Getting Started With The Predator - Prey Model: Nullclines

Size: px
Start display at page:

Download "Getting Started With The Predator - Prey Model: Nullclines"

Transcription

1 Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator - Prey Nullclines An Example The General Results

2 Abstract This lecture introduces the Predator - Prey Model and its nullclines. The Predator - Prey model is where x = a x b x y y = c y + d x y x(0) = x 0 y(0) = y 0 a > 0 is the birth rate of the food fish x(t). b > 0 is the death rate of the food fish due to being eaten by the predators. This death rate is modeled as a population interaction term so it has the form bxy. c > 0 is the rate at which the predators die. d > 0 is the birth rate of the predators. We assume predators need to eat to procreate and in order to eat, they must interact with the food fish. Hence, this birth rate is modeled using population interaction as dxy.

3 To figure out how the trajectories move for given initial conditions, we will use nullcline analysis once again. The x nullcline analysis begins with setting. This gives 0 = a x b x y = x (a by). Since this is a product, there are two possibilities: x = 0; the y axis and y = a b ; a horizontal line. The y nullcline analysis begins with setting. This gives 0 = c y + d x y = y ( c + dx). Since this is a product, there are two possibilities: y = 0; the and x = c d ; a vertical line. We need to determine the (+, +), (+, ), (, +) and (, ) x and y regions in order to see how the trajectories move. Here s an example: consider the predator - prey model x (t) = 2 x(t) 5 x(t) y(t) y (t) = 6 y(t) + 3 x(t) y(t) The x nullclines satisfy 2x 5xy = 0 or x(2 5y) = 0. Hence x = 0 or y = 2/5. Draw the lines x = 0, the y axis, and the horizontal line y = 2/5 in the xy plane. The factor 2 5y is positive when 2 5y > 0 or when y < 2/5. Hence, the factor is negative when y > 2/5. The factor x is positive when x > 0 and negative when x < 0. So the combination x(2 5y) has a sign that can be determined easily on the next graph.

4 y = 2 5 x(2 5y) x + x(2 5y) + x y axis x(2 5y) + x x(2 5y) + + x + The x nullclines. Each region has the product x(2 5y) in it. Underneath the factors are the algebraic signs for the factors. Their product determines the algebraic sign of x. Next, for our predator - prey model x (t) = 2 x(t) 5 x(t) y(t) y (t) = 6 y(t) + 3 x(t) y(t) the y nullclines satisfy 6y + 3xy = 0 or y( 6 + 3x) = 0. Hence y = 0 or x = 2. Draw the lines y = 0 (the and the vertical line x = 2 in the xy plane. The factor 6 + 3x is positive when 6 + 3x > 0 or when x > 2. Hence, the factor is negative when x < 2. The factor y is positive when y > 0 and negative when y < 0. So the combination y( 6 + 3x) has a sign that can be determined easily on the next graph.

5 y axis y( 6 + 3x) + y y( 6 + 3x) y + y( 6 + 3x) + + y + y( 6 + 3x) + y The y nullclines. Each region has the product y( 6 + 3x) in it. Underneath the factors are the algebraic signs for the factors. Their product determines the algebraic sign of y. x = 6/3 We combine the x and y nullcline information to create a map of how x and y change sign in the xy plane. Regions I, II, III and IV divide Quadrant I. We will show there are trajectories moving down the positive y axis and out along the positive. Thus, a trajectory that starts in Quadrant I with positive initial conditions can t cross the the trajectory on the positive or the trajectory on the positive y axis. Thus, the Predator - Prey trajectories that start in Quadrant I with positive initial conditions will stay in Quadrant I.

6 y = 2/5 V VI (, ) VII (,+) y axis II (, ) III VIII (+,+) I (,+) IV (+,+) IX x = 6/3 The and the equations determine regions in the xy plane. In each region, the algebraic sign of x and y are shown as an ordered pair. For example, in region I, x is negative and y is positive and so this is denoted by (, +). For the general predator - prey model x (t) = a x(t) b x(t) y(t) y (t) = c y(t) + d x(t) y(t) The x nullclines satisfy ax bxy = 0 or x(a by) = 0. Hence x = 0 or y = a/b. Draw the lines x = 0 (the y axis and the horizontal line y = a/b in the xy plane. The factor a by is positive when a by > 0 or when y < a/b. Hence, the factor is negative when y > a/b. The factor x is positive when x > 0 and negative when x < 0. So the combination x(a by) has a sign that can be determined easily on the next graph.

