Sequential Monte Carlo Methods (for DSGE Models)

Size: px
Start display at page:

Download "Sequential Monte Carlo Methods (for DSGE Models)"

Transcription

1 Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017

2 Some References Solution and Estimation of DSGE Models, with J. Fernandez-Villaverde and Juan Rubio-Ramirez, 2016, in: Handbook of Macroeconomics, vol. 2A Bayesian Estimation of DSGE Models, with E. Herbst, 2015, Princeton University Press Sequential Monte Carlo Sampling for DSGE Models, with E. Herbst, 2014, Journal of Econometrics See syllabus for additional references.

3 Some Background DSGE model: dynamic model of the macroeconomy, indexed by θ vector of preference and technology parameters. Used for forecasting, policy experiments, interpreting past events. Bayesian analysis of DSGE models: p(θ Y ) = p(y θ)p(θ) p(y ) p(y θ)p(θ). Computational hurdles: numerical solution of model leads to state-space representation = likelihood approximation = posterior sampler. Standard approach for (linearized) models (Schorfheide, 2000; Otrok, 2001): Model solution: log-linearize and use linear rational expectations system solver. Evaluation of p(y θ): Kalman filter Posterior draws θ i : MCMC

4 Sequential Monte Carlo (SMC) Methods SMC can help to Lecture 1 approximate the posterior of θ: Chopin (2002)... Durham and Geweke (2013)... Creal (2007), Herbst and Schorfheide (2014) Lecture 2 approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith (1993)... Fernandez-Villaverde and Rubio-Ramirez (2007) or both: SMC 2 : Chopin, Jacob, and Papaspiliopoulos (2012)... Herbst and Schorfheide (2015)

5 Lecture 1

6 A Loglinearized New Keynesian DSGE Model Consumption Euler equation: ŷ t = E t [ŷ t+1 ] 1 ( ) ˆR t E t [ˆπ t+1 ] E t [ẑ t+1 ] + ĝ t E t [ĝ t+1 ] τ New Keynesian Phillips curve: where ˆπ t = βe t [ˆπ t+1 ] + κ(ŷ t ĝ t ), κ = τ 1 ν νπ 2 φ Monetary policy rule: ˆR t = ρ R ˆRt 1 + (1 ρ R )ψ 1ˆπ t + (1 ρ R )ψ 2 (ŷ t ĝ t ) + ɛ R,t

7 Exogenous Processes Technology: ln A t = ln γ + ln A t 1 + ln z t, ln z t = ρ z ln z t 1 + ɛ z,t. Government spending / aggregate demand: define g t = 1/(1 ζ t ); assume ln g t = (1 ρ g ) ln g + ρ g ln g t 1 + ɛ g,t. Monetary policy shock ɛ R,t is assumed to be serially uncorrelated.

8 Solving A Linear Rational Expectations System A Simple Example Consider y t = 1 θ E t[y t+1 ] + ɛ t, (1) where ɛ t iid(0, 1) and θ Θ = [0, 2]. Introduce conditional expectation ξ t = E t [y t+1 ] and forecast error η t = y t ξ t 1. Thus, ξ t = θξ t 1 θɛ t + θη t. (2)

9 A Simple Example Determinacy: θ > 1. Then only stable solution: ξ t = 0, η t = ɛ t, y t = ɛ t (3) Indeterminacy: θ 1 the stability requirement imposes no restrictions on forecast error: η t = Mɛ t + ζ t. (4) For simplicity assume now ζ t = 0. Then y t θy t 1 = Mɛ t θɛ t 1. (5)

10 At the End of the Day... We obtain a transition equation for the vector s t : s t = Φ 1 (θ)s t 1 + Φ ɛ (θ)ɛ t. The coefficient matrices Φ 1 (θ) and Φ ɛ (θ) are functions of the parameters of the DSGE model.

11 Measurement Equation Connect model variables s t with observables y t. In NK model: where YGR t = γ (Q) + 100(ŷ t ŷ t 1 + ẑ t ) INFL t = π (A) + 400ˆπ t INT t = π (A) + r (A) + 4γ (Q) ˆR t. γ = 1 + γ(q) 100, β = r (A) /400, π = 1 + π(a) 400. More generically: y t = Ψ 0 (θ) + Ψ 1 (θ)t + Ψ 2 (θ)s t +u }{{} t. optional

12 State-Space Representation and Likelihood Measurement: y t = Ψ 0 (θ) + Ψ 1 (θ)t + Ψ 2 (θ)s t State transition: +u t }{{} optional s t = Φ 1 (θ)s t 1 + Φ ɛ (θ)ɛ t Joint density for the observations and latent states: T p(y 1:T, S 1:T θ) = p(y t, s t Y 1:t 1, S 1:t 1, θ) = t=1 T p(y t s t, θ)p(s t s t 1, θ). t=1 Compute the marginal p(y 1:T θ). We will discuss how in Lecture 2.

