Sequential Monte Carlo Methods (for DSGE Models)

Size: px
Start display at page:

Download "Sequential Monte Carlo Methods (for DSGE Models)"

Transcription

1 Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017

2 Some References These lectures use material from our joint work: Tempered Particle Filtering, 2016, PIER Working Paper, Bayesian Estimation of DSGE Models, 2015, Princeton University Press Sequential Monte Carlo Sampling for DSGE Models, 2014, Journal of Econometrics

3 Sequential Monte Carlo (SMC) Methods SMC can help to Lecture 1 approximate the posterior of θ: Chopin (2002)... Durham and Geweke (2013)... Creal (2007), Herbst and Schorfheide (2014) Lecture 2 approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith (1993)... Fernandez-Villaverde and Rubio-Ramirez (2007) or both: SMC 2 : Chopin, Jacob, and Papaspiliopoulos (2012)... Herbst and Schorfheide (2015)

4 Lecture 2

5 Filtering - General Idea State-space representation of nonlinear DSGE model Measurement Eq. : y t = Ψ(s t, t; θ) + u t, u t F u ( ; θ) State Transition : s t = Φ(s t 1, ɛ t ; θ), ɛ t F ɛ ( ; θ). Likelihood function: T p(y 1:T θ) = p(y t Y 1:t 1, θ) t=1 A filter generates a sequence of conditional distributions s t Y 1:t. Iterations: Initialization at time t 1: p(s t 1 Y 1:t 1, θ) Forecasting t given t 1: 1 Transition equation: p(s t Y 1:t 1, θ) = p(s t s t 1, Y 1:t 1, θ)p(s t 1 Y 1:t 1, θ)ds t 1 2 Measurement equation: p(y t Y 1:t 1, θ) = p(y t s t, Y 1:t 1, θ)p(s t Y 1:t 1, θ)ds t Updating with Bayes theorem. Once y t becomes available: p(s t Y 1:t, θ) = p(s t y t, Y 1:t 1, θ) = p(yt st, Y1:t 1, θ)p(st Y1:t 1, θ) p(y t Y 1:t 1, θ)

6 Conditional Distributions for Kalman Filter (Linear Gaussian State-Space Model) Distribution s t 1 (Y 1:t 1, θ) N ( s ) t 1 t 1, P t 1 t 1 s t (Y 1:t 1, θ) N ( s t t 1, P t t 1 ) y t (Y 1:t 1, θ) N ( ȳ t t 1, F t t 1 ) s t (Y 1:t, θ) N ( s t t, P t t ) Mean and Variance Given from Iteration t 1 s t t 1 = Φ 1 s t 1 t 1 P t t 1 = Φ 1 P t 1 t 1 Φ 1 + Φ ɛσ ɛ Φ ɛ ȳ t t 1 = Ψ 0 + Ψ 1 t + Ψ 2 s t t 1 F t t 1 = Ψ 2 P t t 1 Ψ 2 + Σ u s t t = s t t 1 + P t t 1 Ψ 2 F 1 t t 1 (y t ȳ t t 1 ) P t t = P t t 1 P t t 1 Ψ 2 F 1 t t 1 Ψ 2P t t 1

7 Approximating the Likelihood Function DSGE models are inherently nonlinear. Sometimes linear approximations are sufficiently accurate... but in other applications nonlinearities may be important: asset pricing; borrowing constraints; zero lower bound on nominal interest rates;... Nonlinear state-space representation requires nonlinear filter: y t = Ψ(s t, t; θ) + u t, u t F u ( ; θ) s t = Φ(s t 1, ɛ t ; θ), ɛ t F ɛ ( ; θ).

8 Particle Filters There are many particle filters... We will focus on three types: Bootstrap PF A generic PF A conditionally-optimal PF

9 Bootstrap Particle Filter 1 Initialization. Draw the initial particles from the distribution s j iid 0 p(s0 ) and set W j 0 = 1, j = 1,..., M. 2 Recursion. For t = 1,..., T : 1 Forecasting s t. Propagate the period t 1 particles {s j t 1, W j t 1 } by iterating the state-transition equation forward: s j t = Φ(s j t 1, ɛj t; θ), ɛ j t F ɛ( ; θ). (1) An approximation of E[h(s t) Y 1:t 1, θ] is given by ĥ t,m = 1 M M j=1 h( s j t )W j t 1. (2)

