From Fourier Series to Analysis of Non-stationary Signals - X

Size: px
Start display at page:

Download "From Fourier Series to Analysis of Non-stationary Signals - X"

Transcription

1 From Fourier Series to Analysis of Non-stationary Signals - X prof. Miroslav Vlcek December 14, 21

2 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3

3 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3

4 Contents Stationary and non-stationary 1 Stationary and non-stationary 2 3

5 Stationary and non-stationary Continuous system Discrete system u(t)... input (control) vector x(t)... state vector y(t)... output vector Linear state variable system ẋ(t) = A(t) x(t) + B(t) u(t) y(t) = C(t) x(t) + D(t)u(t) u(n)... input (control) vector x(n)... state vector y(n)... output vector Linear state variable system x(n + 1) = M(n) x(n)+ N(n) u(n) y(n) = C(n) x(n) + D(n)u(n) A(t) system matrix (n n) B(t) matrix of inputs (n r) C(t) matrix of outputs(m n) D(t) matrix of outputs(m r) M(n) system matrix N(n) matrix of inputs C(n) matrix of outputs D(n) matrix of outputs

6 Stationary and non-stationary Continuous system Discrete system u(t)... input (control) vector x(t)... state vector y(t)... output vector Linear state variable system ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + Du(t) u(n)... input (control) vector x(n)... state vector y(n)... output vector Linear state variable system x(n + 1) = M x(n)+ N u(n) y(n) = C x(n) + Du(n) A system matrix (n n) B matrix of inputs (n r) C matrix of outputs (m n) D matrix of outputs (m r) M system matrix N matrix of inputs C matrix of outputs D matrix of outputs

7 Stationary and non-stationary Non-stationary signals differential/difference equations with time-varying coefficients Airy s functions Ai(t) = 1 3 Bi(t) = 1 3 ÿ(t) t y(t) = t [ I 1/3 ( 2 3 t3/2 ) I 1/3 ( 2 3 t3/2 )] t [ I 1/3 ( 2 3 t3/2 ) + I 1/3 ( 2 3 t3/2 )]

8 Stationary and non-stationary Stationary and non-stationary 1.8 ℜ(Ai(t)) ℜ(Bi(t)) prof. Miroslav Vlcek 4 t 2 Lecture 1 2

9 Stationary and non-stationary Stationary signals differential/difference equations with constant coefficients ÿ(t)+ω 2 y(t) = Harmonic wave (periodic functions) cos(ω t) sin(ω t)

10 Stationary and non-stationary Stationary and non-stationary 1.5 sin(π t) cos(π t) prof. Miroslav Vlcek t 1 Lecture 1 2 3

11 About stationarity A deterministic signal is said to be stationary if it can be written as a discrete sum of cosine waves or exponentials : x(t) = A + x(t) = N k= N N A k cos(2πkf t +Φ k ) (1) k=1 C k exp(2πjkf t +Φ k ) (2) i.e. as a sum of elements which have constant instantaneous amplitude and instantaneous frequency.

12 About stationarity In the random case, a signal {x(n)} is said to be wide-sense stationary (or stationary up to the second order) if its variance is independent of time σ 2 = E[(x µ) 2 ] = 1 N 1 (x µ) 2 (n) N n=

13 About stationarity The autocorrelation function for a discrete process of length N {x(n)} with known mean µ and variance σ, xx (n, n, m) xx (n, n+ m) = 1 Nσ 2 N (x(n) µ)(x(n+m) µ) n=1 depends only on the time distance n+m.

14 ...and non-stationarity A signal is said to be non-stationary if one of these fundamental assumptions is no longer valid, e.g. either variance σ, or autocorrelation xx (n, n, m), or both are time-varying. 1 For example, a finite duration signal, and in particular a transient signal (for which the length is short compared to the observation duration), is non-stationary. 2 Speech and EEG are non-stationary signals.