7 y = a b x(a by) x + x(a by) + x y axis x(a by) + x x(a by) + + x + The x nullclines. Each region has the product x(a by) in it. Underneath the factors are the algebraic signs for the factors. Their product determines the algebraic sign of x. Next, for our predator - prey model x (t) = a x(t) b x(t) y(t) y (t) = c y(t) + d x(t) y(t) the y nullclines satisfy cy + dxy = 0 or y( c + dx) = 0. Hence y = 0 or x = c/d. Draw the lines y = 0 (the and the vertical line x = c/d in the xy plane. The factor c + dx is positive when c + dx > 0 or when x > c/d. Hence, the factor is negative when x < c/d. The factor y is positive when y > 0 and negative when y < 0. So the combination y( c + dx) has a sign that can be determined easily on the next graph.

8 y axis y( c + dx) + y y( c + dx) y + y( c + dx) + + y + y( c + dx) + y The y nullclines. Each region has the product y( c + dx) in it. Underneath the factors are the algebraic signs for the factors. Their product determines the algebraic sign of y. x = c/d y = a/b V VI (, ) VII (,+) y axis II (, ) III VIII (+,+) I (,+) IV (+,+) IX x = c/d The and the equations determine regions in the xy plane. In each region, the algebraic sign of x and y are shown as an ordered pair. For example, in region I, x is negative and y is positive and so this is denoted by (, +).

9 Homework 66 For the following problems, do the x and y nullclines analysis in the whole plane separately and then assemble the combined picture for the whole plane. Use multiple colors as needed x (t) = 100 x(t) 25 x(t) y(t) y (t) = 200 y(t) + 40 x(t) y(t) x (t) = 1000 x(t) 250 x(t) y(t) y (t) = 2000 y(t) + 40 x(t) y(t) x (t) = 900 x(t) 45 x(t) y(t) y (t) = 100 y(t) + 50 x(t) y(t)

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches Bees and Flowers Often scientists use rate of change equations in their stu of population growth for one or more species. In this problem we stu systems of rate of change equations designed to inform us

More information

APPM 2360 Lab #3: The Predator Prey Model

APPM 2360 Lab #3: The Predator Prey Model APPM 2360 Lab #3: The Predator Prey Model 1 Instructions Labs may be done in groups of 3 or less. One report must be turned in for each group and must be in PDF format. Labs must include each student s:

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

Section 5. Graphing Systems

Section 5. Graphing Systems Section 5. Graphing Systems 5A. The Phase Plane 5A-1. Find the critical points of each of the following non-linear autonomous systems. x = x 2 y 2 x = 1 x + y a) b) y = x xy y = y + 2x 2 5A-2. Write each

More information

Introduction to Dynamical Systems

Introduction to Dynamical Systems Introduction to Dynamical Systems Autonomous Planar Systems Vector form of a Dynamical System Trajectories Trajectories Don t Cross Equilibria Population Biology Rabbit-Fox System Trout System Trout System

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

Applied Calculus. Review Problems for the Final Exam

Applied Calculus. Review Problems for the Final Exam Math135 Study Guide 1 Math 131/135/194, Fall 2004 Applied Calculus Daniel Kaplan, Macalester College Review Problems for the Final Exam Problem 1../DE/102b.tex Problem 3../DE/107.tex Consider the pair

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Do not write in this space. Problem Possible Score Number Points Total 100

Do not write in this space. Problem Possible Score Number Points Total 100 Math 9. Name Mathematical Modeling Exam I Fall 004 T. Judson Do not write in this space. Problem Possible Score Number Points 5 6 3 8 4 0 5 0 6 0 7 8 9 8 Total 00 Directions Please Read Carefully! You

More information

EECS 700: Exam # 1 Tuesday, October 21, 2014

EECS 700: Exam # 1 Tuesday, October 21, 2014 EECS 700: Exam # 1 Tuesday, October 21, 2014 Print Name and Signature The rules for this exam are as follows: Write your name on the front page of the exam booklet. Initial each of the remaining pages

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Lesson 9: Predator-Prey and ode45

Lesson 9: Predator-Prey and ode45 Lesson 9: Predator-Prey and ode45 9.1 Applied Problem. In this lesson we will allow for more than one population where they depend on each other. One population could be the predator such as a fox, and

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

M469, Fall 2010, Practice Problems for the Final

M469, Fall 2010, Practice Problems for the Final M469 Fall 00 Practice Problems for the Final The final exam for M469 will be Friday December 0 3:00-5:00 pm in the usual classroom Blocker 60 The final will cover the following topics from nonlinear systems

More information

Solving Linear Systems of ODEs with Matlab

Solving Linear Systems of ODEs with Matlab Solving Linear Systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 27, 2013 Outline Linear Systems Numerically