10 Bootstrap Particle Filter 1 Initialization. 2 Recursion. For t = 1,..., T : 1 Forecasting s t. 2 Forecasting y t. Define the incremental weights w j t = p(y t s j t, θ). (3) The predictive density p(y t Y 1:t 1, θ) can be approximated by ˆp(y t Y 1:t 1, θ) = 1 M M j=1 w j t W j t 1. (4) If the measurement errors are N(0, Σ u) then the incremental weights take the form { w j t = (2π) n/2 Σ u 1/2 exp 1 ( yt Ψ( s j t, t; θ) ) Σ 1 ( u yt Ψ( s j t, t; θ) )}, 2 where n here denotes the dimension of y t. (5)

11 Bootstrap Particle Filter 1 Initialization. 2 Recursion. For t = 1,..., T : 1 Forecasting s t. 2 Forecasting y t. Define the incremental weights w j t = p(y t s j t, θ). (6) 3 Updating. Define the normalized weights W j t = 1 M w j t W j t 1 M j=1 w. (7) j t W j t 1 An approximation of E[h(s t) Y 1:t, θ] is given by h t,m = 1 M M j=1 h( s j t ) W j t. (8)

12 Bootstrap Particle Filter 1 Initialization. 2 Recursion. For t = 1,..., T : 1 Forecasting s t. 2 Forecasting y t. 3 Updating. 4 Selection (Optional). Resample the particles via multinomial resampling. Let {s j t } M j=1 denote M iid draws from a multinomial distribution characterized by support points and weights { s j t, W j and set W j t = 1 for j =, 1..., M. An approximation of E[h(s t) Y 1:t, θ] is given by t } h t,m = 1 M M j=1 h(s j t )W j t. (9)

13 Likelihood Approximation The approximation of the log likelihood function is given by T ln ˆp(Y 1:T θ) = ln 1 M w t j W j t 1. (10) M t=1 j=1 One can show that the approximation of the likelihood function is unbiased. This implies that the approximation of the log likelihood function is downward biased.

14 The Role of Measurement Errors Measurement errors may not be intrinsic to DSGE model. Bootstrap filter needs non-degenerate p(y t s t, θ) for incremental weights to be well defined. Decreasing the measurement error variance Σ u, holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

15 Generic Particle Filter 1 Initialization. Same as BS PF 2 Recursion. For t = 1,..., T : 1 Forecasting s t. Draw s j t from density g t( s t s j t 1, θ) and define ω j t = p( sj t s j t 1, θ). (11) g t( s j t s j t 1, θ) An approximation of E[h(s t) Y 1:t 1, θ] is given by ĥ t,m = 1 M h( s j t )ω j M tw j t 1. (12) j=1 2 Forecasting y t. Define the incremental weights w j t = p(y t s j t, θ)ω j t. (13) The predictive density p(y t Y 1:t 1, θ) can be approximated by ˆp(y t Y 1:t 1, θ) = 1 M w j t W j t 1 M. (14) j=1 3 Updating. Same as BS PF 4 Selection. Same as BS PF 3 Likelihood Approximation. Same as BS PF

16 Asymptotics The convergence results can be established recursively, starting from the assumption a.s. h t 1,M E[h(s t 1 ) Y 1:t 1 ], M ( h t 1,M E[h(s t 1 ) Y 1:t 1 ] ) = N ( 0, Ω t 1 (h) ). Forward iteration: draw s t from g t (s t s j t 1 ) = p(s t s j t 1 ). Decompose ĥ t,m E[h(s t ) Y 1:t 1 ] (15) = 1 M ( ) h( s j M t) E p( s j )[h] W j t 1 t M j=1 = I + II, M j=1 ( ) E p( s j )[h]w j t 1 E[h(s t) Y 1:t 1 ] t 1 Both I and II converge to zero (and potentially satisfy CLT).

17 Asymptotics Updating step approximates E[h(s t ) Y 1:t ] = h(st )p(y t s t )p(s t Y 1:t 1 )ds t p(yt s t )p(s t Y 1:t 1 )ds t 1 M M j=1 h( sj t) w t j W j 1 M M j=1 w t j W j t 1 (16) t 1 Define the normalized incremental weights as v t (s t ) = p(y t s t ) p(yt s t )p(s t Y 1:t 1 )ds t. (17) Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the form M ( ht,m E[h(s t ) Y 1:t ] ) (18) = N ( 0, Ω t (h) ), Ω t (h) = ˆΩ t ( vt (s t )(h(s t ) E[h(s t ) Y 1:t ]) ). Distribution of particle weights matters for accuracy! = Resampling!