15 STFT and non-stationarity signal 1 Remove the mean of a signal 2 Make moving average filtering 3 Do segmentation of a signal using window functions 4 Perform Fourier transform 5 Do not forget the interpolation

16 Moving average filtering Assume we have a EEG signal corrupted with noise Set the mean to zero Apply moving average filter to the noisy signal (use filter order=3 and 5) The higher filter order will remove more noise, but it will also distort the signal more (i.e. remove the signal parts also) So, a compromise has to be found (normally by trial and error)

17 Example 1: Moving average filtering % moving average filtering clear load( zdroj.mat ); x=eeg(3).data(:,1); N=length(x); % length of average window is 3 for i=1:n-2, y3(i)=(x(i)+x(i+1)+x(i+2))/3; end y3(n-1)=(x(n-1)+x(n))/3; y3(n)=x(n)/3; %length of average window is 5 for i=1:n-4, y5(i)=(x(i)+x(i+1)+x(i+2)+x(i+3)+x(i+4))/5; end

18 Example 1: Moving average filtering y5(n-3)=(x(n-3)+x(n-2)+x(n-1)+x(n))/5; y5(n-2)=(x(n-2)+x(n-1)+x(n))/5; y5(n-1)=(x(n-1)+x(n))/5; y5(n)=x(n)/5; subplot(3,1,1), plot(x, r ); title( original EEG ) subplot(3,1,2), plot(y3, g ); title( EEG signal with averaging of length 3 ) subplot(3,1,3), plot(y5, b ); title( EEG signal with averaging of length 5 ) print -depsc figureeeg

19 Example 1: Moving average filtering 2 original EEG EEG signal with averaging of length EEG signal with averaging of length

20 Example 2: Meyer wavelets % Set effective support and grid parameters. lb = -8; ub = 8; n = 124; % Meyer wavelet and scaling functions. [phi,psi,x] = meyer(lb,ub,n); subplot(211) plot(x,psi), grid title( Meyer wavelet ) subplot(212) plot(x,phi), grid title( Meyer scaling function )

21 Example 2: Meyer wavelets 1.5 Meyer wavelet Meyer scaling function Figure: Meyer wavelets

22 Example 3: Discrete Wavelet Transform 1 Load in EEG signal with load( zdroj.mat ); name= dmey ; name2= db1 ; signal=eeg(3).data(:,1); s=signal; ls = length(s); 2 The Discrete Wavelet Transform is provided by MATALB under a variety of extension modes. We can perform a one-stage wavelet decomposition of the signal for example with [ca1,cd1] = dwt(s,name); 3 Here ca1 is a vector of the approximation coefficient and cd1 the detailed coefficient. 4 You can plot these coefficients.

23 Example 3: Discrete Wavelet Transform 5 Perform one step reconstruction of ca1 and cd1. a1 = upcoef( a,ca1,name,1,ls); d1 = upcoef( d,cd1,name,1,ls); 6 Then you can plot the EEG signal approximation and invert directly decomposition of EEG signal using coefficients a = idwt(ca1,cd1, db1,ls);

24 Example 3: Discrete Wavelet Transform approximation a detail d

25 Example 3: Discrete Wavelet Transform 5 approximation a detail d detail d detail d

26 Some preliminary info about EEG Figure: Brain waves within -3 Hz

27 MATLAB project 1 Simplify the moving average using declaration of the vector y(1:1:n+4)=; and create MATLAB function for average. 2 Develope file for computing STFT and wavelet transform for an EEG signal

28 Step 1: Load signal, input parameters N = 128; okno = hanning( N+1); okno = okno( 1:N); fs = 1; prekryv = N-1; lupa = 64; zacatek = 1; delka = 1; load( zdroj.mat ); signal=eeg(3).data(:,1);

29 Step 2: FFT and moving average f =128*(1:124)/248; ax = abs(fft(signal,248)); signal = signal( zacatek: zacatek+delka-1); % here include moving average disp( Computing spectrum... ) X = rozsekej( signal, N); % Segmentation X = diag( okno) * X; % Windowing [r,c] = size( X); X = [X; zeros( lupa, c)];

30 Step 3: DFT, Spectrogram spektrum = fft( X); % spectrum spektrum = spektrum( 1:64, :); % the first 64 components RS = real( spektrum); IS = imag( spektrum); [numbercomponents, numbersamples] = size( RS); figure(1); colormap( jet); subplot(311) plot(signal); grid; title( Original signal ); subplot(312) plot(f,ax(1:124), LineWidth,2, color,[ 1]); title( Frequency content ) subplot(313) imagesc( abs( spektrum)); title( STFT ); print -depsc figure1eeg