More information

Upper and Lower Bounds

Upper and Lower Bounds James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 30, 2017 Outline 1 2 s 3 Basic Results 4 Homework Let S be a set of real numbers. We

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method Outline Finding Equilibrium Points Numerically Additional Nonlinear Systems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University June 13, 2017

More information

1 The pendulum equation

1 The pendulum equation Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo 2008-11-07 Graded Project #1 Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo This homework is due to be handed in on Wednesday 12 November 2008 before 13:00 in the post box of the numerical

More information

Math Lecture 46

Math Lecture 46 Math 2280 - Lecture 46 Dylan Zwick Fall 2013 Today we re going to use the tools we ve developed in the last two lectures to analyze some systems of nonlinear differential equations that arise in simple

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

Pure Math 30: Explained! 81

Pure Math 30: Explained!   81 4 www.puremath30.com 81 Part I: General Form General Form of a Conic: Ax + Cy + Dx + Ey + F = 0 A & C are useful in finding out which conic is produced: A = C Circle AC > 0 Ellipse A or C = 0 Parabola

More information

MA 138 Calculus 2 with Life Science Applications Handout

MA 138 Calculus 2 with Life Science Applications Handout .. MA 138 Calculus 2 with Life Science Applications Handout Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky February 17, 2017 . Example 4 (Lotka-Volterra Predator-Prey

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Interacting Populations.

Interacting Populations. Chapter 2 Interacting Populations. 2.1 Predator/ Prey models Suppose we have an island where some rabbits and foxes live. Left alone the rabbits have a growth rate of 10 per 100 per month. Unfortunately

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Predator-Prey Population Models

Predator-Prey Population Models 21 Predator-Prey Population Models Tools Used in Lab 21 Hudson Bay Data (Hare- Lynx) Lotka-Volterra Lotka-Volterra with Harvest How can we model the interaction between a species of predators and their

More information

Direction fields of differential equations...with SAGE

Direction fields of differential equations...with SAGE Direction fields of differential equations...with SAGE Many differential equations cannot be solved conveniently by analytical methods, so it is important to consider what qualitative information can be

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review Topics" What is a model?" Styles of modeling" How do we evaluate models?" Aggregate models vs. individual models." Cellular automata"

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

Math 3B: Lecture 14. Noah White. February 13, 2016

Math 3B: Lecture 14. Noah White. February 13, 2016 Math 3B: Lecture 14 Noah White February 13, 2016 Last time Accumulated change problems Last time Accumulated change problems Adding up a value if it is changing over time Last time Accumulated change problems

More information

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Why This Class? James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 22, 2013 Outline 1 Our Point of View Mathematics, Science and Computer

More information

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved.

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved. 9.1 Circles and Parabolas Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize a conic as the intersection of a plane and a double-napped cone. Write equations of circles in

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields Chapter 11 Packet 11.1 & 11. What is a Differential Equation and What are Slope Fields What is a differential equation? An equation that gives information about the rate of change of an unknown function

More information

Workshop on Theoretical Ecology and Global Change March 2009

Workshop on Theoretical Ecology and Global Change March 2009 2022-3 Workshop on Theoretical Ecology and Global Change 2-18 March 2009 Stability Analysis of Food Webs: An Introduction to Local Stability of Dynamical Systems S. Allesina National Center for Ecological

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt Motivation and Goals Modelling with ODEs 24.10.01 Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

COORDINATE GEOMETRY, EQUATIONS AND PROBLEM SOLVING TEST

COORDINATE GEOMETRY, EQUATIONS AND PROBLEM SOLVING TEST Year 8 Maths TEST A 2017 Name: COORDINATE GEOMETRY, EQUATIONS AND PROBLEM SOLVING TEST PART A: COORDINATE GEOMETRY [22 marks] Question 1: Use the set of axes below to answer the following questions. a)

More information

8.6 Translate and Classify Conic Sections

8.6 Translate and Classify Conic Sections 8.6 Translate and Classify Conic Sections Where are the symmetric lines of conic sections? What is the general 2 nd degree equation for any conic? What information can the discriminant tell you about a

More information

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score Name: MA 226 FINAL EXAM Show Your Work Problem Possible Actual Score 1 36 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 8 TOTAL 100 1.) 30 points (3 each) Short Answer: The answers to these questions need only consist

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

Stability and bifurcation in a two species predator-prey model with quintic interactions

