Sparse Stochastic Inference for Latent Dirichlet Allocation

Size: px
Start display at page:

Download "Sparse Stochastic Inference for Latent Dirichlet Allocation"

Transcription

1 Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation led by Miao Liu March 7, 2013

2 1 Introduction 2 Hybrid Stochastic-MCMC Inference 3 Related Work 4 Empirical Results

3 A hybrid algorithm for Bayesian topic models sparse Gibbs sampling to estimate variational expectation of local variables (efficiency) online VB to update the variational distribution of global variables (scalability) Applications: find large numbers of topics in massive collections of documents 1.2 million books 33 billion words

4 Latent Dirichlet Allocation (Blei et al., 2003) Notations α: the parameter of Dirichlet prior on the per-document topic distribution β: the parameter of Dirichlet prior on the per-topic word distribution θ i : the topic distribution for document i φ i : the word distribution for topic k z ij : the topic for the jth word in document i w ij : the specific word The generative process θ i Dir(α), where i {1,, M} (1) φ k Dir(β), where k {1,, K } (2) For each of the words w ij, where j {1,, N i } (3) z ij Multinomial(θ i ), w ij Multinomial(φ zij ) (4)

5 Online LDA (Hoffman et al. (2010)) pros less memory faster convergence does not scale to large number of topics

6 Hybrid Stochastic-MCMC Inference Sampling: a second source of stochasticity for the gradient Marginalize out the topic proportions θ d Corpus-level global variables: K topic-word distributions β 1,, β K over the V-dimensional vocabulary. Document-level local variables: For a document d of length N d θ d z d = (z d1,, z dnd ) variational distribution q(z 1,, z D, β 1, β K ) = d q(z d) k q(β k). q(z d ) is a single distribution over the K N d possible topic configurations The VB lower bound log p(w α, η) d E q log [ p(z d α) i ] β zdi w di + E q log p(β k η)+h(q) k (5)

7 The optimal variational distribution over topic configurations for a document, holding all other variational distribution fixed q (z d ) exp { E q( zd )[log p(z d α)p(w d z d, β)] } (6) Γ(K α) Γ(α + i = I z di =k) (7) Γ(K α + N d ) Γ(α) The hyper parameter of the optimal variational distribution over topic-word distribution, holding the other distributions fixed λ kw = η + E q [I zdi =ki wdi =w] (8) d i k

8 Online Stochastic Inference for λ kw Recast the variational LB as a summation over per-document terms l d l d = ) w (E q [N dkw ] + 1D (η λ) E q [log β kw ]+ ( 1 log Γ( λ kw ) ) log Γ(λ kw ), (9) D w w [ ] D d λ k l d = E B d B λ k l d E q [N dkw ] = i E q[i zdi =ki wdi =w] The natural gradient (Hoffman et al., 2010) E q [N dkw ] + 1 D (η λ kw) (10) faster convergence cheaper computation Issue: the natural gradient cannot be directly evaluated (with a combinatorial number of topic configurations z d ).

9 MCMC within Stochastic Inference Solution: use MCMC to sample z d from q (z d ) and the empirical average to estimate E q [N dkw ] q (z di = k z\i) (α + j i I z j =k) exp{e q [log β kwdi ]} E q [N dkw ] N kw = 1 S s d B i [I zdi s =k I wdi =w] Impacts from MCMC 1 add stochasticity to the gradient 2 allows using collapsed objective function that does not represent θ d 3 provides a sparse estimate of the gradient (for many words and topics, the estimate of E q [N dkw ] will be zero)

10 Previous variational methods lead to dense update to KV topic parameters, which is expensive when K and V are large. Algorithm 1 exploit the sparsity exhibited by samples from q.