31 Signal with 5 Hz noise 2 Original signal x 15 Frequency content STFT

32 Signal without 5 Hz noise 2 signal with 5 Hz noise reduced x 15 Fourier transform STFT

33 Step 4: Wavelet decomposition clear % Compute WT of an EEG signal load( zdroj.mat ); signal=eeg(3).data(:,1); ls=length(signal); name= dmey ; [ca1,cd1] = dwt(signal,name); a1 = upcoef( a,ca1,name,1,ls);

34 Step 4: A typical scalogram of EEG signal=a1; wlen=64; Bsup=1; Logsc=; wavtype = gaus4 ; wavtype2 = mexh ; figure(1); h = msgbox( Wavelet transform computation..., Please wait ); W = cwt(signal, 1:wlen/2, wavtype, abslvl ); close( h); WW = abs( W);

35 Step 4: A typical scalogram of EEG if Bsup == 1, WW = WW - min( min ( WW)); end; if Logsc == 1, WW = log1( WW+eps); end; subplot(2,1,1) plot(signal, LineWidth,1., color,[1 ]) subplot(2,1,2) imagesc(ww); colormap(jet);

36 A typical scalogram of EEG

37 MATLAB project Finish the task from the last lesson - create your own graphic user interface which provides Haar wavelet approximation of a signal. Prepare your graphic user interface for analysis of EEG signal using DFT and Wavelets. Write the report and prepare presentation of your EEG analysis. We will meet on January 4, 211. You are expected to present your results. Merry Christmas!

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information

Adaptive Systems Homework Assignment 1

Adaptive Systems Homework Assignment 1 Signal Processing and Speech Communication Lab. Graz University of Technology Adaptive Systems Homework Assignment 1 Name(s) Matr.No(s). The analytical part of your homework (your calculation sheets) as

More information

Novel selective transform for non-stationary signal processing

Novel selective transform for non-stationary signal processing Novel selective transform for non-stationary signal processing Miroslav Vlcek, Pavel Sovka, Vaclav Turon, Radim Spetik vlcek@fd.cvut.cz Czech Technical University in Prague Miroslav Vlcek, Pavel Sovka,

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

Timbral, Scale, Pitch modifications

Timbral, Scale, Pitch modifications Introduction Timbral, Scale, Pitch modifications M2 Mathématiques / Vision / Apprentissage Audio signal analysis, indexing and transformation Page 1 / 40 Page 2 / 40 Modification of playback speed Modifications

More information

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre for Doctoral Training in Healthcare Innovation,

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Centre for Mathematical Sciences HT 2017 Mathematical Statistics

Centre for Mathematical Sciences HT 2017 Mathematical Statistics Lund University Stationary stochastic processes Centre for Mathematical Sciences HT 2017 Mathematical Statistics Computer exercise 3 in Stationary stochastic processes, HT 17. The purpose of this exercise

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

CE 513: STATISTICAL METHODS

CE 513: STATISTICAL METHODS 28-8-217/CE 68 CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING Lecture: Introduction to Fourier transforms Dr. Budhaditya Hazra Room: N-37 Department of Civil Engineering 1 Fourier Analysis Fourier Series

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

From Fourier Series to Analysis of Non-stationary Signals - II

From Fourier Series to Analysis of Non-stationary Signals - II From Fourier Series to Analysis of Non-stationary Signals - II prof. Miroslav Vlcek October 10, 2017 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece,

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece, Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept., Greece, yannis@csd.uoc.gr SPCC 2016 1 Speech Production 2 Modulators 3 Sinusoidal Modeling Sinusoidal Models Voiced Speech

More information

Median Filter Based Realizations of the Robust Time-Frequency Distributions

Median Filter Based Realizations of the Robust Time-Frequency Distributions TIME-FREQUENCY SIGNAL ANALYSIS 547 Median Filter Based Realizations of the Robust Time-Frequency Distributions Igor Djurović, Vladimir Katkovnik, LJubiša Stanković Abstract Recently, somenewefficient tools

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University BIOSIGNAL PROCESSING Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University INTRODUCTION Biosignals (biological signals) : space, time, or space-time records

