Lecture 22: Reconstruction and Admissibility

Size: px
Start display at page:

Download "Lecture 22: Reconstruction and Admissibility"

Transcription

1 WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 22: Reconstruction and Admissibility Prof.V.M.Gadre, EE, IIT Bombay Tutorials Q 1. Construct the STFT, CWT of the signal x(t) using Matlab and discuss the observations. cos(2π10t)when 0 t 5 cos(2π25t)when 5 t 10 x(t) = cos(2π50t)when 10 t 15 cos(2π100t)when 15 t 20 Ans. The STFT is one of the most straightforward approaches for performing time-frequency analysis and can help you easily understand the concept of time-frequency analysis. Short Time Fourier Transform (STFT) of the signal x(t) is computed using the hamming window as the window function v(t). Hamming window of length 0.1 Sec (100 sample point) is shown in the Figure 1 Figure 1: Hamming window of length 100 The color bar on the right of the pictures represent the coefficient values in the figure. Higher coefficient values have the color of dark red and lower coefficient values have the color of dark blue. It can be observed from the figures that a window of smaller length provides better resolution in time (Signal representation is well confined in time i.e no blurring across time) but poor resolution in frequency (Signal representation is not well confined in frequncy i.e. blurring 22-1

2 Figure 2: STFT of the signal x(t) with window length 0.1 Sec Figure 3: STFT of the signal x(t) with window length 0.25 Sec Figure 4: STFT of the signal x(t) with window length 0.5 Sec 22-2

3 Figure 5: STFT of the signal x(t) with window length 1 Sec across frequency). Similarly, a window of larger length provides poor resolution in time (Signal representation is not well confined in time i.e blurring across time) but better resolution in frequency ( Signal representation is well confined in frequncy i.e. no blurring across frequency). So, we can t obtain a fine time resolution and a fine frequency resolution simultaneously. By observing the figure 5, (window length=1sec), we can say the distinct frequency s in the signal x(t), because window of larger length provides provides better resolution in frequency. By observing the figure 1, (window length=0.1sec), we can say upto what time extent each distinct frequncy is present. Computing the CWT of the signal x(t). Consider the wavelet function ψ(t) as shown in the figure 6. Computing the coefficient values for different scales (s 0 =1 to 64) and for different shift s (τ) using the Matlab is shown in the figure 7. The color bar on the right of the pictures represent the coefficient values in the figure. Higher coefficient values have the color of dark red and lower coefficient values have the color of dark blue. It can be observed from the CWT that, in the time interval ]0,5[ most of the energy is concentrated for the scale around 40 i.e. s 0 =40. Hence in that time interval the signal has the lowest frequency components. (f 1 =10 Hz) and in the time interval ]15,20[ most of the energy is concentrated for the scale around 4 i.e s 0 =4. Hence in that time interval the signal has the highest frequncy components (f 4 =100 Hz) and the frequency is 10 times (Ratio of scales) the frequency of signal in the range ]0,5[ (i.e. f 4 =10*f 1 ) which is actually true. Similarly, by observing the scale for which coefficients have the maximum value, in a given time interval, we can calculate the frequency s present in that time interval. Matlab code for generating the STFT is given below. 22-3

4 Figure 6: Wavelet function ψ(t) Figure 7: CWT of signal x(t) 22-4

5 clear all; %sampling frequency fc=500; %duration of the signal T=20; %zero padding factor my_zero=10; %generate the signal t=linspace(0,t,fc*t); x=zeros(1,length(t)); %thresholds th1=0.25*t*fc; th2=0.5*t*fc; th3=0.75*t*fc; th4=t*fc; x(1:th1)=cos(2*pi*10*t(1:th1)); x((th1+1):th2)=cos(2*pi*25*t((th1+1):th2)); x((th2+1):th3)=cos(2*pi*50*t((th2+1):th3)); x((th3+1):th4)=cos(2*pi*100*t((th3+1):th4)); figure, plot(t,x); win_len=100; figure,spectrogram(x,win_len,0.2*win_len,win_len,fc); win_len=250; figure,spectrogram(x,win_len,0.2*win_len,win_len,fc); win_len=500; 22-5