11 Two sources of zero-mean noise in constructing an approximate gradient for VB Subsampling the data (SS) Monte Carlo inference (MC) SAEM (Delyon et al., 1999): EM + MC Kuhn & Lavielle (2004): extends SAEM to MCMC estimates online EM (Cappé & Moulines, 2009): EM + SS Collapsed VB (Teh et al. 2006) also analytically marginalizes over θ d, but still maintains a fully factorized distribution over z d The prosed method does not restrict to such factored distributions, hence reduces bias Parallelization

12 Evaluation Held-out probability: calculates the marginal likelihood for held out documents using the left-to-right sequential sampling (Wallach et al. 2009; Buntine, 2009) Topic coherence measures the semantic quality of a topic by approximating the experience of a user viewing the W most probable words for the topic (Mimno et al., 2011) D(w): the number of document containing one or more token of type w D(w i, w j ): the number of documents containing at least one token of w i and w j C(W ) = W i=2 i 1 j=1 log D(w i,w j )+ɛ D(w j ) C(W ) is related to point-wise mutual information (Newman et al., 2010) Wallclock time

13 Dataset Science/Nature/PNAS articles 350, 00 research articles Vocabulary size: 19, % articles for training, 10% for testing Pre-1922 books 1.2 million books 33 billion words

14 Comparison to Online VB (Hoffman et al. 2010) Each iteration consists of a mini-batch of 100 documents the number of coordinate ascent steps in VB is equal to the number of Gibbs sweeps both methods use the same learning schedule Standard online VB takes time linear in K

15 Comparison to Online VB (Hoffman et al. 2010) The entropy of the topic distributions: the proposed method: 6.8 ± 0.46 online VB: 6.0 ± 0.58 This result could indicate that coordinate ascent over the local variables for online LDA is not converging?

16 Comparison to Sequential Monte Carlo (Ahmed et al 2012) The SMC sampler sweeps through each document the same number of times as the sampled online algorithm The learning rate schedule allows sampled online inference to forget its initial topics SMC weights all documents equally

17 Effect of parameter settings Number of samples: B + S Topic-word smoothing: η Forgetting factors learning rate Size of corpus D

18 scalability

Sparse stochastic inference for latent Dirichlet allocation

Sparse stochastic inference for latent Dirichlet allocation David Mimno mimno@cs.princeton.edu Princeton U., Dept. of Computer Science, 35 Olden St., Princeton, NJ 08540, USA Matthew D. Hoffman mdhoffma@cs.princeton.edu Columbia U., Dept. of Statistics, Room 1005

More information

Streaming Variational Bayes

Streaming Variational Bayes Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan UC Berkeley Discussion led by Miao Liu September 13, 2013 Introduction The SDA-Bayes Framework

More information

Topic Modelling and Latent Dirichlet Allocation

Topic Modelling and Latent Dirichlet Allocation Topic Modelling and Latent Dirichlet Allocation Stephen Clark (with thanks to Mark Gales for some of the slides) Lent 2013 Machine Learning for Language Processing: Lecture 7 MPhil in Advanced Computer

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Online Bayesian Passive-Agressive Learning

Online Bayesian Passive-Agressive Learning Online Bayesian Passive-Agressive Learning International Conference on Machine Learning, 2014 Tianlin Shi Jun Zhu Tsinghua University, China 21 August 2015 Presented by: Kyle Ulrich Introduction Online

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Improving Topic Models with Latent Feature Word Representations

Improving Topic Models with Latent Feature Word Representations Improving Topic Models with Latent Feature Word Representations Dat Quoc Nguyen Joint work with Richard Billingsley, Lan Du and Mark Johnson Department of Computing Macquarie University Sydney, Australia

More information

Evaluation Methods for Topic Models

Evaluation Methods for Topic Models University of Massachusetts Amherst wallach@cs.umass.edu April 13, 2009 Joint work with Iain Murray, Ruslan Salakhutdinov and David Mimno Statistical Topic Models Useful for analyzing large, unstructured

More information

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Christophe Dupuy INRIA - Technicolor christophe.dupuy@inria.fr Francis Bach INRIA - ENS francis.bach@inria.fr Abstract

More information

arxiv: v6 [stat.ml] 11 Apr 2017

arxiv: v6 [stat.ml] 11 Apr 2017 Improved Gibbs Sampling Parameter Estimators for LDA Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA arxiv:1505.02065v6 [stat.ml] 11 Apr 2017 Yannis Papanikolaou

More information

Collapsed Variational Bayesian Inference for Hidden Markov Models

Collapsed Variational Bayesian Inference for Hidden Markov Models Collapsed Variational Bayesian Inference for Hidden Markov Models Pengyu Wang, Phil Blunsom Department of Computer Science, University of Oxford International Conference on Artificial Intelligence and