13 Where Are We Headed?... Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y θ) Prior density p(θ) Marginal data density p(y ) = p(y θ)p(θ)dφ Bayes Theorem: p(θ Y ) = p(y θ)p(θ) p(y ) p(y θ)p(θ) Implementation: usually by generating a sequence of draws (not necessarily iid) from posterior θ i p(θ Y ), i = 1,..., N Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain Monte Carlo sampling, sequential Monte Carlo sampling...

14 Bayesian Inference Posterior Focus on SMC algorithm that generates draws {θ i } N i=1 from posterior distributions of parameters. Draws can then be transformed into objects of interest, h(θ i ), and under suitable conditions a Monte Carlo average of the form h N = 1 N N i=1 h(θ i ) E π [h] h(θ)p(θ Y )dθ. Strong law of large numbers (SLLN), central limit theorem (CLT)...

15 Bayesian Inference Decision Making The posterior expected loss of decision δ( ): ρ ( δ( ) Y ) = L ( θ, δ(y ) ) p(θ Y )dθ. Θ Bayes decision minimizes the posterior expected loss: δ (Y ) = argmin d ρ ( δ( ) Y ). Approximate ρ ( δ( ) Y ) by a Monte Carlo average ρ N ( δ( ) Y ) = 1 N Then compute N L ( θ i, δ( ) ). i=1 δ N(Y ) = argmin d ρ N ( δ( ) Y ).

16 Bayesian Inference Point estimation: Quadratic loss: posterior mean Absolute error loss: posterior median Interval/Set estimation P π {θ C(Y )} = 1 α: highest posterior density sets equal-tail-probability intervals

17 Implementation: Sampling from Posterior DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise because it is difficult to disentangle internal and external propagation mechanisms; disentangle the relative importance of shocks. θ θ Economic Example: is wage growth persistent because 1 wage setters find it very costly to adjust wages? 2 exogenous shocks affect the substitutability of labor inputs and hence markups?

18 Sampling from Posterior If posterior distributions are irregular, standard MCMC methods can be inaccurate (examples will follow). SMC samplers often generate more precise approximations of posteriors in the same amount of time. SMC can be parallelized. SMC = importance sampling on steroids = We will first review importance sampling.

19 Importance Sampling Approximate π( ) by using a different, tractable density g(θ) that is easy to sample from. For more general problems, posterior density may be unnormalized. So we write π(θ) = p(y θ)p(θ) p(y ) = f (θ) f (θ)dθ. Importance sampling is based on the identity E π [h(θ)] = h(θ)π(θ)dθ = (Unnormalized) importance weight: w(θ) = f (θ) g(θ). f (θ) h(θ) Θ Θ g(θ) g(θ)dθ f (θ) g(θ) g(θ)dθ.

20 Importance Sampling 1 For i = 1 to N, draw θ i iid g(θ) and compute the unnormalized importance weights w i = w(θ i ) = f (θi ) g(θ i ). 2 Compute the normalized importance weights W i = 1 N w i N i=1 w i. An approximation of E π [h(θ)] is given by h N = 1 N N W i h(θ i ). i=1

21 Illustration If θ i s are draws from g( ) then E π [h] 1 N N i=1 h(θi )w(θ i ) 1 N N i=1 w(θi ), w(θ) = f (θ) g(θ) f 0.30 g g weights f/g 1 f/g

22 Accuracy Since we are generating iid draws from g(θ), it s fairly straightforward to derive a CLT: N( hn E π [h]) = N ( 0, Ω(h) ), where Ω(h) = V g [(π/g)(h E π [h])]. Using a crude approximation (see, e.g., Liu (2008)), we can factorize Ω(h) as follows: Ω(h) V π [h] ( V g [π/g] + 1 ). The approximation highlights that the larger the variance of the importance weights, the less accurate the Monte Carlo approximation relative to the accuracy that could be achieved with an iid sample from the posterior. Users often monitor ESS = N V π[h] Ω(h) N 1 + V g [π/g].