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

HW13 Solutions. Pr (a) The DTFT of c[n] is. C(e jω ) = 0.5 m e jωm e jω + 1

HW13 Solutions. Pr (a) The DTFT of c[n] is. C(e jω ) = 0.5 m e jωm e jω + 1 HW3 Solutions Pr..8 (a) The DTFT of c[n] is C(e jω ) = = =.5 n e jωn + n=.5e jω + n= m=.5 n e jωn.5 m e jωm.5e jω +.5e jω.75 =.5 cos(ω) }{{}.5e jω /(.5e jω ) C(e jω ) is the power spectral density. (b)

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 25 November 5, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 19 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 19 Some Preliminaries: Fourier

More information

Music 270a: Complex Exponentials and Spectrum Representation

Music 270a: Complex Exponentials and Spectrum Representation Music 270a: Complex Exponentials and Spectrum Representation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) October 24, 2016 1 Exponentials The exponential

More information

Extended Kalman Filter Derivation Example application: frequency tracking

Extended Kalman Filter Derivation Example application: frequency tracking Extended Kalman Filter Derivation Example application: frequency tracking Nonlinear State Space Model Consider the nonlinear state-space model of a random process x n+ = f n (x n )+g n (x n )u n y n =

More information

Random signals II. ÚPGM FIT VUT Brno,

Random signals II. ÚPGM FIT VUT Brno, Random signals II. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Temporal estimate of autocorrelation coefficients for ergodic discrete-time random process. ˆR[k] = 1 N N 1 n=0 x[n]x[n + k],

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

Computer Engineering 4TL4: Digital Signal Processing

Computer Engineering 4TL4: Digital Signal Processing Computer Engineering 4TL4: Digital Signal Processing Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2003 This examination paper includes

More information

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal Overview of Discrete-Time Fourier Transform Topics Handy equations and its Definition Low- and high- discrete-time frequencies Convergence issues DTFT of complex and real sinusoids Relationship to LTI

More information

BASICS OF COMPRESSION THEORY

BASICS OF COMPRESSION THEORY BASICS OF COMPRESSION THEORY Why Compression? Task: storage and transport of multimedia information. E.g.: non-interlaced HDTV: 0x0x0x = Mb/s!! Solutions: Develop technologies for higher bandwidth Find

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

Solutions. Chapter 1. Problem 1.1. Solution. Simulate free response of damped harmonic oscillator

Solutions. Chapter 1. Problem 1.1. Solution. Simulate free response of damped harmonic oscillator Chapter Solutions Problem. Simulate free response of damped harmonic oscillator ẍ + ζẋ + x = for different values of damping ration ζ and initial conditions. Plot the response x(t) and ẋ(t) versus t and

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

WAVELET TRANSFORMS IN TIME SERIES ANALYSIS

WAVELET TRANSFORMS IN TIME SERIES ANALYSIS WAVELET TRANSFORMS IN TIME SERIES ANALYSIS R.C. SINGH 1 Abstract The existing methods based on statistical techniques for long range forecasts of Indian summer monsoon rainfall have shown reasonably accurate

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

Solutions for examination in TSRT78 Digital Signal Processing,

Solutions for examination in TSRT78 Digital Signal Processing, Solutions for examination in TSRT78 Digital Signal Processing, 2014-04-14 1. s(t) is generated by s(t) = 1 w(t), 1 + 0.3q 1 Var(w(t)) = σ 2 w = 2. It is measured as y(t) = s(t) + n(t) where n(t) is white

More information

Lecture 7 Random Signal Analysis

Lecture 7 Random Signal Analysis Lecture 7 Random Signal Analysis 7. Introduction to Probability 7. Amplitude Distributions 7.3 Uniform, Gaussian, and Other Distributions 7.4 Power and Power Density Spectra 7.5 Properties of the Power

More information

Order Tracking Analysis

Order Tracking Analysis 1. Introduction Order Tracking Analysis Jaafar Alsalaet College of Engineering-University of Basrah Mostly, dynamic forces excited in a machine are related to the rotation speed; hence, it is often preferred

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

Wavelets and Filter Banks Course Notes

Wavelets and Filter Banks Course Notes Página Web 1 de 2 http://www.engmath.dal.ca/courses/engm6610/notes/notes.html Next: Contents Contents Wavelets and Filter Banks Course Notes Copyright Dr. W. J. Phillips January 9, 2003 Contents 1. Analysis

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

Frequency Domain Speech Analysis

Frequency Domain Speech Analysis Frequency Domain Speech Analysis Short Time Fourier Analysis Cepstral Analysis Windowed (short time) Fourier Transform Spectrogram of speech signals Filter bank implementation* (Real) cepstrum and complex

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

Linear models. x = Hθ + w, where w N(0, σ 2 I) and H R n p. The matrix H is called the observation matrix or design matrix 1.