6 figure,spectrogram(x,win_len,0.2*win_len,win_len,fc); win_len=1000; figure,spectrogram(x,win_len,0.2*win_len,win_len,fc); 22-6

Lecture 15: Time and Frequency Joint Perspective

Lecture 15: Time and Frequency Joint Perspective WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 15: Time and Frequency Joint Perspective Prof.V.M.Gadre, EE, IIT Bombay Introduction In lecture 14, we studied steps required to design conjugate

More information

Lecture 2: Haar Multiresolution analysis

Lecture 2: Haar Multiresolution analysis WAVELES AND MULIRAE DIGIAL SIGNAL PROCESSING Lecture 2: Haar Multiresolution analysis Prof.V. M. Gadre, EE, II Bombay 1 Introduction HAAR was a mathematician, who has given an idea that any continuous

More information

ECE472/572 - Lecture 13. Roadmap. Questions. Wavelets and Multiresolution Processing 11/15/11

ECE472/572 - Lecture 13. Roadmap. Questions. Wavelets and Multiresolution Processing 11/15/11 ECE472/572 - Lecture 13 Wavelets and Multiresolution Processing 11/15/11 Reference: Wavelet Tutorial http://users.rowan.edu/~polikar/wavelets/wtpart1.html Roadmap Preprocessing low level Enhancement Restoration

More information

Lecture 3: Haar MRA (Multi Resolution Analysis)

Lecture 3: Haar MRA (Multi Resolution Analysis) U U U WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 3: Haar MRA (Multi Resolution Analysis) Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction The underlying principle of wavelets is to capture incremental

More information

Lecture 11: Two Channel Filter Bank

Lecture 11: Two Channel Filter Bank WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 11: Two Channel Filter Bank Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In the previous lecture we studied Z domain analysis of two channel filter

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre for Doctoral Training in Healthcare Innovation,

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 25 November 5, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 19 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 19 Some Preliminaries: Fourier

More information

Comparison of spectral decomposition methods

Comparison of spectral decomposition methods Comparison of spectral decomposition methods John P. Castagna, University of Houston, and Shengjie Sun, Fusion Geophysical discuss a number of different methods for spectral decomposition before suggesting

More information

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example The Lecture Contains: Wavelets Discrete Wavelet Transform (DWT) Haar wavelets: Example Haar wavelets: Theory Matrix form Haar wavelet matrices Dimensionality reduction using Haar wavelets file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture35/35_1.htm[6/14/2012

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Introducing the attribute of centroid of scale in wavelet domain and its application for seismic exploration

Introducing the attribute of centroid of scale in wavelet domain and its application for seismic exploration P-68 Introducing the attribute of centroid of scale in wavelet domain Dr Farahnaz Ashrafion Estahan, Teheran, Iran Summary This paper derives a scalogram formula of seismic wave in wavelet domain from

More information

Evaluating Fourier Transforms with MATLAB

Evaluating Fourier Transforms with MATLAB ECE 460 Introduction to Communication Systems MATLAB Tutorial #2 Evaluating Fourier Transforms with MATLAB In class we study the analytic approach for determining the Fourier transform of a continuous

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Time-Frequency Analysis of Radar Signals

Time-Frequency Analysis of Radar Signals G. Boultadakis, K. Skrapas and P. Frangos Division of Information Transmission Systems and Materials Technology School of Electrical and Computer Engineering National Technical University of Athens 9 Iroon

More information

INTRODUCTION TO. Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR)

INTRODUCTION TO. Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR) INTRODUCTION TO WAVELETS Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR) CRITICISM OF FOURIER SPECTRUM It gives us the spectrum of the

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 12 Introduction to Wavelets Last Time Started with STFT Heisenberg Boxes Continue and move to wavelets Ham exam -- see Piazza post Please register at www.eastbayarc.org/form605.htm

More information

Jean Morlet and the Continuous Wavelet Transform

Jean Morlet and the Continuous Wavelet Transform Jean Brian Russell and Jiajun Han Hampson-Russell, A CGG GeoSoftware Company, Calgary, Alberta, brian.russell@cgg.com ABSTRACT Jean Morlet was a French geophysicist who used an intuitive approach, based