18 Adapting the Generic PF Conditionally-optimal importance distribution: g t ( s t s j t 1 ) = p( s t y t, s j t 1 ). This is the posterior of s t given s j t 1. Typically infeasible, but a good benchmark. Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters. Conditionally-linear models: do Kalman filter updating on a subvector of s t. Example: y t = Ψ 0 (m t ) + Ψ 1 (m t )t + Ψ 2 (m t )s t + u t, u t N(0, Σ u ), s t = Φ 0 (m t ) + Φ 1 (m t )s t 1 + Φ ɛ (m t )ɛ t, ɛ t N(0, Σ ɛ ), where m t follows a discrete Markov-switching process.

19 Nonlinear and Partially Deterministic State Transitions Example: s 1,t = Φ 1 (s t 1, ɛ t ), s 2,t = Φ 2 (s t 1 ), ɛ t N(0, 1). Generic filter requires evaluation of p(s t s t 1 ). Define ς t = [s t, ɛ t] and add identity ɛ t = ɛ t to state transition. Factorize the density p(ς t ς t 1 ) as p(ς t ς t 1 ) = p ɛ (ɛ t )p(s 1,t s t 1, ɛ t )p(s 2,t s t 1 ). where p(s 1,t s t 1, ɛ t ) and p(s 2,t s t 1 ) are pointmasses. Sample innovation ɛ t from g ɛ t (ɛ t s t 1 ). Then ω j t = p( ςj t ς j t 1 ) g t ( ς j t ς j t 1 ) = pɛ j ( ɛ t)p( s j 1,t sj t 1, ɛj t)p( s j 2,t sj t 1 ) gt ɛ ( ɛ j t s j t 1 )p( sj 1,t sj t 1, ɛj t)p( s j 2,t sj t 1 ) = pɛ j ( ɛ t) gt ɛ ( ɛ j t s j t 1 ).

20 Degenerate Measurement Error Distributions Our discussion of the conditionally-optimal importance distribution suggests that in the absence of measurement errors, one has to solve the system of equations y t = Ψ ( Φ(s j t 1, ɛj t) ), to determine ɛ j t as a function of s j t 1 and the current observation y t. Then define ω j t = p ɛ ( ɛ j t) and s j t = Φ(s j t 1, ɛj t). Difficulty: one has to find all solutions to a nonlinear system of equations. While resampling duplicates particles, the duplicated particles do not mutate, which can lead to a degeneracy.

21 Next Steps We will now apply PFs to linearized DSGE models. This allows us to compare the Monte Carlo approximation to the truth. Small-scale New Keynesian DSGE model Smets-Wouters model

22 Illustration 1: Small-Scale DSGE Model Parameter Values For Likelihood Evaluation Parameter θ m θ l Parameter θ m θ l τ κ ψ ψ ρ r ρ g ρ z r (A) π (A) γ (Q) σ r σ g σ z ln p(y θ)

23 Likelihood Approximation ln ˆp(y t Y 1:t 1, θ m ) vs. ln p(y t Y 1:t 1, θ m ) Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40, 000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).

24 Filtered State 4 Ê[ĝ t Y 1:t, θ m ] vs. E[ĝ t Y 1:t, θ m ] Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40, 000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).

25 Distribution of Log-Likelihood Approximation Errors Bootstrap PF: θ m vs. θ l Notes: Density estimate of ˆ 1 = ln ˆp(Y 1:T θ) ln p(y 1:T θ) based on N run = 100 runs of the PF. Solid line is θ = θ m ; dashed line is θ = θ l (M = 40, 000).

26 Distribution of Log-Likelihood Approximation Errors Notes: Density estimate of ˆ 1 = ln ˆp(Y 1:T θ) ln p(y 1:T θ) based on N run = 100 runs of the PF. Solid line is bootstrap particle filter (M = 40, 000); dotted line is conditionally optimal particle filter (M = 400) θ m : Bootstrap vs. Cond. Opt. PF

27 Summary Statistics for Particle Filters Bootstrap Cond. Opt. Auxiliary Number of Particles M 40, ,000 Number of Repetitions High Posterior Density: θ = θ m Bias ˆ StdD ˆ Bias ˆ Low Posterior Density: θ = θ l Bias ˆ StdD ˆ Bias ˆ Notes: ˆ 1 = ln ˆp(Y 1:T θ) ln p(y 1:T θ) and ˆ 2 = exp[ln ˆp(Y 1:T θ) ln p(y 1:T θ)] 1. Results are based on N run = 100 runs of the particle filters.

28 Great Recession and Beyond Mean of Log-likelihood Increments ln ˆp(y t Y 1:t 1, θ m ) Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on N run = 100 runs of the filters.