23 From Importance Sampling to Sequential Importance Sampling In general, it s hard to construct a good proposal density g(θ), especially if the posterior has several peaks and valleys. Idea - Part 1: it might be easier to find a proposal density for π n (θ) = [p(y θ)]φn p(θ) = f n(θ). [p(y θ)] φ np(θ)dθ Z n at least if φ n is close to zero. Idea - Part 2: We can try to turn a proposal density for π n into a proposal density for π n+1 and iterate, letting φ n φ N = 1.

24 Illustration: Tempered Posteriors of θ n θ π n (θ) = [p(y θ)]φn p(θ) = f ( ) λ n(θ) n, φ [p(y θ)] φ np(θ)dθ n = Z n N φ

25 SMC Algorithm: A Graphical Illustration C S M C S M C S M φ 0 φ 1 φ 2 φ 3 π n (θ) is represented by a swarm of particles {θ i n, W i n} N i=1 : h n,n = 1 N N i=1 W i nh(θ i n) a.s. E πn [h(θ n )]. C is Correction; S is Selection; and M is Mutation.

26 SMC Algorithm 1 Initialization. (φ 0 = 0). Draw the initial particles from the prior: iid p(θ) and W i 1 = 1, i = 1,..., N. θ i 1 2 Recursion. For n = 1,..., N φ, 1 Correction. Reweight the particles from stage n 1 by defining the incremental weights w i n = [p(y θ i n 1)] φn φ n 1 (6) and the normalized weights W n i w i = nwn 1 i 1 N N i=1 w, i = 1,..., N. (7) nw i n 1 i An approximation of E πn [h(θ)] is given by h n,n = 1 N 2 Selection. N i=1 W i nh(θ i n 1). (8)

27 SMC Algorithm 1 Initialization. 2 Recursion. For n = 1,..., N φ, 1 Correction. 2 Selection. (Optional Resampling) Let {ˆθ} N i=1 denote N iid draws from a multinomial distribution characterized by support points and weights {θ i n 1, W i n} N i=1 and set W i n = 1. An approximation of E πn [h(θ)] is given by ĥ n,n = 1 N N Wnh(ˆθ i n). i (9) i=1 3 Mutation. Propagate the particles {ˆθ i, W i n} via N MH steps of a MH algorithm with transition density θ i n K n(θ n ˆθ i n; ζ n) and stationary distribution π n(θ). An approximation of E πn [h(θ)] is given by h n,n = 1 N N h(θn)w i n. i (10) i=1

28 Remarks Correction Step: reweight particles from iteration n 1 to create importance sampling approximation of E πn [h(θ)] Selection Step: the resampling of the particles (good) equalizes the particle weights and thereby increases accuracy of subsequent importance sampling approximations; (not good) adds a bit of noise to the MC approximation. Mutation Step: changes particle values adapts particles to posterior π n(θ); imagine we don t do it: then we would be using draws from prior p(θ) to approximate posterior π(θ), which can t be good! n θ

29 More on Transition Kernel in Mutation Step Transition kernel K n (θ ˆθ n 1 ; ζ n ): generated by running M steps of a Metropolis-Hastings algorithm. Lessons from DSGE model MCMC: blocking of parameters can reduces persistence of Markov chain; mixture proposal density avoids getting stuck. Blocking: Partition the parameter vector θ n into N blocks equally sized blocks, denoted by θ n,b, b = 1,..., N blocks. (We generate the blocks for n = 1,..., N φ randomly prior to running the SMC algorithm.) Example: random walk proposal density: ( ) ϑ b (θn,b,m 1, i θn, b,m, i Σ n,b) N θn,b,m 1, i cnσ 2 n,b.

30 Adaptive Choice of ζ n = (Σ n, c n ) Infeasible adaption: Let Σ n = V πn [θ]. Adjust scaling factor according to c n = c n 1f ( 1 R n 1(ζ n 1) ), where R n 1( ) is population rejection rate from iteration n 1 and e16(x 0.25) f (x) = e. 16(x 0.25) Feasible adaption use output from stage n 1 to replace ζ n by ˆζ n : Use particle approximations of E πn [θ] and V πn [θ] based on {θ i n 1, W i n} N i=1. Use actual rejection rate from stage n 1 to calculate ĉ n = ĉ n 1f ( ˆRn 1(ˆζ n 1) ).

31 More on Resampling So far, we have used multinomial resampling. It s fairly intuitive and it is straightforward to obtain a CLT. But: multinominal resampling is not particularly efficient. The Herbst-Schorfheide book contains a section on alternative resampling schemes (stratified resampling, residual resampling...) These alternative techniques are designed to achieve a variance reduction. Most resampling algorithms are not parallelizable because they rely on the normalized particle weights.