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a a Published in Journal of Seismic Exploration, 23, no. 4, 303-312, (2014) Yangkang Chen, Tingting Liu, Xiaohong Chen,

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

TIME-FREQUENCY ANALYSIS EE3528 REPORT. N.Krishnamurthy. Department of ECE University of Pittsburgh Pittsburgh, PA 15261

TIME-FREQUENCY ANALYSIS EE3528 REPORT. N.Krishnamurthy. Department of ECE University of Pittsburgh Pittsburgh, PA 15261 TIME-FREQUENCY ANALYSIS EE358 REPORT N.Krishnamurthy Department of ECE University of Pittsburgh Pittsburgh, PA 56 ABSTRACT - analysis, is an important ingredient in signal analysis. It has a plethora of

More information

1) Electronic Circuits & Laboratory

1) Electronic Circuits & Laboratory ENSEA COURSES TAUGHT IN ENGLISH SPRING Semester 1) Electronic Circuits & Laboratory Lecture : 45 hours Laboratory : 45 hours US Credits : 6 Analysis of integrated amplifiers with bipolar junction transistors

More information

Assignment #09 - Solution Manual

Assignment #09 - Solution Manual Assignment #09 - Solution Manual 1. Choose the correct statements about representation of a continuous signal using Haar wavelets. 1.5 points The signal is approximated using sin and cos functions. The

More information

Introduction to Wavelet. Based on A. Mukherjee s lecture notes

Introduction to Wavelet. Based on A. Mukherjee s lecture notes Introduction to Wavelet Based on A. Mukherjee s lecture notes Contents History of Wavelet Problems of Fourier Transform Uncertainty Principle The Short-time Fourier Transform Continuous Wavelet Transform

More information

Digital Image Processing Lectures 13 & 14

Digital Image Processing Lectures 13 & 14 Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2013 Properties of KL Transform The KL transform has many desirable properties which makes

More information

Introduction to Signal Analysis Parts I and II

Introduction to Signal Analysis Parts I and II 41614 Dynamics of Machinery 23/03/2005 IFS Introduction to Signal Analysis Parts I and II Contents 1 Topics of the Lecture 11/03/2005 (Part I) 2 2 Fourier Analysis Fourier Series, Integral and Complex

More information

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform. " Aka short-time Fourier transform

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform.  Aka short-time Fourier transform Lecture Outline ESE 531: Digital Signal Processing Spectral Analysis with DFT Windowing Lec 24: April 18, 2019 Spectral Analysis Effect of zero-padding Time-dependent Fourier transform " Aka short-time

More information

DFT and Matlab with some examples.

DFT and Matlab with some examples. DFT and Matlab with some examples 1 www.icrf.nl Fourier transform Fourier transform is defined as: X + jωt = x( t e dt ( ω ) ) with ω= 2 π f Rad/s And x(t) a signal in the time domain. www.icrf.nl 2 Fourier

More information

IMPROVED BLAST VIBRATION ANALYSIS USING THE WAVELET TRANSFORM

IMPROVED BLAST VIBRATION ANALYSIS USING THE WAVELET TRANSFORM IMPROVED BLAST VIBRATION ANALYSIS USING THE WAVELET TRANSFORM Daniel Ainalis, Loïc Ducarne, Olivier Kaufmann, Jean-Pierre Tshibangu, Olivier Verlinden, and Georges Kouroussis University of Mons UMONS,

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

From Fourier Series to Analysis of Non-stationary Signals - X

From Fourier Series to Analysis of Non-stationary Signals - X From Fourier Series to Analysis of Non-stationary Signals - X prof. Miroslav Vlcek December 14, 21 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3 Contents Stationary and non-stationary

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Identification and Classification of High Impedance Faults using Wavelet Multiresolution Analysis

Identification and Classification of High Impedance Faults using Wavelet Multiresolution Analysis 92 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Identification Classification of High Impedance Faults using Wavelet Multiresolution Analysis D. Cha N. K. Kishore A. K. Sinha Abstract: This paper presents

More information

µ-shift-invariance: Theory and Applications

µ-shift-invariance: Theory and Applications µ-shift-invariance: Theory and Applications Runyi Yu Department of Electrical and Electronic Engineering Eastern Mediterranean University Famagusta, North Cyprus Homepage: faraday.ee.emu.edu.tr/yu The

More information

Audio Features. Fourier Transform. Fourier Transform. Fourier Transform. Short Time Fourier Transform. Fourier Transform.