More information

Distributed Stochastic Gradient MCMC

Distributed Stochastic Gradient MCMC Sungjin Ahn Department of Computer Science, University of California, Irvine Babak Shahbaba Department of Statistics, University of California, Irvine Max Welling Machine Learning Group, University of

More information

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Changyou Chen Department of Electrical and Computer Engineering, Duke University cc448@duke.edu Duke-Tsinghua Machine Learning Summer

More information

Latent Dirichlet Bayesian Co-Clustering

Latent Dirichlet Bayesian Co-Clustering Latent Dirichlet Bayesian Co-Clustering Pu Wang 1, Carlotta Domeniconi 1, and athryn Blackmond Laskey 1 Department of Computer Science Department of Systems Engineering and Operations Research George Mason

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Inference Methods for Latent Dirichlet Allocation

Inference Methods for Latent Dirichlet Allocation Inference Methods for Latent Dirichlet Allocation Chase Geigle University of Illinois at Urbana-Champaign Department of Computer Science geigle1@illinois.edu October 15, 2016 Abstract Latent Dirichlet

More information

Online Bayesian Passive-Aggressive Learning"

Online Bayesian Passive-Aggressive Learning Online Bayesian Passive-Aggressive Learning" Tianlin Shi! stl501@gmail.com! Jun Zhu! dcszj@mail.tsinghua.edu.cn! The BIG DATA challenge" Large amounts of data.! Big data:!! Big Science: 25 PB annual data.!

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

Dirichlet Enhanced Latent Semantic Analysis

Dirichlet Enhanced Latent Semantic Analysis Dirichlet Enhanced Latent Semantic Analysis Kai Yu Siemens Corporate Technology D-81730 Munich, Germany Kai.Yu@siemens.com Shipeng Yu Institute for Computer Science University of Munich D-80538 Munich,

More information

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation Yee Whye Teh Gatsby Computational Neuroscience Unit University College London 17 Queen Square, London WC1N 3AR, UK ywteh@gatsby.ucl.ac.uk

More information

Statistical Debugging with Latent Topic Models

Statistical Debugging with Latent Topic Models Statistical Debugging with Latent Topic Models David Andrzejewski, Anne Mulhern, Ben Liblit, Xiaojin Zhu Department of Computer Sciences University of Wisconsin Madison European Conference on Machine Learning,

More information

AN INTRODUCTION TO TOPIC MODELS

AN INTRODUCTION TO TOPIC MODELS AN INTRODUCTION TO TOPIC MODELS Michael Paul December 4, 2013 600.465 Natural Language Processing Johns Hopkins University Prof. Jason Eisner Making sense of text Suppose you want to learn something about

More information

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644:

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644: Gibbs Sampling Héctor Corrada Bravo University of Maryland, College Park, USA CMSC 644: 2019 03 27 Latent semantic analysis Documents as mixtures of topics (Hoffman 1999) 1 / 60 Latent semantic analysis

More information

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling Case Stuy : Document Retrieval Collapse Gibbs an Variational Methos for LDA Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 7 th, 0 Example

More information

Topic Models. Material adapted from David Mimno University of Maryland INTRODUCTION. Material adapted from David Mimno UMD Topic Models 1 / 51

Topic Models. Material adapted from David Mimno University of Maryland INTRODUCTION. Material adapted from David Mimno UMD Topic Models 1 / 51 Topic Models Material adapted from David Mimno University of Maryland INTRODUCTION Material adapted from David Mimno UMD Topic Models 1 / 51 Why topic models? Suppose you have a huge number of documents

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation

Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation Indraneel Muherjee David M. Blei Department of Computer Science Princeton University 3 Olden Street Princeton, NJ

More information

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation THIS IS A DRAFT VERSION. FINAL VERSION TO BE PUBLISHED AT NIPS 06 A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation Yee Whye Teh School of Computing National University

More information

Smoothed Gradients for Stochastic Variational Inference

Smoothed Gradients for Stochastic Variational Inference Smoothed Gradients for Stochastic Variational Inference Stephan Mandt Department of Physics Princeton University smandt@princeton.edu David Blei Department of Computer Science Department of Statistics

