Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Size: px
Start display at page:

Download "Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods"

Transcription

1 Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June 21, 2012 Sydney, Australia 1 / 29

2 TABLE OF CONTENTS INTRODUCTION Financial Times Series Model Proposal PARAMETER ESTIMATION Bayesian Inference Parameter Simulation Sequential Monte Carlo Methods Filters and Smoothers Monte Carlo Integration Sequential Importance Sampling Particle MCMC Particle Marginal Metropolis Hastings Unbiased Parallel Metropolis Hastings Simulations and Results Estimations Prediction 2 / 29

3 LOGRETURNS 250 Histogram of 40 years S&P 500 logreturn 4 logreturns year Normal Probability Plot Probability Data ( ) Sk Y k = log S k 1 3 / 29

4 MODEL PROPOSAL Y k = βe 1 2 X k u k, (1) X k = αx k 1 + σw k, (2) (u k, w k ) N (0, Σ), ] (3) Σ = (4) [ 1 ρ ρ 1 4 / 29

5 BAYESIAN INFERENCE Bayesian inference, view the parameter as a random variable Observation: Y θ = θ p(y θ = θ), θ p(θ) (5) Parameter posterior distribution: p(θ y) = p(y θ)p(θ) Θ p(y θ )p(dθ p(y θ)p(θ) (6) ) Example: p(β α, σ, ρ, x 0:n, y 0:n ) p(β, α, σ, ρ, x 0:n, y 0:n ) (7) 5 / 29

6 POSTERIOR FOR β p(β α, σ, ρ, x 0:n, y 0:n ) p(β, α, σ, ρ, x 0:n, y 0:n ) (8) = p(x 0:n, y 0:n β, α, ρ, σ)p(β)p(α, ρ, σ) (9) p(x 0:n, y 0:n β, α, ρ, σ)p(β) (10) = p(x n, y n β, α, ρ, σ, x 0:n 1, y 0:n 1 ) (11) p(x 0:n 1, y 0:n 1 β, α, ρ, σ)p(β) = p(β)p(y 0, x 0 β, α, ρ, σ) (12) n p(x k, y k β, α, ρ, σ, x k 1 ) k=1 6 / 29

7 POSTERIOR FOR β 1 p(x, y) = β σ2π (13) 1 ρ 2 [( ( y ) 2 ( x αxk 1 ) 2 y(x αx + βe 1 2 exp x σ 2ρ k 1 )] σβe 1 2 x 2(1 ρ 2 1 ) ) 2 x 7 / 29

8 PRIOR SELECTION p(β) = 1 β 2 (14) p(α) = (α + 1) δ 1 (1 α) γ 1 (15) Example: p(ρ) = 1 (16) 2 1 p(σ) = σ 2 σ 2(t/2 1) e 1 2σ 2 S 0 (17) p(β α, σ, ρ, x 0:n, y 0:n ) p(x 0:n, y 0:n α, β, ρ, σ)p(β) (18) 8 / 29

9 IDEA Simulate the parameters from the posterior distributions! 9 / 29

10 THE GIBBS SAMPLER 1 1. For the first iteration choose ξ (0) = {x (0) 0:n, θ(0) } arbitrarily 2. For k = 1, 2,..., N, draw random samples 2.1 x (k) 0:n p X( θ (k 1), y 0:n ) 2.2 θ (k) 1 p X ( x (k) 0:n, θ(k 1), y 0:n ) θ (k) D. p X( x (k) 0:n, θ(k) 1, θ(k) 2,..., θ(k 1) D, y 0:n ) Now as N tend to infinity, the sequence {ξ (k) } N k=0 will have p X as its stationary distribution. New problem: How do we sample θ and x? 1 Geman (1984) 10 / 29

11 METROPOLIS-HASTINGS SAMPLER 2 Choose θ 0 arbitrarily, then for k = 1,..., N 1. Sample θ q( θ (k) ) 2. With probability 1 p(θ )q(θ (k) θ ) p(θ (k) )q(θ θ (k) ) (19) set θ (k+1) = θ, otherwise set θ (k+1) = θ (k) 2 Metropolis et. al. (1953), Hastings (1970) 11 / 29