Linear models. x = Hθ + w, where w N(0, σ 2 I) and H R n p. The matrix H is called the observation matrix or design matrix 1. Linear models As the first approach to estimator design, we consider the class of problems that can be represented by a linear model. In general, finding the MVUE is difficult. But if the linear model

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Signals & Systems interaction in the Time Domain. (Systems will be LTI from now on unless otherwise stated)

Signals & Systems interaction in the Time Domain. (Systems will be LTI from now on unless otherwise stated) Signals & Systems interaction in the Time Domain (Systems will be LTI from now on unless otherwise stated) Course Objectives Specific Course Topics: -Basic test signals and their properties -Basic system

More information

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic 7 Convolution, Filters, Correlation, Representation Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

CCNY. BME I5100: Biomedical Signal Processing. Stochastic Processes. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Stochastic Processes. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Stochastic Processes Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

Test 2 Electrical Engineering Bachelor Module 8 Signal Processing and Communications

Test 2 Electrical Engineering Bachelor Module 8 Signal Processing and Communications Test 2 Electrical Engineering Bachelor Module 8 Signal Processing and Communications (201400432) Tuesday May 26, 2015, 14:00-17:00h This test consists of three parts, corresponding to the three courses

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

AN INVERTIBLE DISCRETE AUDITORY TRANSFORM

AN INVERTIBLE DISCRETE AUDITORY TRANSFORM COMM. MATH. SCI. Vol. 3, No. 1, pp. 47 56 c 25 International Press AN INVERTIBLE DISCRETE AUDITORY TRANSFORM JACK XIN AND YINGYONG QI Abstract. A discrete auditory transform (DAT) from sound signal to

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Introduction to Wavelet. Based on A. Mukherjee s lecture notes

Introduction to Wavelet. Based on A. Mukherjee s lecture notes Introduction to Wavelet Based on A. Mukherjee s lecture notes Contents History of Wavelet Problems of Fourier Transform Uncertainty Principle The Short-time Fourier Transform Continuous Wavelet Transform

More information

Exercises in Digital Signal Processing

Exercises in Digital Signal Processing Exercises in Digital Signal Processing Ivan W. Selesnick September, 5 Contents The Discrete Fourier Transform The Fast Fourier Transform 8 3 Filters and Review 4 Linear-Phase FIR Digital Filters 5 5 Windows

More information

ECE 301 Fall 2011 Division 1. Homework 1 Solutions.

ECE 301 Fall 2011 Division 1. Homework 1 Solutions. ECE 3 Fall 2 Division. Homework Solutions. Reading: Course information handout on the course website; textbook sections.,.,.2,.3,.4; online review notes on complex numbers. Problem. For each discrete-time

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

Signal Processing Signal and System Classifications. Chapter 13

Signal Processing Signal and System Classifications. Chapter 13 Chapter 3 Signal Processing 3.. Signal and System Classifications In general, electrical signals can represent either current or voltage, and may be classified into two main categories: energy signals

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2 EE 505 Lecture 10 Spectral Characterization Part 2 of 2 Review from last lecture Spectral Analysis If f(t) is periodic f(t) alternately f(t) = = A A ( kω t + ) 0 + Aksin θk k= 1 0 + a ksin t k= 1 k= 1

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

Spectrograms Overview Introduction and motivation Windowed estimates as filter banks Uncertainty principle Examples Other estimates

Spectrograms Overview Introduction and motivation Windowed estimates as filter banks Uncertainty principle Examples Other estimates Spectrograms Overview Introduction and motivation Windowed estimates as filter banks Uncertainty principle Examples Other estimates J. McNames Portland State University ECE 3 Spectrograms Ver. 1.1 1 Introduction

More information

Solutions. Number of Problems: 10

Solutions. Number of Problems: 10 Final Exam February 9th, 2 Signals & Systems (5-575-) Prof. R. D Andrea Solutions Exam Duration: 5 minutes Number of Problems: Permitted aids: One double-sided A4 sheet. Questions can be answered in English

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information