29 Great Recession and Beyond Mean of Log-likelihood Increments ln ˆp(y t Y 1:t 1, θ m ) Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on N run = 100 runs of the filters.

30 Great Recession and Beyond Log Standard Dev of Log-Likelihood Increments Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on N run = 100 runs of the filters.

31 SW Model: Distr. of Log-Likelihood Approximation Errors BS (M = 40, 000) versus CO (M = 4, 000) Notes: Density estimates of ˆ 1 = ln ˆp(Y θ) ln p(y θ) based on N run = 100. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

32 SW Model: Distr. of Log-Likelihood Approximation Errors BS (M = 400, 000) versus CO (M = 4, 000) Notes: Density estimates of ˆ 1 = ln ˆp(Y θ) ln p(y θ) based on N run = 100. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

33 SW Model: Summary Statistics for Particle Filters Bootstrap Cond. Opt. Number of Particles M 40, ,000 4,000 40,000 Number of Repetitions High Posterior Density: θ = θ m Bias ˆ StdD ˆ Bias ˆ Low Posterior Density: θ = θ l Bias ˆ StdD ˆ Bias ˆ Notes: ˆ 1 = ln ˆp(Y 1:T θ) ln p(y 1:T θ) and ˆ 2 = exp[ln ˆp(Y 1:T θ) ln p(y 1:T θ)] 1. Results are based on N run = 100.

34 Embedding PF Likelihoods into Posterior Samplers Likelihood functions for nonlinear DSGE models can be approximated by the PF. We will now embed the likelihood approximation into a posterior sampler: PFMH Algorithm (a special case of PMCMC). The book also discusses SMC 2.

35 Embedding PF Likelihoods into Posterior Samplers Distinguish between: {p(y θ), p(θ Y ), p(y )}, which are related according to: p(y θ)p(θ) p(θ Y ) =, p(y ) = p(y θ)p(θ)dθ p(y ) {ˆp(Y θ), ˆp(θ Y ), ˆp(Y )}, which are related according to: ˆp(Y θ)p(θ) ˆp(θ Y ) =, ˆp(Y ) = ˆp(Y θ)p(θ)dθ. ˆp(Y ) Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can replace p(y θ) by ˆp(Y θ) and still obtain draws from p(θ Y ).

36 PFMH Algorithm For i = 1 to N: 1 Draw ϑ from a density q(ϑ θ i 1 ). 2 Set θ i = ϑ with probability { α(ϑ θ i 1 ) = min 1, ˆp(Y ϑ)p(ϑ)/q(ϑ θ i 1 } ) ˆp(Y θ i 1 )p(θ i 1 )/q(θ i 1 ϑ) and θ i = θ i 1 otherwise. The likelihood approximation ˆp(Y ϑ) is computed using a particle filter.

37 Why Does the PFMH Work? At each iteration the filter generates draws s j t from the proposal distribution g t ( s j t 1 ). Let S t = ( s t 1,..., s t M S 1:T 1:M. ) and denote the entire sequence of draws by Selection step: define a random variable A j t that contains this ancestry information. For instance, suppose that during the resampling particle j = 1 was assigned the value s t 10 then A 1 t = 10. Let A t = ( ) A 1 t,..., A N t and use A1:T to denote the sequence of A t s. PFMH operates on an enlarged probability space: θ, S 1:T and A 1:T.

38 Why Does the PFMH Work? Use U 1:T to denote random vectors for S 1:T and A 1:T. U 1:T is an array of iid uniform random numbers. The transformation of U 1:T into ( S 1:T, A 1:T ) typically depends on θ and Y 1:T, because the proposal distribution g t ( s t s j t 1 ) depends both on the current observation y t as well as the parameter vector θ. E.g., implementation of conditionally-optimal PF requires sampling from a N( s j t t, P t t) distribution for each particle j. Can be done using a prob integral transform of uniform random variables. We can express the particle filter approximation of the likelihood function as where ˆp(Y 1:T θ) = g(y 1:T θ, U 1:T ). U 1:T p(u 1:T ) = T p(u t ). t=1

39 Why Does the PFMH Work? Define the joint distribution ( ) p g Y1:T, θ, U 1:T = g(y1:t θ, U 1:T )p ( ) U 1:T p(θ). The PFMH algorithm samples from the joint posterior ( ) p g θ, U1:T Y 1:T g(y θ, U1:T )p ( ) U 1:T p(θ) and discards the draws of ( ) U 1:T. For this procedure to be valid, it needs to be the case that PF approximation is unbiased: E[ˆp(Y 1:T θ)] = g(y 1:T θ, U 1:T )p ( ) U 1:T dθ = p(y1:t θ).