Audio Features. Fourier Transform. Fourier Transform. Fourier Transform. Short Time Fourier Transform. Fourier Transform. Advanced Course Computer Science Music Processing Summer Term 2010 Fourier Transform Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Audio Features Fourier Transform Fourier

More information

Jean Morlet and the Continuous Wavelet Transform (CWT)

Jean Morlet and the Continuous Wavelet Transform (CWT) Jean Morlet and the Continuous Wavelet Transform (CWT) Brian Russell 1 and Jiajun Han 1 CREWES Adjunct Professor CGG GeoSoftware Calgary Alberta. www.crewes.org Introduction In 198 Jean Morlet a geophysicist

More information

Estimation of Variance and Skewness of Non-Gaussian Zero mean Color Noise from Measurements of the Atomic Transition Probabilities

Estimation of Variance and Skewness of Non-Gaussian Zero mean Color Noise from Measurements of the Atomic Transition Probabilities International Journal of Electronic and Electrical Engineering. ISSN 974-2174, Volume 7, Number 4 (214), pp. 365-372 International Research Publication House http://www.irphouse.com Estimation of Variance

More information

Audio Features. Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform

Audio Features. Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform Advanced Course Computer Science Music Processing Summer Term 2009 Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Audio Features Fourier Transform Tells which notes (frequencies)

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

HHT: the theory, implementation and application. Yetmen Wang AnCAD, Inc. 2008/5/24

HHT: the theory, implementation and application. Yetmen Wang AnCAD, Inc. 2008/5/24 HHT: the theory, implementation and application Yetmen Wang AnCAD, Inc. 2008/5/24 What is frequency? Frequency definition Fourier glass Instantaneous frequency Signal composition: trend, periodical, stochastic,

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999 Calculating the Power Spectral Density (PSD) in IDL Thomas Ferree, Ph.D. August 23, 1999 This note outlines the calculation of power spectra via the fast Fourier transform (FFT) algorithm. There are several

More information

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Signals and Systems Lecture 14 DR TAIA STATHAKI READER (ASSOCIATE PROFESSOR) I SIGAL PROCESSIG IMPERIAL COLLEGE LODO Introduction. Time sampling theorem resume. We wish to perform spectral analysis using

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162)

An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162) An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162) M. Ahmadizadeh, PhD, PE O. Hemmati 1 Contents Scope and Goals Review on transformations

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL: http://www.civil.iitb.ac.in/~dc/

More information

Medical Image Processing

Medical Image Processing Medical Image Processing Federica Caselli Department of Civil Engineering University of Rome Tor Vergata Medical Imaging X-Ray CT Ultrasound MRI PET/SPECT Digital Imaging! Medical Image Processing What

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Multirate Signal Processing Dr. Manar Mohaisen Office: F28 Email: manar.subhi@kut.ac.kr School of IT Engineering Review of the Precedent ecture Introduced Properties of FIR Filters

More information

1. Calculation of the DFT

1. Calculation of the DFT ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Continuous Fourier transform of a Gaussian Function

Continuous Fourier transform of a Gaussian Function Continuous Fourier transform of a Gaussian Function Gaussian function: e t2 /(2σ 2 ) The CFT of a Gaussian function is also a Gaussian function (i.e., time domain is Gaussian, then the frequency domain

More information

Lecture # 06. Image Processing in Frequency Domain

Lecture # 06. Image Processing in Frequency Domain Digital Image Processing CP-7008 Lecture # 06 Image Processing in Frequency Domain Fall 2011 Outline Fourier Transform Relationship with Image Processing CP-7008: Digital Image Processing Lecture # 6 2

