Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Size: px
Start display at page:

Download "Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials"

Transcription

1 Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1

2 Conditional Random Field (CRF) E x I = φ u x i I + φ p (x i, x j I) i i j i Unary term Pairwise term X, I : random fields Application: Image segmentation: achieve state-of-the-art performance (in 2011) 2

3 Image Segmentation Example: semantic image segmentation Input Output 3

4 CRF for Image Segmentation E x I = φ u x i I + φ p (x i, x j I) i Unary term i j i Pairwise term X: a random field defined over a set of variables {X 1,, X N } Label of pixels (grass, bench, tree,..) I: a random field defined over a set of variables I 1,, I N Image (observation) 4

5 CRF for Image Segmentation E(x) = ψ u x i + ψ p (x i, x j ) i Unary term i j i Pairwise term Unary term Trained on dataset 5

6 CRF for Image Segmentation E(x) = ψ u x i + ψ p (x i, x j ) i Unary term i j i Pairwise term Pairwise term Impose consistency of the labeling Defined over neighboring pixels ψ p x i, x j = μ x i, x j K m=1 w m k m (f i, f j ) 6

7 CRF for Image Segmentation Pairwise term ψ p x i, x j = μ x i, x j K m=1 w m k m (f i, f j ) k (m) (f i, f j ) is a Gaussian kernel f i, f j is the feature vectors for pixel i and j, e.g., color intensities, is the weight of the m-th kernel μ x i, x j is the label compatibility function w m E(x) = i ψ u x i Unary term + i j i ψ p (x i, x j ) Pairwise term 7

8 CRF for Image Segmentation E x I = φ u x i I + φ p (x i, x j I) i Unary term i j i Pairwise term Neighboring pixels Local connections May not capture the sharp boundaries 8

9 Grid CRF for Image Segmentation Unary term Local connections May not capture the sharp boundaries 9

10 Fully connected CRF for Image Segmentation Dense CRF Fully connected CRF Every node is connected to every other node MCMC inference, 36 hours!! 10

11 Efficient Inference on Fully connected CRF They propose an efficient approximate algorithm for inference on fully connected CRF Inference in 0.2 seconds ~50,000 nodes (apply to pixel level segmentation) Based on a mean field approximation to the CRF distribution 11

12 Mean Field Approximation Mean field update rule for CRF Q i x i = l K = 1 Z i exp{ ψ u x i μ l, l w m k m f i, f j Q j (l )} l L m=1 j i 12

13 Mean Field Approximation Q i x i = l = 1 Z i exp ψ u x i Algorithm l L μ l, l K m=1 Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} While not converged w m j i Message passing: Q i m (l) = σ j i k m f i, f j Q j l k m f i, f j Q j l 13

14 Mean Field Approximation Q i x i = l = Algorithm 1 Z i exp ψ u x i l L μ l, l Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} While not converged Message passing: Q i (m) = σj i k m f i, f j Q j l K m=1 w m Qi m (l) Compatibility transform: Q i x i = σ l L μ l, l σk m=1 w m m Qi (l) 14

15 Mean Field Approximation Algorithm Q i x i = l = 1 Z i exp ψ u x i Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} While not converged Message passing: Q i (m) = σj i k m f i, f j Q j l Q i x i Compatibility transform: Q i x i = σ l L μ l, l σk m=1 w m m Qi (l) Update to calculate Q i x i = l Normalization 15

16 Mean Field Approximation Algorithm O(N 2 ) O(N) O(N) O(N) Q i x i = l = 1 Z i exp ψ u x i Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} While not converged Message passing: Q i (m) = σj i k m f i, f j Q j l Q i x i Compatibility transform: Q i x i = σ l L μ l, l σk m=1 w m m Qi (l) Update to calculate Q i x i = l Normalization 16

17 Mean Field Approximation Algorithm O(N 2 ) O(N) O(N) O(N) Q i x i = l = 1 Z i exp ψ u x i Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} While not converged Message passing: Q i (m) = σj i k m f i, f j Q j l Q i x i Compatibility transform: Q i x i = σ l L μ l, l σk m=1 w m m Qi (l) Update to calculate Q i x i = l Normalization 17