40 Why Does the PFMH Work? We can express acceptance probability directly in terms of ˆp(Y 1:T θ). Need to generate a proposed draw for both θ and U 1:T : ϑ and U 1:T. The proposal distribution for (ϑ, U1:T ) in the MH algorithm is given by q(ϑ θ (i 1) )p(u1:t ). No need to keep track of the draws (U 1:T ). MH acceptance probability: g(y ϑ,u )p(u )p(ϑ) α(ϑ θ i 1 ) = min 1, q(ϑ θ (i 1) )p(u ) g(y θ (i 1),U (i 1) )p(u (i 1) )p(θ (i 1) ) q(θ (i 1) θ )p(u (i 1) ) { ˆp(Y ϑ)p(ϑ) / } q(ϑ θ (i 1) ) = min 1, ˆp(Y θ (i 1) )p(θ (i 1) ) /. q(θ (i 1) ϑ)

41 Small-Scale DSGE: Accuracy of MH Approximations Results are based on N run = 20 runs of the PF-RWMH-V algorithm. Each run of the algorithm generates N = 100, 000 draws and the first N 0 = 50, 000 are discarded. The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter (BS-PF, M = 40, 000) or conditionally-optimal particle filter (CO-PF, M = 400). Pooled means that we are pooling the draws from the N run = 20 runs to compute posterior statistics.

42 Autocorrelation of PFMH Draws τ κ σr ρr ψ ψ Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter (dashed) and the bootstrap particle filter (solid with dots).

43 Small-Scale DSGE: Accuracy of MH Approximations Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means KF CO-PF BS-PF KF CO-PF BS-PF KF CO-PF BS-PF τ κ ψ ψ ρ r ρ g ρ z r (A) π (A) γ (Q) σ r σ g σ z ln ˆp(Y )

44 SW Model: Accuracy of MH Approximations Results are based on N run = 20 runs of the PF-RWMH-V algorithm. Each run of the algorithm generates N = 10, 000 draws. The likelihood function is computed with the Kalman filter (KF) or conditionally-optimal particle filter (CO-PF). Pooled means that we are pooling the draws from the N run = 20 runs to compute posterior statistics. The CO-PF uses M = 40, 000 particles to compute the likelihood.

45 SW Model: Accuracy of MH Approximations Post. Mean (Pooled) Ineff. Factors Std Dev of Means KF CO-PF KF CO-PF KF CO-PF (100β 1 1) π l α σ c Φ ϕ h ξ w σ l ξ p ι w ι p ψ r π ρ r y r y

46 SW Model: Accuracy of MH Approximations Post. Mean (Pooled) Ineff. Factors Std Dev of Means KF CO-PF KF CO-PF KF CO-PF ρ a ρ b ρ g ρ i ρ r ρ p ρ w ρ ga µ p µ w σ a σ b σ g σ i σ r σ p σ w ln ˆp(Y )

47 Conclusion Versatile set of tools... SMC can be used to compute Laplace-type estimators. Particle filters can be used for other nonlinear state-space models. If you are interested in more: Tempered Particle Filtering presentation in Econometrics Workshop on Wednesday.

Bayesian Computations for DSGE Models

Bayesian Computations for DSGE Models Bayesian Computations for DSGE Models Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 This Lecture is Based on Bayesian Estimation of DSGE Models Edward P. Herbst &

More information

Sequential Monte Carlo Methods (for DSGE Models)

Sequential Monte Carlo Methods (for DSGE Models) Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 Some References Solution and Estimation of DSGE Models, with J. Fernandez-Villaverde

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Bradley Visitor Lectures October 23, 2017 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania EABCN Training School May 10, 2016 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance of

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Econ 722 Part 1 February 13, 2019 Introduction Posterior expectations can be approximated by Monte Carlo averages. If we have draws from {θ s } N s=1 from p(θ Y ), then (under

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

DSGE Model Econometrics

DSGE Model Econometrics DSGE Model Econometrics Frank Schorfheide University of Pennsylvania, CEPR, NBER, PIER June 2017 Cowles Lunch Papers and software available at https://web.sas.upenn.edu/schorf/ A Potted History 1993-1994:

More information

Piecewise Linear Continuous Approximations and Filtering for DSGE Models with Occasionally-Binding Constraints

Piecewise Linear Continuous Approximations and Filtering for DSGE Models with Occasionally-Binding Constraints The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System. Piecewise Linear Continuous Approximations