More information

LABORATORY 3 FINITE IMPULSE RESPONSE FILTERS

LABORATORY 3 FINITE IMPULSE RESPONSE FILTERS LABORATORY 3 FINITE IMPULSE RESPONSE FILTERS 3.. Introduction A digital filter is a discrete system, used with the purpose of changing the amplitude and/or phase spectrum of a signal. The systems (filters)

More information

Σ S(x )δ x. x. Σ S(x )δ x ) x Σ F(S(x )δ x ), by superposition x Σ S(x )F(δ x ), by homogeneity x Σ S(x )I x. x. Σ S(x ) I x (y ) = x

Σ S(x )δ x. x. Σ S(x )δ x ) x Σ F(S(x )δ x ), by superposition x Σ S(x )F(δ x ), by homogeneity x Σ S(x )I x. x. Σ S(x ) I x (y ) = x 4. Vision: LST approach - Flicker, Spatial Frequency Channels I. Goals Stimulus representation System identification and prediction II. Linear, shift-invariant systems Linearity Homogeneity: F(aS) = af(s)

More information

arxiv: v1 [math.ca] 6 Feb 2015

arxiv: v1 [math.ca] 6 Feb 2015 The Fourier-Like and Hartley-Like Wavelet Analysis Based on Hilbert Transforms L. R. Soares H. M. de Oliveira R. J. Cintra Abstract arxiv:150.0049v1 [math.ca] 6 Feb 015 In continuous-time wavelet analysis,

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods Fourier Analysis 1992 2008 R. C. Gonzalez & R. E. Woods Properties of δ (t) and (x) δ : f t) δ ( t t ) dt = f ( ) f x) δ ( x x ) = f ( ) ( 0 t0 x= ( 0 x0 1992 2008 R. C. Gonzalez & R. E. Woods Sampling

More information

TUTORIAL: STATE VARIABLES and MATLAB

TUTORIAL: STATE VARIABLES and MATLAB TUTORIAL TUTORIAL: STATE VARIABLES and MATLAB Time-domain analysis of circuits with more than one L and C is difficult because it requires solution of characteristic equations higher than second degree.

More information

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves Wavelet Methods for Time Series Analysis Part I: Introduction to Wavelets and Wavelet Transforms wavelets are analysis tools for time series and images as a subject, wavelets are relatively new (1983 to

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

Problem with Fourier. Wavelets: a preview. Fourier Gabor Wavelet. Gabor s proposal. in the transform domain. Sinusoid with a small discontinuity

Problem with Fourier. Wavelets: a preview. Fourier Gabor Wavelet. Gabor s proposal. in the transform domain. Sinusoid with a small discontinuity Problem with Fourier Wavelets: a preview February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Fourier analysis -- breaks down a signal into constituent sinusoids of

More information

Wavelets: a preview. February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG.

Wavelets: a preview. February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Wavelets: a preview February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Problem with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of

More information

Solutions to Assignment 4

Solutions to Assignment 4 EE35 Spectrum Analysis and Discrete Time Systems (Fall 5) Solutions to Assignment. Consider the continuous-time periodic signal: x(t) = sin(t 3) + sin(6t) (8) [] (a) Obviously, the fundamental frequency

More information

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014 Subband Coding and Wavelets National Chiao Tung Universit Chun-Jen Tsai /4/4 Concept of Subband Coding In transform coding, we use N (or N N) samples as the data transform unit Transform coefficients are

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

Fourier Series Tutorial

Fourier Series Tutorial Fourier Series Tutorial INTRODUCTION This document is designed to overview the theory behind the Fourier series and its alications. It introduces the Fourier series and then demonstrates its use with a

More information

Analyzing the Effect of Moving Resonance on Seismic Response of Structures Using Wavelet Transforms

Analyzing the Effect of Moving Resonance on Seismic Response of Structures Using Wavelet Transforms Analyzing the Effect of Moving Resonance on Seismic Response of Structures Using Wavelet Transforms M.R. Eatherton Virginia Tech P. Naga WSP Cantor Seinuk, New York, NY SUMMARY: When the dominant natural

