Streaming Variational Bayes

Size: px
Start display at page:

Download "Streaming Variational Bayes"

Transcription

1 Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan UC Berkeley Discussion led by Miao Liu September 13, 2013

2 Introduction The SDA-Bayes Framework Streaming Bayesian updating Distributed Bayesian updating Asynchronous Bayesian updating Experiments

3 Motivation The advantages of the Bayesian paradigm: hierarchical modeling, coherent treatment of uncertainty These advantages seem out of reach in the setting of Big Data An exception: variational Bayes (VB) stochastic variational inference (SVI) = VB + stochastic gradient descent [Hoffman et. al. 2012] the objective function : the variational lower bound on the marginal likelihood the stochastic gradient is computed for a single data point (document) at a time Motivation The problem of SVI The objective is based on the conceptual existence of a full data set involving D data points (documents) D is a fixed number and must be specified in advance does not apply for the streaming setting Development in computer architectures, which permit distributed and asynchronous computations

4 Introduction The aim of this paper develop a scalable approximate Bayesian inference algorithm in the real streaming setting Methodology A recursive application of Bayes theorem provides a sequence of posteriors, not a sequence of approximations to a fixed posterior The posteriors are approximated by VB Similar methods density filtering [Opper, 1999] expectation propagation [Minka, 2001] Related work MCMC approximations [Canini et. al. AISTATS09] VB and VB-like approximations [Honkela and Valpola, 2003, Luts et al. preprint arxiv]

5 Streaming Bayesian updating Consider data x 1, x 2, i.i.d. p(x Θ), the collection of S data points, C 1 := (x 1,, x S ) The posterior after the bth mini batch p(θ C 1,, C b ) p(c b Θ)p(Θ C 1,, C b 1 ) (1) repeated application of Eqn (1) is streaming automatically yields the new posterior without needing to revisit old data points An approximation algorithm A for computing an approximate posterior q : q(θ) = A(C, p(θ)) setting q 0 (Θ) = p(θ), then recursively calculate an approximation to the posterior p(θ C 1,, C b ) q b (Θ) = A(C, q b 1 (Θ)) (2)

6 Distributed Bayesian updating Parallelizing computations increases algorithm throughput Calculate individual mini batch posteriors p(θ C b ) (perhaps in parallel), and then combine them to find the full posterior p(θ C 1,, C B ) [ B b=1 p(c b Θ) ] p(θ) The corresponding approximate update p(θ C 1,, C B ) q(θ) [ B [ b=1 p(θ Cb )p(θ) 1]] p(θ) (3) [ B b=1 A(C b, p(θ))p(θ) 1 ]p(θ) (4) Assumptions 1. p(θ) exp{ξ 0 T (Θ)} is an exponential family distribution for Θ with sufficient statistic T (Θ) and natural parameter ξ 0 2. Further assume A returns a distribution in the same exponential family q b (Θ) exp{ξ b T (Θ)} The update in Eq.(4) becomes {[ p(θ C 1,, C B ) q(θ) exp ξ 0 + ] } B b=1 (ξ b ξ 0 ) T (Θ) (5) It is not necessary to assume any conjugacy

7 Asynchronous Bayesian updating Asynchronous algorithms can decrease downtime in the system The proposed asynchronous algorithm is in the spirit of Hogwild! [Niu et al. NIPS2011] An asynchronous scheme (conceptual stepping stone, not used in pratice) Workers (processors that solves a subproblem) 1. collect a new minibatch C. 2. compute the local approximate posterior ξ A(C, ξ 0 ) 3. return ξ := ξ ξ 0 to the master The master starts by assigning the posterior to equal the prior: ξ post ξ 0 each time the master receives a quality ξ from any worker, it updates the posterior synchronously: ξ post ξ post + ξ

8 Streaming Distributed, Asynchronous (SDA) Bayes The master initializes its posterior estimate to the prior: ξ (post) x 0 Each worker continuously iterates between four steps 1. collect a new minibatch C. 2. copy the master posterior value locally ξ (local) ξ (post) 3. compute the local approximate posterior ξ A(C, ξ (local) ) 4. return ξ := ξ ξ 0 to the master each time the master receives a quality ξ from any worker, it updates the posterior synchronously: ξ post ξ post + ξ The key difference: the latest posterior is used as a prior in the second frameworks: The latter framework introduces a new layer of approximation, but works better in practice

9 Case study: latent Dirichlet allocation(blei et al., 2003) Notations α: the parameter of Dirichlet prior on the per-document topic distribution β: the parameter of Dirichlet prior on the per-topic word distribution θi : the topic distribution for document i φk : the word distribution for topic k z ij : the topic for the jth word in document i w ij : the specific word The generative process θ i Dir(α), where i {1,, M} (6) φ k Dir(β), where k {1,, K } (7) For each of the words w ij, where j {1,, N i } (8) z ij Categorical(θ i ), w ij Categorical(φ zij ) (9)