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

DSGE Model Forecasting

DSGE Model Forecasting University of Pennsylvania EABCN Training School May 1, 216 Introduction The use of DSGE models at central banks has triggered a strong interest in their forecast performance. The subsequent material draws

More information

Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan

Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan Hirokuni Iiboshi 1, Mototsugu Shintani 2, Kozo Ueda 3 August 218 @ EEA-ESEM 1 Tokyo Metropolitan University 2 University of

More information

SMC 2 : an efficient algorithm for sequential analysis of state-space models

SMC 2 : an efficient algorithm for sequential analysis of state-space models SMC 2 : an efficient algorithm for sequential analysis of state-space models N. CHOPIN 1, P.E. JACOB 2, & O. PAPASPILIOPOULOS 3 1 ENSAE-CREST 2 CREST & Université Paris Dauphine, 3 Universitat Pompeu Fabra

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models

Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models Francis X. Diebold Frank Schorfheide Minchul Shin University of Pennsylvania May 4, 2014 1 / 33 Motivation The use

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations

Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations Sungbae An Singapore Management University Bank Indonesia/BIS Workshop: STRUCTURAL DYNAMIC MACROECONOMIC MODELS IN ASIA-PACIFIC

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Wen Xu Department of Economics & Oxford-Man Institute University of Oxford (Preliminary, Comments Welcome) Theme y it =

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Estimating Macroeconomic Models: A Likelihood Approach

Estimating Macroeconomic Models: A Likelihood Approach Estimating Macroeconomic Models: A Likelihood Approach Jesús Fernández-Villaverde University of Pennsylvania, NBER, and CEPR Juan Rubio-Ramírez Federal Reserve Bank of Atlanta Estimating Dynamic Macroeconomic

More information

Sequential Monte Carlo Sampling for DSGE Models

Sequential Monte Carlo Sampling for DSGE Models Sequential Monte Carlo Sampling for DSGE Models Edward Herbst Federal Reserve Board Frank Schorfheide University of Pennsylvania CEPR, and NBER September 15, 2013 Abstract We develop a sequential Monte

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

Sequential Monte Carlo samplers for Bayesian DSGE models

Sequential Monte Carlo samplers for Bayesian DSGE models Sequential Monte Carlo samplers for Bayesian DSGE models Drew Creal First version: February 8, 27 Current version: March 27, 27 Abstract Dynamic stochastic general equilibrium models have become a popular

More information

Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB:

Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB: Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB: Bayesian Estimation with Particle Filter for Japan Hirokuni Iiboshi Tokyo Metropolitan University Economic and Social Research Institute,

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

WORKING PAPER NO SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward Herbst Federal Reserve Board

WORKING PAPER NO SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward Herbst Federal Reserve Board WORKING PAPER NO. 12-27 SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS Edward Herbst Federal Reserve Board Frank Schorfheide University of Pennsylvania and Visiting Scholar, Federal Reserve Bank of Philadelphia

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

The Hierarchical Particle Filter

The Hierarchical Particle Filter and Arnaud Doucet http://go.warwick.ac.uk/amjohansen/talks MCMSki V Lenzerheide 7th January 2016 Context & Outline Filtering in State-Space Models: SIR Particle Filters [GSS93] Block-Sampling Particle

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

The Kalman filter, Nonlinear filtering, and Markov Chain Monte Carlo

The Kalman filter, Nonlinear filtering, and Markov Chain Monte Carlo NBER Summer Institute Minicourse What s New in Econometrics: Time Series Lecture 5 July 5, 2008 The Kalman filter, Nonlinear filtering, and Markov Chain Monte Carlo Lecture 5, July 2, 2008 Outline. Models

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

On some properties of Markov chain Monte Carlo simulation methods based on the particle filter

On some properties of Markov chain Monte Carlo simulation methods based on the particle filter On some properties of Markov chain Monte Carlo simulation methods based on the particle filter Michael K. Pitt Economics Department University of Warwick m.pitt@warwick.ac.uk Ralph S. Silva School of Economics

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

arxiv: v1 [stat.co] 1 Jun 2015

arxiv: v1 [stat.co] 1 Jun 2015 arxiv:1506.00570v1 [stat.co] 1 Jun 2015 Towards automatic calibration of the number of state particles within the SMC 2 algorithm N. Chopin J. Ridgway M. Gerber O. Papaspiliopoulos CREST-ENSAE, Malakoff,

More information

DSGE Methods. Estimation of DSGE models: Maximum Likelihood & Bayesian. Willi Mutschler, M.Sc.