18 Efficient Message Passing Message passing Q i (m) = j i k m f i, f j Q j l Gaussian filter k m f i, f j Apply convolution to Q j l 18

19 Efficient Message Passing Message passing (m) Q i = k m j i f i, f j Q j l = G m Q l Q i (l) Gaussian filter k m f i, f j Apply convolution to Q j l Smooth, low-pass filter -> can be reconstructed by a set of samples (by sampling theorem) 19

20 Efficient Message Passing Message passing (m) Q i = k m j i f i, f j Q j l = G m Q l Q i (l) Downsampling Q j l Blur the downsampled signal (apply convolution operator with kernel k (m) ) Upsampling to reconstruct the filtered signal ~ Q i (m) Reduce the time complexity to O(N) 20

21 Mean Field Approximation Algorithm Q i x i = l = 1 Z i exp ψ u x i Initialize Q : Q i x i = 1 Z i exp{ φ u (x i )} Q i x i O(N) O(N) O(N) O(N) While not converged Message passing: Q i (m) = σj i k m f i, f j Q j l Compatibility transform: Q i x i = σ l L μ l, l σk m=1 w m m Qi (l) Update to calculate Q i x i = l Normalization 21

22 Results Image Dense CRF Results 22

23 Results 23

24 Conclusion A fully connected CRF model for pixel level segmentation Efficient inference on the fully connected CRF Linear in number of variables 24

25 Dense CRF as Post-processing Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Chen et al. ICLR 15 25

26 Convergent Inference Parameter Learning and Convergent Inference for Dense Random Fields. Philipp Krähenbühl and Vladlen Koltun. ICML 13. A new efficient inference algorithm in dense CRF that is guaranteed to converge for some specific kernels and label compatibility functions. 26

27 Questions? 27

28 Pairwise Term in the Dense CRF Model Pairwise term They use ψ p x i, x j = μ x i, x j K m=1 w m k m (f i, f j ) p i : position of pixel i I i : color intensity of pixel I θ : hyper parameters 28

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Pushmeet Kohli Microsoft Research

Pushmeet Kohli Microsoft Research Pushmeet Kohli Microsoft Research E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04] E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x)

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Markov Random Fields for Computer Vision (Part 1)

Markov Random Fields for Computer Vision (Part 1) Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011) Stephen Gould stephen.gould@anu.edu.au Australian National University 13 17 June, 2011 Stephen Gould 1/23 Pixel

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Oct, 21, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models CPSC

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Learning with Structured Inputs and Outputs

Learning with Structured Inputs and Outputs Learning with Structured Inputs and Outputs Christoph H. Lampert IST Austria (Institute of Science and Technology Austria), Vienna Microsoft Machine Learning and Intelligence School 2015 July 29-August

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Predicting Deeper into the Future of Semantic Segmentation Supplementary Material

Predicting Deeper into the Future of Semantic Segmentation Supplementary Material Predicting Deeper into the Future of Semantic Segmentation Supplementary Material Pauline Luc 1,2 Natalia Neverova 1 Camille Couprie 1 Jakob Verbeek 2 Yann LeCun 1,3 1 Facebook AI Research 2 Inria Grenoble,

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Energy minimization via graph-cuts

Energy minimization via graph-cuts Energy minimization via graph-cuts Nikos Komodakis Ecole des Ponts ParisTech, LIGM Traitement de l information et vision artificielle Binary energy minimization We will first consider binary MRFs: Graph

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

Sum-Product Networks: A New Deep Architecture

Sum-Product Networks: A New Deep Architecture Sum-Product Networks: A New Deep Architecture Pedro Domingos Dept. Computer Science & Eng. University of Washington Joint work with Hoifung Poon 1 Graphical Models: Challenges Bayesian Network Markov Network

More information

Transformation of Markov Random Fields for Marginal Distribution Estimation

Transformation of Markov Random Fields for Marginal Distribution Estimation Transformation of Markov Random Fields for Marginal Distribution Estimation Masaki Saito Takayuki Okatani Tohoku University, Japan {msaito, okatani}@vision.is.tohoku.ac.jp Abstract This paper presents