10 The posterior of LDA p(β, θ, z C, η, α) = [ K k=1 Dirchlet(β k η k ) ] [ D d=1 Dirchlet(θ d α) ] [ D Nd d=1 n=1 θ ] z dn β zdn,w dn (10) Posterior-approximation algorithms Mean-field variational Bayesian: KL(q p) Expectation propagation [Minka, 2001]: KL(p q) Other single-pass algorithms for approximate LDA posteriors Stochastic variational inference Sufficient statistics

11

12 Experiments Data set the full Wikipedia corpus (3,611, 558 for training, 10,000 for testing) the Nature corpus (351, 525 for training, 1,024 for testing) Experiment setup Hold out 10,000/1,024 Wikipedia/Nature documents for testing For all cases, fit an LDA model with K = 100 topics Chose hyprparameters as k, α k = 1/K, (k, v), η k,v = 1

13

14

15

Streaming Variational Bayes

Streaming Variational Bayes Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson University of California, Berkeley {tab@stat, nickboyd@eecs, wibisono@eecs, ashia@stat}.berkeley.edu Michael

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

Understanding Covariance Estimates in Expectation Propagation

Understanding Covariance Estimates in Expectation Propagation Understanding Covariance Estimates in Expectation Propagation William Stephenson Department of EECS Massachusetts Institute of Technology Cambridge, MA 019 wtstephe@csail.mit.edu Tamara Broderick Department

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

Expectation propagation as a way of life

Expectation propagation as a way of life Expectation propagation as a way of life Yingzhen Li Department of Engineering Feb. 2014 Yingzhen Li (Department of Engineering) Expectation propagation as a way of life Feb. 2014 1 / 9 Reference This

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

Online Algorithms for Sum-Product

Online Algorithms for Sum-Product Online Algorithms for Sum-Product Networks with Continuous Variables Priyank Jaini Ph.D. Seminar Consistent/Robust Tensor Decomposition And Spectral Learning Offline Bayesian Learning ADF, EP, SGD, oem

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Changyou Chen Department of Electrical and Computer Engineering, Duke University cc448@duke.edu Duke-Tsinghua Machine Learning Summer

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Collapsed Variational Bayesian Inference for Hidden Markov Models

Collapsed Variational Bayesian Inference for Hidden Markov Models Collapsed Variational Bayesian Inference for Hidden Markov Models Pengyu Wang, Phil Blunsom Department of Computer Science, University of Oxford International Conference on Artificial Intelligence and

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Coresets for Bayesian Logistic Regression

Coresets for Bayesian Logistic Regression Coresets for Bayesian Logistic Regression Tamara Broderick ITT Career Development Assistant Professor, MIT With: Jonathan H. Huggins, Trevor Campbell 1 Bayesian inference Bayesian inference Complex, modular

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Online Bayesian Passive-Aggressive Learning"

Online Bayesian Passive-Aggressive Learning Online Bayesian Passive-Aggressive Learning" Tianlin Shi! stl501@gmail.com! Jun Zhu! dcszj@mail.tsinghua.edu.cn! The BIG DATA challenge" Large amounts of data.! Big data:!! Big Science: 25 PB annual data.!

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Automated Scalable Bayesian Inference via Data Summarization

Automated Scalable Bayesian Inference via Data Summarization Automated Scalable Bayesian Inference via Data Summarization Tamara Broderick ITT Career Development Assistant Professor, MIT With: Trevor Campbell, Jonathan H. Huggins Bayesian inference Fuel consumption

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Fast yet Simple Natural-Gradient Variational Inference in Complex Models

Fast yet Simple Natural-Gradient Variational Inference in Complex Models Fast yet Simple Natural-Gradient Variational Inference in Complex Models Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo, Japan http://emtiyaz.github.io Joint work with Wu Lin (UBC) DidrikNielsen,

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

arxiv: v2 [stat.ml] 21 Jul 2015

arxiv: v2 [stat.ml] 21 Jul 2015 The Population Posterior and Bayesian Inference on Streams arxiv:1507.05253v2 [stat.ml] 21 Jul 2015 James McInerney Data Science Institute Columbia University New York, NY 10027 jm4181@columbia.edu Rajesh

More information

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644:

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644: Gibbs Sampling Héctor Corrada Bravo University of Maryland, College Park, USA CMSC 644: 2019 03 27 Latent semantic analysis Documents as mixtures of topics (Hoffman 1999) 1 / 60 Latent semantic analysis