DSGE Methods. Estimation of DSGE models: Maximum Likelihood & Bayesian. Willi Mutschler, M.Sc. DSGE Methods Estimation of DSGE models: Maximum Likelihood & Bayesian Willi Mutschler, M.Sc. Institute of Econometrics and Economic Statistics University of Münster willi.mutschler@uni-muenster.de Summer

More information

E cient Likelihood Evaluation of State-Space Representations

E cient Likelihood Evaluation of State-Space Representations E cient Likelihood Evaluation of State-Space Representations David N. DeJong, Roman Liesenfeld, Guilherme V. Moura, Jean-Francois Richard, Hariharan Dharmarajan University of Pittsburgh Universität Kiel

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

Inference in state-space models with multiple paths from conditional SMC

Inference in state-space models with multiple paths from conditional SMC Inference in state-space models with multiple paths from conditional SMC Sinan Yıldırım (Sabancı) joint work with Christophe Andrieu (Bristol), Arnaud Doucet (Oxford) and Nicolas Chopin (ENSAE) September

More information

NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward P. Herbst Frank Schorfheide

NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward P. Herbst Frank Schorfheide NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS Edward P. Herbst Frank Schorfheide Working Paper 19152 http://www.nber.org/papers/w19152 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Negative Association, Ordering and Convergence of Resampling Methods

Negative Association, Ordering and Convergence of Resampling Methods Negative Association, Ordering and Convergence of Resampling Methods Nicolas Chopin ENSAE, Paristech (Joint work with Mathieu Gerber and Nick Whiteley, University of Bristol) Resampling schemes: Informal

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Sequential Monte Carlo samplers for Bayesian DSGE models

Sequential Monte Carlo samplers for Bayesian DSGE models Sequential Monte Carlo samplers for Bayesian DSGE models Drew Creal Department of Econometrics, Vrije Universitiet Amsterdam, NL-8 HV Amsterdam dcreal@feweb.vu.nl August 7 Abstract Bayesian estimation

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Particle Learning and Smoothing Hedibert Freitas Lopes The University of Chicago Booth School of Business September 18th 2009 Instituto Nacional de Pesquisas Espaciais São José dos Campos, Brazil Joint

More information

ESTIMATION of a DSGE MODEL

ESTIMATION of a DSGE MODEL ESTIMATION of a DSGE MODEL Paris, October 17 2005 STÉPHANE ADJEMIAN stephane.adjemian@ens.fr UNIVERSITÉ DU MAINE & CEPREMAP Slides.tex ESTIMATION of a DSGE MODEL STÉPHANE ADJEMIAN 16/10/2005 21:37 p. 1/3

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 8: Importance Sampling 8.1 Importance Sampling Importance sampling

More information

Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints. Markku Lanne and Jani Luoto

Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints. Markku Lanne and Jani Luoto Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints Markku Lanne and Jani Luoto CREATES Research Paper 2015-37 Department of Economics and Business Economics Aarhus

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

A Note on Auxiliary Particle Filters

A Note on Auxiliary Particle Filters A Note on Auxiliary Particle Filters Adam M. Johansen a,, Arnaud Doucet b a Department of Mathematics, University of Bristol, UK b Departments of Statistics & Computer Science, University of British Columbia,

More information

Sequential Bayesian Updating

Sequential Bayesian Updating BS2 Statistical Inference, Lectures 14 and 15, Hilary Term 2009 May 28, 2009 We consider data arriving sequentially X 1,..., X n,... and wish to update inference on an unknown parameter θ online. In a

More information

Monetary and Exchange Rate Policy Under Remittance Fluctuations. Technical Appendix and Additional Results

Monetary and Exchange Rate Policy Under Remittance Fluctuations. Technical Appendix and Additional Results Monetary and Exchange Rate Policy Under Remittance Fluctuations Technical Appendix and Additional Results Federico Mandelman February In this appendix, I provide technical details on the Bayesian estimation.