12 SEQUENTIAL MONTE CARLO (PARTICLE FILTER) Propose φ k p(x k y 0:k ) (20) φ k+1 ( ξ) = lk (ξ, ξ)φ k (ξ) dξ φk (ξ) l k (ξ, ξ) d ξ dξ (21) 12 / 29

13 OUR MODEL In our setting: φ k+1 = p(x k+1, y 0:k+1 )/p(y 0:k+1 ) (22) p(y k+1 x k+1, x k, y 0:k ) (23) p(x k+1 x k, y 0:k )p(x k, y 0:k ) dx k = p(y k+1 x k:k+1 )p(x k+1 x k )p(x k y 0:k )p(y 0:k ) dx k (24) = p(y k+1 x k:k+1 )p(x k+1 x k )φ k p(y 0:k ) dx k (25) = G(y k+1 x k:k+1 )Q(x k+1 x k )φ k p(y 0:k ) dx k (26) 13 / 29

14 SUMMARIZED Filter: φ k+1 = G(yk+1 x k:k+1 )Q(x k+1 x k )φ k dx k G(yk+1 x k:k+1 )Q(x k+1 x k )φ k dx k dx k+1 (27) Smoother: φ 0:k+1 k+1 = p(x 0:k+1 y 0:k+1 ) (28) = G(yk+1 x k:k+1 )Q(x k+1 x k )φ 0:k k dx 0:k G(yk+1 x k:k+1 )Q(x k+1 x k )φ 0:k k dx 0:k dx 0:k+1 14 / 29

15 MONTE CARLO INTEGRATION We want to evaluate: µ(f ) = f (x) dµ (x) ν(dx) (29) dν We use the estimate: N 1 N j=1 f (ξ j ) dµ dν (ξj ) a.s. N µ(f ) (30) 15 / 29

16 SEQUENTIAL IMPORTANCE SAMPLING 1. Sampling: for k = 0, 1,... Draw ξ 1 k+1,..., ξ N k+1 ξ 1 0:k,..., ξ N 0:k 1.1 Compute the importance weights ω j k+1 = ωj k g k+1( ξ j k+1 ) (31) 2. Resampling: Draw N particles from the N-sized population where the probability of selecting particle j is ω j k+1 N s ωs k+1 (32) 3. Update the trajectory: Copy the resampled particles trajectories and replace the ones we discarded. 16 / 29

17 EXAMPLE True X Particle trajectories X k k

18 RECAP Object: Model the price Need parameters Need X trajectories Which we now have! Y k = βe 1 2 X k u k, (33) X k = αx k 1 + σw k, (34) (u k, w k ) N (0, Σ), ] (35) Σ = (36) [ 1 ρ ρ 1 18 / 29

19 THE GIBBS SAMPLER 1. For the first iteration choose ξ (0) = {x (0) 0:n, θ(0) } arbitrarily 2. For k = 1, 2,..., N, draw random samples 2.1 x (k) 0:n p X( θ (k 1), y 0:n ) 2.2 θ (k) 1 p X ( x (k) 0:n, θ(k 1), y 0:n ) θ (k) D. p X( x (k) 0:n, θ(k) 1, θ(k) 2,..., θ(k 1) D, y 0:n ) Now as N tend to infinity, the sequence {ξ (k) } N k=0 will have p X as its stationary distribution 19 / 29

20 INTRODUCTION Financial Times Series Model Proposal PARAMETER ESTIMATION Bayesian Inference Parameter Simulation Sequential Monte Carlo Methods Filters and Smoothers Monte Carlo Integration Sequential Importance Sampling Particle MCMC Particle Marginal Metropolis Hastings Unbiased Parallel Metropolis Hastings Simulations and Results Estimations Prediction 20 / 29

21 METROPOLIS-HASTINGS SAMPLER 2 Choose θ 0 arbitrarily, then for k = 1,..., N 1. Sample θ q( θ (k) ) 2. With probability 1 p(θ )q(θ (k) θ ) p(θ (k) )q(θ θ (k) ) (19) set θ (k+1) = θ, otherwise set θ (k+1) = θ (k) 2 Metropolis et. al. (1953), Hastings (1970) 21 / 29