More information

Automated Scalable Bayesian Inference via Data Summarization

Automated Scalable Bayesian Inference via Data Summarization Automated Scalable Bayesian Inference via Data Summarization Tamara Broderick ITT Career Development Assistant Professor, MIT With: Trevor Campbell, Jonathan H. Huggins 1 Core of the data set Core of the

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Online Bayesian Passive-Aggressive Learning

Online Bayesian Passive-Aggressive Learning Online Bayesian Passive-Aggressive Learning Full Journal Version: http://qr.net/b1rd Tianlin Shi Jun Zhu ICML 2014 T. Shi, J. Zhu (Tsinghua) BayesPA ICML 2014 1 / 35 Outline Introduction Motivation Framework

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

AN INTRODUCTION TO TOPIC MODELS

AN INTRODUCTION TO TOPIC MODELS AN INTRODUCTION TO TOPIC MODELS Michael Paul December 4, 2013 600.465 Natural Language Processing Johns Hopkins University Prof. Jason Eisner Making sense of text Suppose you want to learn something about

More information

Part IV: Variational Bayes and beyond

Part IV: Variational Bayes and beyond Part IV: Variational Bayes and beyond Tamara Broderick ITT Career Development Assistant Professor, MIT http://www.tamarabroderick.com/tutorial_2018_lugano.html Bayesian inference [Woodard et al 2017] [ESO/

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Dirichlet Enhanced Latent Semantic Analysis

Dirichlet Enhanced Latent Semantic Analysis Dirichlet Enhanced Latent Semantic Analysis Kai Yu Siemens Corporate Technology D-81730 Munich, Germany Kai.Yu@siemens.com Shipeng Yu Institute for Computer Science University of Munich D-80538 Munich,

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Online Bayesian Passive-Agressive Learning

Online Bayesian Passive-Agressive Learning Online Bayesian Passive-Agressive Learning International Conference on Machine Learning, 2014 Tianlin Shi Jun Zhu Tsinghua University, China 21 August 2015 Presented by: Kyle Ulrich Introduction Online

More information

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation THIS IS A DRAFT VERSION. FINAL VERSION TO BE PUBLISHED AT NIPS 06 A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation Yee Whye Teh School of Computing National University

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation Yee Whye Teh Gatsby Computational Neuroscience Unit University College London 17 Queen Square, London WC1N 3AR, UK ywteh@gatsby.ucl.ac.uk

More information

Streaming, Distributed Variational Inference for Bayesian Nonparametrics

Streaming, Distributed Variational Inference for Bayesian Nonparametrics Streaming, Distributed Variational Inference for Bayesian Nonparametrics Trevor Campbell 1 Julian Straub 2 John W. Fisher III 2 Jonathan P. How 1 1 LIDS, 2 CSAIL, MIT {tdjc@, jstraub@csail., fisher@csail.,

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

WE live in an era of Big Data, where science, engineering

WE live in an era of Big Data, where science, engineering 1 Big Learning with Bayesian Methods Jun Zhu, Jianfei Chen, Wenbo Hu, Bo Zhang arxiv:1411.6370v2 [cs.lg] 1 Mar 2017 Abstract The explosive growth in data volume and the availability of cheap computing

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Approximate Decentralized Bayesian Inference

Approximate Decentralized Bayesian Inference Approximate Decentralized Bayesian Inference Trevor Campbell LIDS, MIT Cambridge, MA 02139 tdc@mit.edu Jonathan P. How LIDS, MIT Cambridge, MA 02139 how@mit.edu Abstract This paper presents an approximate

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Learning an astronomical catalog of the visible universe through scalable Bayesian inference

Learning an astronomical catalog of the visible universe through scalable Bayesian inference Learning an astronomical catalog of the visible universe through scalable Bayesian inference Jeffrey Regier with the DESI Collaboration Department of Electrical Engineering and Computer Science UC Berkeley

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Christophe Dupuy INRIA - Technicolor christophe.dupuy@inria.fr Francis Bach INRIA - ENS francis.bach@inria.fr Abstract

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme

An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme An Information Theoretic Interpretation of Variational Inference based on the MDL Principle and the Bits-Back Coding Scheme Ghassen Jerfel April 2017 As we will see during this talk, the Bayesian and information-theoretic

More information

Patterns of Scalable Bayesian Inference

Patterns of Scalable Bayesian Inference Foundations and Trends R in Machine Learning Vol. 9, No. 1-2 (2016) 1 129 c 2016 E. Angelino, M. J. Johnson, and R. P. Adams DOI: 10.1561/2200000052 Patterns of Scalable Bayesian Inference Elaine Angelino