More information

Applying LDA topic model to a corpus of Italian Supreme Court decisions

Applying LDA topic model to a corpus of Italian Supreme Court decisions Applying LDA topic model to a corpus of Italian Supreme Court decisions Paolo Fantini Statistical Service of the Ministry of Justice - Italy CESS Conference - Rome - November 25, 2014 Our goal finding

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

arxiv: v3 [stat.ml] 15 Aug 2017

arxiv: v3 [stat.ml] 15 Aug 2017 SPARSE PARTIALLY COLLAPSED MCMC FOR PARALLEL INFERENCE IN TOPIC MODELS MÅNS MAGNUSSON, LEIF JONSSON, MATTIAS VILLANI AND DAVID BROMAN ABSTRACT. Topic models, and more specifically the class of Latent Dirichlet

More information

Lecture 22 Exploratory Text Analysis & Topic Models

Lecture 22 Exploratory Text Analysis & Topic Models Lecture 22 Exploratory Text Analysis & Topic Models Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor [Some slides borrowed from Michael Paul] 1 Text Corpus

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Latent Dirichlet Conditional Naive-Bayes Models

Latent Dirichlet Conditional Naive-Bayes Models Latent Dirichlet Conditional Naive-Bayes Models Arindam Banerjee Dept of Computer Science & Engineering University of Minnesota, Twin Cities banerjee@cs.umn.edu Hanhuai Shan Dept of Computer Science &

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models Chong Wang Machine Learning Department Carnegie Mellon University chongw@cs.cmu.edu David M. Blei Computer Science Department

More information

Text Mining for Economics and Finance Latent Dirichlet Allocation

Text Mining for Economics and Finance Latent Dirichlet Allocation Text Mining for Economics and Finance Latent Dirichlet Allocation Stephen Hansen Text Mining Lecture 5 1 / 45 Introduction Recall we are interested in mixed-membership modeling, but that the plsi model

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Latent Dirichlet Allocation

Latent Dirichlet Allocation Outlines Advanced Artificial Intelligence October 1, 2009 Outlines Part I: Theoretical Background Part II: Application and Results 1 Motive Previous Research Exchangeability 2 Notation and Terminology

More information

Applying hlda to Practical Topic Modeling

Applying hlda to Practical Topic Modeling Joseph Heng lengerfulluse@gmail.com CIST Lab of BUPT March 17, 2013 Outline 1 HLDA Discussion 2 the nested CRP GEM Distribution Dirichlet Distribution Posterior Inference Outline 1 HLDA Discussion 2 the

More information

Latent variable models for discrete data

Latent variable models for discrete data Latent variable models for discrete data Jianfei Chen Department of Computer Science and Technology Tsinghua University, Beijing 100084 chris.jianfei.chen@gmail.com Janurary 13, 2014 Murphy, Kevin P. Machine

More information

Clustering bi-partite networks using collapsed latent block models

Clustering bi-partite networks using collapsed latent block models Clustering bi-partite networks using collapsed latent block models Jason Wyse, Nial Friel & Pierre Latouche Insight at UCD Laboratoire SAMM, Université Paris 1 Mail: jason.wyse@ucd.ie Insight Latent Space

More information

Topic Models. Charles Elkan November 20, 2008

Topic Models. Charles Elkan November 20, 2008 Topic Models Charles Elan elan@cs.ucsd.edu November 20, 2008 Suppose that we have a collection of documents, and we want to find an organization for these, i.e. we want to do unsupervised learning. One

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

Factor Modeling for Advertisement Targeting

Factor Modeling for Advertisement Targeting Ye Chen 1, Michael Kapralov 2, Dmitry Pavlov 3, John F. Canny 4 1 ebay Inc, 2 Stanford University, 3 Yandex Labs, 4 UC Berkeley NIPS-2009 Presented by Miao Liu May 27, 2010 Introduction GaP model Sponsored

More information

EM & Variational Bayes

EM & Variational Bayes EM & Variational Bayes Hanxiao Liu September 9, 2014 1 / 19 Outline 1. EM Algorithm 1.1 Introduction 1.2 Example: Mixture of vmfs 2. Variational Bayes 2.1 Introduction 2.2 Example: Bayesian Mixture of

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process

Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process Chong Wang Computer Science Department Princeton University chongw@cs.princeton.edu David M. Blei Computer Science Department