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

34 Convegno Nazionale

34 Convegno Nazionale 34 Convegno Nazionale Trieste 17-19 Novembre 2015 Igneous bodies characterization by means of seismic reflection attributes and wavelet transform E. Gianturco, A. Tognarelli, S. Rocchi, L. Pandolfi Earth

More information

EMBEDDED ZEROTREE WAVELET COMPRESSION

EMBEDDED ZEROTREE WAVELET COMPRESSION EMBEDDED ZEROTREE WAVELET COMPRESSION Neyre Tekbıyık And Hakan Şevki Tozkoparan Undergraduate Project Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (B.S.)

More information

Order Tracking Analysis

Order Tracking Analysis 1. Introduction Order Tracking Analysis Jaafar Alsalaet College of Engineering-University of Basrah Mostly, dynamic forces excited in a machine are related to the rotation speed; hence, it is often preferred

More information

Wavelets and Filter Banks Course Notes

Wavelets and Filter Banks Course Notes Página Web 1 de 2 http://www.engmath.dal.ca/courses/engm6610/notes/notes.html Next: Contents Contents Wavelets and Filter Banks Course Notes Copyright Dr. W. J. Phillips January 9, 2003 Contents 1. Analysis

More information

Filter Banks For "Intensity Analysis"

Filter Banks For Intensity Analysis morlet.sdw 4/6/3 /3 Filter Banks For "Intensity Analysis" Introduction In connection with our participation in two conferences in Canada (August 22 we met von Tscharner several times discussing his "intensity

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione dei Segnali Multi-dimensionali e

More information

Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy Sensors 013, 13, 10908-10930; doi:10.3390/s130810908 Article OPEN ACCESS sensors ISSN 144-80 www.mdpi.com/journal/sensors Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

Signal Analysis. David Ozog. May 11, Abstract

Signal Analysis. David Ozog. May 11, Abstract Signal Analysis David Ozog May 11, 2007 Abstract Signal processing is the analysis, interpretation, and manipulation of any time varying quantity [1]. Signals of interest include sound files, images, radar,

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Basics about Fourier analysis

Basics about Fourier analysis Jérôme Gilles UCLA PART ONE Fourier analysis On the menu... Introduction - some history... Notations. Fourier series. Continuous Fourier transform. Discrete Fourier transform. Properties. 2D extension.

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING MULTIRATE DIGITAL SIGNAL PROCESSING Signal processing can be enhanced by changing sampling rate: Up-sampling before D/A conversion in order to relax requirements of analog antialiasing filter. Cf. audio

More information

Characteristic Behaviors of Wavelet and Fourier Spectral Coherences ABSTRACT

Characteristic Behaviors of Wavelet and Fourier Spectral Coherences ABSTRACT 1 2 Characteristic Behaviors of Wavelet and Fourier Spectral Coherences Yueon-Ron Lee and Jin Wu ABSTRACT Here we examine, as well as make comparison of, the behaviors of coherences based upon both an

More information

Time-Frequency Toolbox For Use with MATLAB

Time-Frequency Toolbox For Use with MATLAB Time-Frequency Toolbox For Use with MATLAB François Auger * Patrick Flandrin * Paulo Gonçalvès Olivier Lemoine * * CNRS (France) Rice University (USA) 1995-1996 2 3 Copyright (C) 1996 CNRS (France) and

More information

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering Advanced Digital Signal rocessing (18-792) Spring Fall Semester, 201 2012 Department of Electrical and Computer Engineering ROBLEM SET 8 Issued: 10/26/18 Due: 11/2/18 Note: This problem set is due Friday,

More information

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander TIME-FREQUENCY ANALYSIS: TUTORIAL Werner Kozek & Götz Pfander Overview TF-Analysis: Spectral Visualization of nonstationary signals (speech, audio,...) Spectrogram (time-varying spectrum estimation) TF-methods

More information

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Prerequisites: Sl. No. Subject Description Level of Study 01 Mathematics Fourier Transform, Laplace Transform 1 st Sem, 2 nd Sem 02

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information