More information

G8325: Variational Bayes

G8325: Variational Bayes G8325: Variational Bayes Vincent Dorie Columbia University Wednesday, November 2nd, 2011 bridge Variational University Bayes Press 2003. On-screen viewing permitted. Printing not permitted. http://www.c

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Stochastic Annealing for Variational Inference

Stochastic Annealing for Variational Inference Stochastic Annealing for Variational Inference arxiv:1505.06723v1 [stat.ml] 25 May 2015 San Gultekin, Aonan Zhang and John Paisley Department of Electrical Engineering Columbia University Abstract We empirically

More information

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models Chong Wang Machine Learning Department Carnegie Mellon University chongw@cs.cmu.edu David M. Blei Computer Science Department

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Stochastic Variational Inference for Bayesian Time Series Models

Stochastic Variational Inference for Bayesian Time Series Models Stochastic Variational Inference for Bayesian Time Series Models Matthew James Johnson Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA USA Alan S. Willsky Massachusetts Institute

More information

Online Bayesian Transfer Learning for Sequential Data Modeling

Online Bayesian Transfer Learning for Sequential Data Modeling Online Bayesian Transfer Learning for Sequential Data Modeling....? Priyank Jaini Machine Learning, Algorithms and Theory Lab Network for Aging Research 2 3 Data of personal preferences (years) Data (non-existent)

More information

Tree-Based Inference for Dirichlet Process Mixtures

Tree-Based Inference for Dirichlet Process Mixtures Yang Xu Machine Learning Department School of Computer Science Carnegie Mellon University Pittsburgh, USA Katherine A. Heller Department of Engineering University of Cambridge Cambridge, UK Zoubin Ghahramani

More information

Distributed Stochastic Gradient MCMC

Distributed Stochastic Gradient MCMC Sungjin Ahn Department of Computer Science, University of California, Irvine Babak Shahbaba Department of Statistics, University of California, Irvine Max Welling Machine Learning Group, University of

More information

The Infinite PCFG using Hierarchical Dirichlet Processes

The Infinite PCFG using Hierarchical Dirichlet Processes S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise

More information

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

15780: GRADUATE AI (SPRING 2018) Homework 3: Deep Learning and Probabilistic Modeling

15780: GRADUATE AI (SPRING 2018) Homework 3: Deep Learning and Probabilistic Modeling 15780: GRADUATE AI (SPRING 2018) Homework 3: Deep Learning and Probabilistic Modeling Release: March 19, 2018, Last Updated: March 30, 2018, 7:30 pm Due: April 2, 2018, 11:59pm 1 Maximum Likelihood Estimation

More information

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Chengjie Qin 1, Martin Torres 2, and Florin Rusu 2 1 GraphSQL, Inc. 2 University of California Merced August 31, 2017 Machine

More information

arxiv: v2 [stat.ml] 5 Nov 2012

arxiv: v2 [stat.ml] 5 Nov 2012 1 Nested Hierarchical Dirichlet Processes John Paisley 1, Chong Wang 3, David M. Blei 4 and Michael I. Jordan 1,2 1 Department of EECS, 2 Department of Statistics, UC Berkeley, Berkeley, CA 3 Department

More information

You Lu, Jeff Lund, and Jordan Boyd-Graber. Why ADAGRAD Fails for Online Topic Modeling. Empirical Methods in Natural Language Processing, 2017.

You Lu, Jeff Lund, and Jordan Boyd-Graber. Why ADAGRAD Fails for Online Topic Modeling. Empirical Methods in Natural Language Processing, 2017. You Lu, Jeff Lund, and Jordan Boyd-Graber. Why ADAGRAD Fails for Online Topic Modeling. mpirical Methods in Natural Language Processing, 2017. @inproceedings{lu:lund:boyd-graber-2017, Author = {You Lu

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Provable Nonparametric Bayesian Inference

Provable Nonparametric Bayesian Inference Provable Nonparametric Bayesian Inference Bo Dai, Niao He, Hanjun Dai, Le Song Georgia Institute of Technology {bodai, nhe6, hdai8}@gatech.edu, lsong@cc.gatech.edu Abstract Bayesian methods are appealing

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Stochastic Variational Inference for the HDP-HMM

Stochastic Variational Inference for the HDP-HMM Stochastic Variational Inference for the HDP-HMM Aonan Zhang San Gultekin John Paisley Department of Electrical Engineering & Data Science Institute Columbia University, New York, NY Abstract We derive

More information

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt. Design of Text Mining Experiments Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.taddy/research Active Learning: a flavor of design of experiments Optimal : consider

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 9: Expectation Maximiation (EM) Algorithm, Learning in Undirected Graphical Models Some figures courtesy

More information