More information

Gaussian Models

Gaussian Models Gaussian Models ddebarr@uw.edu 2016-04-28 Agenda Introduction Gaussian Discriminant Analysis Inference Linear Gaussian Systems The Wishart Distribution Inferring Parameters Introduction Gaussian Density

More information

Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation

Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation James Foulds 1 Levi Boyles 1 Christopher Dubois 2 Padhraic Smyth 1 Max Welling 3 1 Department of Computer Science, University

More information

Supplementary Material of High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models

Supplementary Material of High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models Supplementary Material of High-Order Stochastic Gradient hermostats for Bayesian Learning of Deep Models Chunyuan Li, Changyou Chen, Kai Fan 2 and Lawrence Carin Department of Electrical and Computer Engineering,

More information

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Nitish Srivastava nitish@cs.toronto.edu Ruslan Salahutdinov rsalahu@cs.toronto.edu Geoffrey Hinton hinton@cs.toronto.edu

More information

Collapsed Variational Dirichlet Process Mixture Models

Collapsed Variational Dirichlet Process Mixture Models Collapsed Variational Dirichlet Process Mixture Models Kenichi Kurihara Dept. of Computer Science Tokyo Institute of Technology, Japan kurihara@mi.cs.titech.ac.jp Max Welling Dept. of Computer Science

More information

Streaming Variational Bayes

Streaming Variational Bayes Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson University of California, Berkeley {tab@stat, nickboyd@eecs, wibisono@eecs, ashia@stat}.berkeley.edu Michael

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) A review of topic modeling and customer interactions application 3/11/2015 1 Agenda Agenda Items 1 What is topic modeling? Intro Text Mining & Pre-Processing Natural Language

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

Efficient Methods for Topic Model Inference on Streaming Document Collections

Efficient Methods for Topic Model Inference on Streaming Document Collections Efficient Methods for Topic Model Inference on Streaming Document Collections Limin Yao, David Mimno, and Andrew McCallum Department of Computer Science University of Massachusetts, Amherst {lmyao, mimno,

More information

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Christophe Dupuy, Francis Bach To cite this version: Christophe Dupuy, Francis Bach. Online but Accurate Inference for

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) D. Blei, A. Ng, and M. Jordan. Journal of Machine Learning Research, 3:993-1022, January 2003. Following slides borrowed ant then heavily modified from: Jonathan Huang

More information

On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data On Markov chain Monte Carlo methods for tall data Remi Bardenet, Arnaud Doucet, Chris Holmes Paper review by: David Carlson October 29, 2016 Introduction Many data sets in machine learning and computational

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Distance dependent Chinese restaurant processes

Distance dependent Chinese restaurant processes David M. Blei Department of Computer Science, Princeton University 35 Olden St., Princeton, NJ 08540 Peter Frazier Department of Operations Research and Information Engineering, Cornell University 232

More information

Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation

Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation James Foulds Dept. of Computer Science University of California, Irvine jfoulds@ics.uci.edu Padhraic Smyth Dept. of Computer

More information

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank Shoaib Jameel Shoaib Jameel 1, Wai Lam 2, Steven Schockaert 1, and Lidong Bing 3 1 School of Computer Science and Informatics,

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

how to *do* computationally assisted research

how to *do* computationally assisted research how to *do* computationally assisted research digital literacy @ comwell Kristoffer L Nielbo knielbo@sdu.dk knielbo.github.io/ March 22, 2018 1/30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 class Person(object):

More information

Topic Learning and Inference Using Dirichlet Allocation Product Partition Models and Hybrid Metropolis Search

Topic Learning and Inference Using Dirichlet Allocation Product Partition Models and Hybrid Metropolis Search Technical Report CISE, University of Florida (2011) 1-13 Submitted 09/12; ID #520 Topic Learning and Inference Using Dirichlet Allocation Product Partition Models and Hybrid Metropolis Search Clint P.