Stability and bifurcation in a two species predator-prey model with quintic interactions Chaotic Modeling and Simulation (CMSIM) 4: 631 635, 2013 Stability and bifurcation in a two species predator-prey model with quintic interactions I. Kusbeyzi Aybar 1 and I. acinliyan 2 1 Department of

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Section 6.5. Least Squares Problems

Section 6.5. Least Squares Problems Section 6.5 Least Squares Problems Motivation We now are in a position to solve the motivating problem of this third part of the course: Problem Suppose that Ax = b does not have a solution. What is the

More information

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v),

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v), Let us apply the approach presented above to the analysis of population dynamics models. 9. Lotka-Volterra predator-prey model: phase plane analysis. Earlier we introduced the system of equations for prey

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Math M111: Lecture Notes For Chapter 3

Math M111: Lecture Notes For Chapter 3 Section 3.1: Math M111: Lecture Notes For Chapter 3 Note: Make sure you already printed the graphing papers Plotting Points, Quadrant s signs, x-intercepts and y-intercepts Example 1: Plot the following

More information

Gerardo Zavala. Math 388. Predator-Prey Models

Gerardo Zavala. Math 388. Predator-Prey Models Gerardo Zavala Math 388 Predator-Prey Models Spring 2013 1 History In the 1920s A. J. Lotka developed a mathematical model for the interaction between two species. The mathematician Vito Volterra worked

More information

Runge - Kutta Methods for first and second order models

Runge - Kutta Methods for first and second order models Runge - Kutta Methods for first and second order models James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Runge -

More information

Coordinate Curves for Trajectories

Coordinate Curves for Trajectories 43 The material on linearizations and Jacobian matrices developed in the last chapter certainly expanded our ability to deal with nonlinear systems of differential equations Unfortunately, those tools

More information

Math 341 Fall 2006 Final Exam December 12th, Name:

Math 341 Fall 2006 Final Exam December 12th, Name: Math 341 Fall 2006 Final Exam December 12th, 2006 Name: You may use a calculator, your note card and something to write with. You must attach your notecard to the exam when you turn it in. You cannot use

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION When you are done with your homework you should be able to Recognize, and apply properties of, symmetric matrices Recognize, and apply properties

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Transient Response of a Chemical Reactor Concentration of a substance in a chemical reactor

More information

CHAPTER 4: SCIENCE SEMINAR

CHAPTER 4: SCIENCE SEMINAR CHAPTER 4: SCIENCE SEMINAR 4.1.1: WARM-UP Annotate a passage from the article about stickleback fish, which you read for homework. (5 min) 4.1.2: INTRODUCING STICKLEBACKS Introduce the new question about

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Tutorial 6 (week 6) Solutions

Tutorial 6 (week 6) Solutions THE UNIVERSITY OF SYDNEY PURE MATHEMATICS Linear Mathematics 9 Tutorial 6 week 6 s Suppose that A and P are defined as follows: A and P Define a sequence of numbers { u n n } by u, u, u and for all n,

More information

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Lotka Volterra Predator-Prey Model with a Predating Scavenger Lotka Volterra Predator-Prey Model with a Predating Scavenger Monica Pescitelli Georgia College December 13, 2013 Abstract The classic Lotka Volterra equations are used to model the population dynamics

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Predator-Prey Interactions

Predator-Prey Interactions ADDITIONAL INVESTIGATION Predator-Prey Interactions Predation is a density-dependent limiting factor it is affected by the number of individuals in a given area. For example, the population of a predator

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

1. Definition of a Polynomial

1. Definition of a Polynomial 1. Definition of a Polynomial What is a polynomial? A polynomial P(x) is an algebraic expression of the form Degree P(x) = a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 3 x 3 + a 2 x 2 + a 1 x + a 0 Leading

More information

Name: Date: Block: Algebra 1 Function/Solving for a Variable STUDY GUIDE

Name: Date: Block: Algebra 1 Function/Solving for a Variable STUDY GUIDE Algebra Functions Test STUDY GUIDE Name: Date: Block: SOLs: A.7, A. Algebra Function/Solving for a Variable STUDY GUIDE Know how to Plot points on a Cartesian coordinate plane. Find the (x, y) coordinates

More information

Extrema of Functions of Several Variables

Extrema of Functions of Several Variables Extrema of Functions of Several Variables MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background (1 of 3) In single-variable calculus there are three important results

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics & Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS08 SEMESTER: Spring 0 MODULE TITLE: Dynamical

More information

The Living World Continued: Populations and Communities

The Living World Continued: Populations and Communities The Living World Continued: Populations and Communities Ecosystem Communities Populations Review: Parts of an Ecosystem 1) An individual in a species: One organism of a species. a species must be genetically

More information