22 PARTICLE MARGINAL METROPOLIS HASTINGS 3 1. Initialization, k = Set θ 0 arbitrarily 1.2 Run an SMC algorithm targeting p θ (0)(x 1:T y 1:T ), sample our (0) first trajectory of particles ξ 1:T ˆp θ (0)( y 1:T) and denote the marginal likelihood by ˆp θ0 2. For iteration k Sample θ q( θ k 1 ) 2.2 Run an SMC algorithm targeting p θ (x 1:T y 1:T ), sample the trajectory of particles as in With probability 1 ˆp θ (y 1:T)p(θ )q(θ k 1 θ ) ˆp θk 1 (y 1:T )p(θ k 1 )q(θ θ k 1 ) (37) put θ k = θ, ξ (k) 1:T = ξ 1:T, and p θ k (y 1:T ) = p θ 3 Andrieu et. al. (2010)

23 UNBIASED PARALLEL METROPOLIS HASTINGS Choose θ0 m arbitrarily, then for k = 1,..., N 1. For each of the C cores (where θ (k) = θk m): 1.1 Sample θ q( θ (k) ) 1.2 With probability 1 p(θ )q(θ (k) θ ) p(θ (k) )q(θ θ (k) ) (38) set θ (k+1) = θ, otherwise set θ (k+1) = θ (k) 2. Iterate through the C cores, take the first accepted sample and put θk+γ m equal to it. Put θm k:k+γ 1 = θm k. Throw away all samples after that. If no sample is accepted, θk:c m = θm k 23 / 29

24 UNBIASED PARALLEL METROPOLIS HASTINGS Roughly (Acceptance rate) 1 times faster as numbers of cores grow large Easy to implement 24 / 29

25 MODEL PROPOSAL Y k = βe 1 2 X k u k, (1) X k = αx k 1 + σw k, (2) (u k, w k ) N (0, Σ), ] (3) Σ = (4) [ 1 ρ ρ 1 25 / 29

26 ESTIMATES FOR GBP/USD DATA α ρ β σ 26 / 29

27 SIMULATION OF S&P Simulated Real / 29

28 PREDICTION Dataset Model RMSE (10 3 ) GBP/USD SVOL GBP/USD SVOL ρ= BIDU SVOL BIDU SVOL ρ= S&P500 SVOL S&P500 SVOL ρ= XBC/USD SVOL XBC/USD SVOL ρ= / 29

29 Any remark, question or suggestion is welcomed! jhallg/ 29 / 29

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Inference in state-space models with multiple paths from conditional SMC

Inference in state-space models with multiple paths from conditional SMC Inference in state-space models with multiple paths from conditional SMC Sinan Yıldırım (Sabancı) joint work with Christophe Andrieu (Bristol), Arnaud Doucet (Oxford) and Nicolas Chopin (ENSAE) September

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Sequential Monte Carlo Methods (for DSGE Models)

Sequential Monte Carlo Methods (for DSGE Models) Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 Some References These lectures use material from our joint work: Tempered

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

MCMC notes by Mark Holder

MCMC notes by Mark Holder MCMC notes by Mark Holder Bayesian inference Ultimately, we want to make probability statements about true values of parameters, given our data. For example P(α 0 < α 1 X). According to Bayes theorem:

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Bayesian Classification and Regression Trees

Bayesian Classification and Regression Trees Bayesian Classification and Regression Trees James Cussens York Centre for Complex Systems Analysis & Dept of Computer Science University of York, UK 1 Outline Problems for Lessons from Bayesian phylogeny

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

arxiv: v1 [stat.co] 1 Jun 2015

arxiv: v1 [stat.co] 1 Jun 2015 arxiv:1506.00570v1 [stat.co] 1 Jun 2015 Towards automatic calibration of the number of state particles within the SMC 2 algorithm N. Chopin J. Ridgway M. Gerber O. Papaspiliopoulos CREST-ENSAE, Malakoff,

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Approximate Inference using MCMC

Approximate Inference using MCMC Approximate Inference using MCMC 9.520 Class 22 Ruslan Salakhutdinov BCS and CSAIL, MIT 1 Plan 1. Introduction/Notation. 2. Examples of successful Bayesian models. 3. Basic Sampling Algorithms. 4. Markov

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

1 / 31 Identification of nonlinear dynamic systems (guest lectures) Brussels, Belgium, June 8, 2015.