More information

Online Bayesian Passive-Aggressive Learning

Online Bayesian Passive-Aggressive Learning Online Bayesian Passive-Aggressive Learning Full Journal Version: http://qr.net/b1rd Tianlin Shi Jun Zhu ICML 2014 T. Shi, J. Zhu (Tsinghua) BayesPA ICML 2014 1 / 35 Outline Introduction Motivation Framework

More information

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, Masashi Sugiyama Conference on Uncertainty

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Fast Collapsed Gibbs Sampling For Latent Dirichlet Allocation

Fast Collapsed Gibbs Sampling For Latent Dirichlet Allocation Fast Collapsed Gibbs Sampling For Latent Dirichlet Allocation Ian Porteous iporteou@ics.uci.edu Arthur Asuncion asuncion@ics.uci.edu David Newman newman@uci.edu Padhraic Smyth smyth@ics.uci.edu Alexander

More information

Bayesian learning of sparse factor loadings

Bayesian learning of sparse factor loadings Magnus Rattray School of Computer Science, University of Manchester Bayesian Research Kitchen, Ambleside, September 6th 2008 Talk Outline Brief overview of popular sparsity priors Example application:

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

arxiv: v2 [stat.ml] 5 Nov 2012

arxiv: v2 [stat.ml] 5 Nov 2012 1 Nested Hierarchical Dirichlet Processes John Paisley 1, Chong Wang 3, David M. Blei 4 and Michael I. Jordan 1,2 1 Department of EECS, 2 Department of Statistics, UC Berkeley, Berkeley, CA 3 Department

More information

Note for plsa and LDA-Version 1.1

Note for plsa and LDA-Version 1.1 Note for plsa and LDA-Version 1.1 Wayne Xin Zhao March 2, 2011 1 Disclaimer In this part of PLSA, I refer to [4, 5, 1]. In LDA part, I refer to [3, 2]. Due to the limit of my English ability, in some place,

More information

Stochastic Annealing for Variational Inference

Stochastic Annealing for Variational Inference Stochastic Annealing for Variational Inference arxiv:1505.06723v1 [stat.ml] 25 May 2015 San Gultekin, Aonan Zhang and John Paisley Department of Electrical Engineering Columbia University Abstract We empirically

More information

topic modeling hanna m. wallach

topic modeling hanna m. wallach university of massachusetts amherst wallach@cs.umass.edu Ramona Blei-Gantz Helen Moss (Dave's Grandma) The Next 30 Minutes Motivations and a brief history: Latent semantic analysis Probabilistic latent

More information

Topic Modeling: Beyond Bag-of-Words

Topic Modeling: Beyond Bag-of-Words University of Cambridge hmw26@cam.ac.uk June 26, 2006 Generative Probabilistic Models of Text Used in text compression, predictive text entry, information retrieval Estimate probability of a word in a

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Additive Regularization of Topic Models for Topic Selection and Sparse Factorization

Additive Regularization of Topic Models for Topic Selection and Sparse Factorization Additive Regularization of Topic Models for Topic Selection and Sparse Factorization Konstantin Vorontsov 1, Anna Potapenko 2, and Alexander Plavin 3 1 Moscow Institute of Physics and Technology, Dorodnicyn

More information

Graphical Models for Query-driven Analysis of Multimodal Data

Graphical Models for Query-driven Analysis of Multimodal Data Graphical Models for Query-driven Analysis of Multimodal Data John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt. Design of Text Mining Experiments Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.taddy/research Active Learning: a flavor of design of experiments Optimal : consider

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

LDA Collapsed Gibbs Sampler, VariaNonal Inference. Task 3: Mixed Membership Models. Case Study 5: Mixed Membership Modeling

LDA Collapsed Gibbs Sampler, VariaNonal Inference. Task 3: Mixed Membership Models. Case Study 5: Mixed Membership Modeling Case Stuy 5: Mixe Membership Moeling LDA Collapse Gibbs Sampler, VariaNonal Inference Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox May 8 th, 05 Emily Fox 05 Task : Mixe

More information

Variational Inference for Scalable Probabilistic Topic Modelling

Variational Inference for Scalable Probabilistic Topic Modelling M A S T E R T H E S I S Variational Inference for Scalable Probabilistic Topic Modelling vorgelegt von Kai Brusch MIN-Fakultät Fachbereich Informatik Language Technology Group Studiengang: Intelligent

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Deep Boltzmann Machines

Deep Boltzmann Machines Deep Boltzmann Machines Ruslan Salakutdinov and Geoffrey E. Hinton Amish Goel University of Illinois Urbana Champaign agoel10@illinois.edu December 2, 2016 Ruslan Salakutdinov and Geoffrey E. Hinton Amish

More information