and neuroscience Why is image analysis difficult? Theory of edge detection Gradient operator Advanced

More information

Comparison of the Fuzzy-based Wavelet Shrinkage Image Denoising Techniques

Comparison of the Fuzzy-based Wavelet Shrinkage Image Denoising Techniques IJCI International Journal of Computer cience Issues, Vol. 9, Issue 2, No 3, March 202 IN (Online): 694-084 www.ijci.org 2 Comparison of the Fuzzy-based Wavelet hrinkage Image Denoising echniques AliAdeli,Farshad

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

Classification with Perceptrons. Reading:

Classification with Perceptrons. Reading: Classification with Perceptrons Reading: Chapters 1-3 of Michael Nielsen's online book on neural networks covers the basics of perceptrons and multilayer neural networks We will cover material in Chapters

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information