1 / 31 Identification of nonlinear dynamic systems (guest lectures) Brussels, Belgium, June 8, 2015. Outline Part 4 Nonlinear system identification using sequential Monte Carlo methods Part 4 Identification strategy 2 (Data augmentation) Aim: Show how SMC can be used to implement identification strategy

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

MONTE CARLO METHODS. Hedibert Freitas Lopes

MONTE CARLO METHODS. Hedibert Freitas Lopes MONTE CARLO METHODS Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Karl Oskar Ekvall Galin L. Jones University of Minnesota March 12, 2019 Abstract Practically relevant statistical models often give rise to probability distributions that are analytically

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Flexible Particle Markov chain Monte Carlo methods with an application to a factor stochastic volatility model

Flexible Particle Markov chain Monte Carlo methods with an application to a factor stochastic volatility model Flexible Particle Markov chain Monte Carlo methods with an application to a factor stochastic volatility model arxiv:1401.1667v4 [stat.co] 23 Jan 2018 Eduardo F. Mendes School of Applied Mathematics Fundação

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Sequential Monte Carlo methods for system identification

Sequential Monte Carlo methods for system identification Technical report arxiv:1503.06058v3 [stat.co] 10 Mar 2016 Sequential Monte Carlo methods for system identification Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth,

More information

Monte Carlo Methods. Geoff Gordon February 9, 2006

Monte Carlo Methods. Geoff Gordon February 9, 2006 Monte Carlo Methods Geoff Gordon ggordon@cs.cmu.edu February 9, 2006 Numerical integration problem 5 4 3 f(x,y) 2 1 1 0 0.5 0 X 0.5 1 1 0.8 0.6 0.4 Y 0.2 0 0.2 0.4 0.6 0.8 1 x X f(x)dx Used for: function

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data On Markov chain Monte Carlo methods for tall data Remi Bardenet, Arnaud Doucet, Chris Holmes Paper review by: David Carlson October 29, 2016 Introduction Many data sets in machine learning and computational

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Kohta Aoki 1 and Hiroshi Nagahashi 2 1 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Bayesian Computations for DSGE Models

Bayesian Computations for DSGE Models Bayesian Computations for DSGE Models Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 This Lecture is Based on Bayesian Estimation of DSGE Models Edward P. Herbst &

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

Machine Learning. Probabilistic KNN.

Machine Learning. Probabilistic KNN. Machine Learning. Mark Girolami girolami@dcs.gla.ac.uk Department of Computing Science University of Glasgow June 21, 2007 p. 1/3 KNN is a remarkably simple algorithm with proven error-rates June 21, 2007

More information

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Changyou Chen Department of Electrical and Computer Engineering, Duke University cc448@duke.edu Duke-Tsinghua Machine Learning Summer

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Hierarchical Modeling for Spatial Data

Hierarchical Modeling for Spatial Data Bayesian Spatial Modelling Spatial model specifications: P(y X, θ). Prior specifications: P(θ). Posterior inference of model parameters: P(θ y). Predictions at new locations: P(y 0 y). Model comparisons.

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Lecture Particle Filters

Lecture Particle Filters FMS161/MASM18 Financial Statistics November 29, 2010 Monte Carlo filters The filter recursions could only be solved for HMMs and for linear, Gaussian models. Idea: Approximate any model with a HMM. Replace

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

1 / 32 Summer school on Foundations and advances in stochastic filtering (FASF) Barcelona, Spain, June 22, 2015.

1 / 32 Summer school on Foundations and advances in stochastic filtering (FASF) Barcelona, Spain, June 22, 2015. Outline Part 4 Nonlinear system identification using sequential Monte Carlo methods Part 4 Identification strategy 2 (Data augmentation) Aim: Show how SMC can be used to implement identification strategy

More information

Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution

Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten Department of Information Technology,

More information

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. Machine Learning T. Schön. (Chapter 11) AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. Machine Learning T. Schön. (Chapter 11) AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET About the Eam I/II) ), Lecture 7 MCMC and Sampling Methods Thomas Schön Division of Automatic Control Linköping University Linköping, Sweden. Email: schon@isy.liu.se, Phone: 3-373, www.control.isy.liu.se/~schon/

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration

Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration Bayes Factors, posterior predictives, short intro to RJMCMC Thermodynamic Integration Dave Campbell 2016 Bayesian Statistical Inference P(θ Y ) P(Y θ)π(θ) Once you have posterior samples you can compute

More information