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Understanding How ConvNets See

Understanding How ConvNets See Understanding How ConvNets See Slides from Andrej Karpathy Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops) CSC321: Intro to Machine Learning and Neural Networks,

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari Learning MN Parameters with Alternative Objective Functions Sargur srihari@cedar.buffalo.edu 1 Topics Max Likelihood & Contrastive Objectives Contrastive Objective Learning Methods Pseudo-likelihood Gradient

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Introduction To Graphical Models

Introduction To Graphical Models Peter Gehler Introduction to Graphical Models Introduction To Graphical Models Peter V. Gehler Max Planck Institute for Intelligent Systems, Tübingen, Germany ENS/INRIA Summer School, Paris, July 2013

More information

Efficient Nonlocal Regularization for Optical Flow

Efficient Nonlocal Regularization for Optical Flow Efficient Nonlocal Regularization for Optical Flow Philipp Krähenbühl and Vladlen Koltun Stanford University {philkr,vladlen}@cs.stanford.edu Abstract. Dense optical flow estimation in images is a challenging

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Improved Bayesian Compression

Improved Bayesian Compression Improved Bayesian Compression Marco Federici University of Amsterdam marco.federici@student.uva.nl Karen Ullrich University of Amsterdam karen.ullrich@uva.nl Max Welling University of Amsterdam Canadian

More information

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Salman H. Khan 1, Mohammed Bennamoun 1, Ferdous Sohel 1 and Roberto Togneri 2 School of CSSE 1, School of EECE 2 The

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

CRF for human beings

CRF for human beings CRF for human beings Arne Skjærholt LNS seminar CRF for human beings LNS seminar 1 / 29 Let G = (V, E) be a graph such that Y = (Y v ) v V, so that Y is indexed by the vertices of G. Then (X, Y) is a conditional

More information

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA Shizhi Chen and YingLi Tian Department of Electrical Engineering The City College of

More information

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih Unsupervised Learning of Hierarchical Models Marc'Aurelio Ranzato Geoff Hinton in collaboration with Josh Susskind and Vlad Mnih Advanced Machine Learning, 9 March 2011 Example: facial expression recognition

More information

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University Diffusion/Inference geometries of data features, situational awareness and visualization Ronald R Coifman Mathematics Yale University Digital data is generally converted to point clouds in high dimensional

More information

Knowledge Extraction from DBNs for Images

Knowledge Extraction from DBNs for Images Knowledge Extraction from DBNs for Images Son N. Tran and Artur d Avila Garcez Department of Computer Science City University London Contents 1 Introduction 2 Knowledge Extraction from DBNs 3 Experimental

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Contrastive Divergence

Contrastive Divergence Contrastive Divergence Training Products of Experts by Minimizing CD Hinton, 2002 Helmut Puhr Institute for Theoretical Computer Science TU Graz June 9, 2010 Contents 1 Theory 2 Argument 3 Contrastive

More information

Decision Tree Fields

Decision Tree Fields Sebastian Nowozin, arsten Rother, Shai agon, Toby Sharp, angpeng Yao, Pushmeet Kohli arcelona, 8th November 2011 Introduction Random Fields in omputer Vision Markov Random Fields (MRF) (Kindermann and

More information

Structured deep models: Deep learning on graphs and beyond

Structured deep models: Deep learning on graphs and beyond Structured deep models: Deep learning on graphs and beyond Hidden layer Hidden layer Input Output ReLU ReLU, 25 May 2018 CompBio Seminar, University of Cambridge In collaboration with Ethan Fetaya, Rianne

More information

A Graphical Model for Simultaneous Partitioning and Labeling

A Graphical Model for Simultaneous Partitioning and Labeling A Graphical Model for Simultaneous Partitioning and Labeling Philip J Cowans Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom pjc51@camacuk Martin Szummer Microsoft Research

More information

Discriminative Fields for Modeling Spatial Dependencies in Natural Images

Discriminative Fields for Modeling Spatial Dependencies in Natural Images Discriminative Fields for Modeling Spatial Dependencies in Natural Images Sanjiv Kumar and Martial Hebert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 {skumar,hebert}@ri.cmu.edu

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Self-Tuning Semantic Image Segmentation

Self-Tuning Semantic Image Segmentation Self-Tuning Semantic Image Segmentation Sergey Milyaev 1,2, Olga Barinova 2 1 Voronezh State University sergey.milyaev@gmail.com 2 Lomonosov Moscow State University obarinova@graphics.cs.msu.su Abstract.