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Forecasting with DSGE Models: Theory and Practice

Forecasting with DSGE Models: Theory and Practice Forecasting with DSGE Models: Theory and Practice Marco Del Negro Federal Reserve Bank of New York Frank Schorfheide University of Pennsylvania, CEPR, NBER August, 2011 CIGS Conference on Macroeconomic

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

DSGE Models in a Liquidity Trap and Japan s Lost Decade

DSGE Models in a Liquidity Trap and Japan s Lost Decade DSGE Models in a Liquidity Trap and Japan s Lost Decade Koiti Yano Economic and Social Research Institute ESRI International Conference 2009 June 29, 2009 1 / 27 Definition of a Liquidity Trap Terminology

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Monte Carlo Approximation of Monte Carlo Filters

Monte Carlo Approximation of Monte Carlo Filters Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Context & Outline Filtering in State-Space

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

Estimation of moment-based models with latent variables

Estimation of moment-based models with latent variables Estimation of moment-based models with latent variables work in progress Ra aella Giacomini and Giuseppe Ragusa UCL/Cemmap and UCI/Luiss UPenn, 5/4/2010 Giacomini and Ragusa (UCL/Cemmap and UCI/Luiss)Moments

More information

An intro to particle methods for parameter inference in state-space models

An intro to particle methods for parameter inference in state-space models An intro to particle methods for parameter inference in state-space models PhD course FMS020F NAMS002 Statistical inference for partially observed stochastic processes, Lund University http://goo.gl/sx8vu9

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

Filtering and Likelihood Inference

Filtering and Likelihood Inference Filtering and Likelihood Inference Jesús Fernández-Villaverde University of Pennsylvania July 10, 2011 Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 1 / 79 Motivation Introduction

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, )

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, ) Econometrica Supplementary Material SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, 653 710) BY SANGHAMITRA DAS, MARK ROBERTS, AND

More information

On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers. Working Paper Research. by Arnaud Dufays. September 2014 No 263

On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers. Working Paper Research. by Arnaud Dufays. September 2014 No 263 On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers Working Paper Research by Arnaud Dufays September 2014 No 263 Editorial Director Jan Smets, Member of the Board of Directors of

More information

Sequential Monte Carlo methods for system identification

Sequential Monte Carlo methods for system identification Technical report arxiv:1503.06058v3 [stat.co] 10 Mar 2016 Sequential Monte Carlo methods for system identification Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth,

More information

An Introduction to Particle Filtering

An Introduction to Particle Filtering An Introduction to Particle Filtering Author: Lisa Turner Supervisor: Dr. Christopher Sherlock 10th May 2013 Abstract This report introduces the ideas behind particle filters, looking at the Kalman filter

More information

Quantile Filtering and Learning

Quantile Filtering and Learning Quantile Filtering and Learning Michael Johannes, Nicholas Polson and Seung M. Yae October 5, 2009 Abstract Quantile and least-absolute deviations (LAD) methods are popular robust statistical methods but

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Non-nested model selection. in unstable environments

Non-nested model selection. in unstable environments Non-nested model selection in unstable environments Raffaella Giacomini UCLA (with Barbara Rossi, Duke) Motivation The problem: select between two competing models, based on how well they fit thedata Both

More information

Inferring biological dynamics Iterated filtering (IF)

Inferring biological dynamics Iterated filtering (IF) Inferring biological dynamics 101 3. Iterated filtering (IF) IF originated in 2006 [6]. For plug-and-play likelihood-based inference on POMP models, there are not many alternatives. Directly estimating

More information

DSGE MODELS WITH STUDENT-t ERRORS

DSGE MODELS WITH STUDENT-t ERRORS Econometric Reviews, 33(1 4):152 171, 2014 Copyright Taylor & Francis Group, LLC ISSN: 0747-4938 print/1532-4168 online DOI: 10.1080/07474938.2013.807152 DSGE MODELS WITH STUDENT-t ERRORS Siddhartha Chib

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Particle Learning and Smoothing Carlos Carvalho, Michael Johannes, Hedibert Lopes and Nicholas Polson This version: September 2009 First draft: December 2007 Abstract In this paper we develop particle

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Divide-and-Conquer Sequential Monte Carlo

Divide-and-Conquer Sequential Monte Carlo Divide-and-Conquer Joint work with: John Aston, Alexandre Bouchard-Côté, Brent Kirkpatrick, Fredrik Lindsten, Christian Næsseth, Thomas Schön University of Warwick a.m.johansen@warwick.ac.uk http://go.warwick.ac.uk/amjohansen/talks/

More information

Pseudo-marginal MCMC methods for inference in latent variable models

Pseudo-marginal MCMC methods for inference in latent variable models Pseudo-marginal MCMC methods for inference in latent variable models Arnaud Doucet Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) & Mike Pitt (Kings) MCQMC, 19/08/2016

More information

Tutorial on ABC Algorithms

Tutorial on ABC Algorithms Tutorial on ABC Algorithms Dr Chris Drovandi Queensland University of Technology, Australia c.drovandi@qut.edu.au July 3, 2014 Notation Model parameter θ with prior π(θ) Likelihood is f(ý θ) with observed

More information