More information

Subsampling and image pyramids

Subsampling and image pyramids Subsampling and image pyramids http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 3 Course announcements Homework 0 and homework 1 will be posted tonight. - Homework 0 is not required

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

From CDF to PDF A Density Estimation Method for High Dimensional Data

From CDF to PDF A Density Estimation Method for High Dimensional Data From CDF to PDF A Density Estimation Method for High Dimensional Data Shengdong Zhang Simon Fraser University sza75@sfu.ca arxiv:1804.05316v1 [stat.ml] 15 Apr 2018 April 17, 2018 1 Introduction Probability

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Max-margin learning of GM Eric Xing Lecture 28, Apr 28, 2014 b r a c e Reading: 1 Classical Predictive Models Input and output space: Predictive

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Gaussian Process Based Image Segmentation and Object Detection in Pathology Slides

Gaussian Process Based Image Segmentation and Object Detection in Pathology Slides Gaussian Process Based Image Segmentation and Object Detection in Pathology Slides CS 229 Final Project, Autumn 213 Jenny Hong Email: jyunhong@stanford.edu I. INTRODUCTION In medical imaging, recognizing

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Probablistic Graphical Models, Spring 2007 Homework 4 Due at the beginning of class on 11/26/07

Probablistic Graphical Models, Spring 2007 Homework 4 Due at the beginning of class on 11/26/07 Probablistic Graphical odels, Spring 2007 Homework 4 Due at the beginning of class on 11/26/07 Instructions There are four questions in this homework. The last question involves some programming which

More information

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Anton Rodomanov Higher School of Economics, Russia Bayesian methods research group (http://bayesgroup.ru) 14 March

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Perturb-and-MAP Random Fields: Using Discrete Optimization to Learn and Sample from Energy Models ICCV 2011 paper supplementary material

Perturb-and-MAP Random Fields: Using Discrete Optimization to Learn and Sample from Energy Models ICCV 2011 paper supplementary material Perturb-and-MAP Random Fields: Using Discrete Optimization to Learn and Sample from Energy Models ICCV 2011 paper supplementary material George Papandreou and Alan Yuille Department of Statistics, University

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning Convolutional Neural Network (CNNs) University of Waterloo October 30, 2015 Slides are partially based on Book in preparation, by Bengio, Goodfellow, and Aaron Courville, 2015 Convolutional Networks Convolutional

More information

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13 Energy Based Models Stefano Ermon, Aditya Grover Stanford University Lecture 13 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 1 / 21 Summary Story so far Representation: Latent

More information

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Alejandro Perdomo-Ortiz Senior Research Scientist, Quantum AI Lab. at NASA Ames Research Center and at the

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

Multiscale Wavelets on Trees, Graphs and High Dimensional Data

Multiscale Wavelets on Trees, Graphs and High Dimensional Data Multiscale Wavelets on Trees, Graphs and High Dimensional Data ICML 2010, Haifa Matan Gavish (Weizmann/Stanford) Boaz Nadler (Weizmann) Ronald Coifman (Yale) Boaz Nadler Ronald Coifman Motto... the relationships

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Lesson 04. KAZE, Non-linear diffusion filtering, ORB, MSER. Ing. Marek Hrúz, Ph.D.

Lesson 04. KAZE, Non-linear diffusion filtering, ORB, MSER. Ing. Marek Hrúz, Ph.D. Lesson 04 KAZE, Non-linear diffusion filtering, ORB, MSER Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 04 KAZE ORB: an efficient alternative

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information