32 Application 1: Small Scale New Keynesian Model We will take a look at the effect of various tuning choices on accuracy: Tempering schedule λ: λ = 1 is linear, λ > 1 is convex. Number of stages N φ versus number of particles N.

33 Effect of λ on Inefficiency Factors InEff N [ θ] λ Notes: The figure depicts hairs of InEff N [ θ] as function of λ. The inefficiency factors are computed based on N run = 50 runs of the SMC algorithm. Each hair corresponds to a DSGE model parameter.

34 Number of Stages N φ vs Number of Particles N ρ g σ r ρ r ρ z σ g κ σ z π (A) ψ 1 γ (Q) ψ 2 r (A) τ N φ = 400, N = 250 N φ = 200, N = 500 N φ = 100, N = 1000 N φ = 50, N = 2000 N φ = 25, N = 4000 Notes: Plot of V[ θ]/v π [θ] for a specific configuration of the SMC algorithm. The inefficiency factors are computed based on N run = 50 runs of the SMC algorithm. N blocks = 1, λ = 2, N MH = 1.

35 A Few Words on Posterior Model Probabilities Posterior model probabilities π i,t = π i,0 p(y 1:T M i ) M j=1 π j,0p(y 1:T M j ) where p(y 1:T M i ) = p(y 1:T θ (i), M i )p(θ (i) M i )dθ (i) For any model: ln p(y 1:T M i ) = T t=1 ln p(y t θ (i), Y 1:t 1, M i )p(θ (i) Y 1:t 1, M i )dθ (i) Marginal data density p(y 1:T M i ) arises as a by-product of SMC.

36 Marginal Likelihood Approximation Recall w i n = [p(y θ i n 1 )]φn φn 1. Then 1 N N w nw i n 1 i i=1 = p φn 1 (Y θ)p(θ) [p(y θ)] φn φn 1 dθ p φ n 1(Y θ)p(θ)dθ p(y θ) φ n p(θ)dθ p(y θ) φ n 1p(θ)dθ Thus, N φ ( ) 1 N w i N nwn 1 i n=1 i=1 p(y θ)p(θ)dθ.

37 SMC Marginal Data Density Estimates N φ = 100 N φ = 400 N Mean(ln ˆp(Y )) SD(ln ˆp(Y )) Mean(ln ˆp(Y )) SD(ln ˆp(Y )) (3.18) (0.20) 1, (1.98) (0.14) 2, (1.65) (0.12) 4, (0.92) (0.07) Notes: Table shows mean and standard deviation of log marginal data density estimates as a function of the number of particles N computed over N run = 50 runs of the SMC sampler with N blocks = 4, λ = 2, and N MH = 1.

38 Application 2: Estimation of Smets and Wouters (2007) Model Benchmark macro model, has been estimated many (many) times. Core of many larger-scale models. 36 estimated parameters. RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles. We run the RWM (using a particular version of a parallelized MCMC) and the SMC algorithm on 24 processors for the same amount of time. We estimate the SW model twenty times using RWM and SMC and get essentially identical results.

39 Application 2: Estimation of Smets and Wouters (2007) Model More interesting question: how does quality of posterior simulators change as one makes the priors more diffuse? Replace Beta by Uniform distributions; increase variances of parameters with Gamma and Normal prior by factor of 3.

40 SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus SMC (red) l ι w µ p µ w ρ w ξ w r π

41 A Measure of Effective Number of Draws Suppose we could generate iid N eff ( Ê π [θ] approx N E π [θ], 1 N eff V π [θ] draws from posterior, then ). We can measure the variance of Ê π [θ] by running SMC and RWM algorithm repeatedly. Then, N eff V π[θ] V [ Ê π [θ] ]

42 Effective Number of Draws SMC RWMH Parameter Mean STD(Mean) N eff Mean STD(Mean) N eff σ l l ι p h Φ r π ρ b ϕ σ p ξ p ι w µ p ρ w µ w ξ w

43 A Closer Look at the Posterior: Two Modes Parameter Mode 1 Mode 2 ξ w ι w ρ w µ w Log Posterior Mode 1 implies that wage persistence is driven by extremely exogenous persistent wage markup shocks. Mode 2 implies that wage persistence is driven by endogenous amplification of shocks through the wage Calvo and indexation parameter. SMC is able to capture the two modes.

44 A Closer Look at the Posterior: Internal ξ w versus External ρ w Propagation ρ w ξ w

45 Stability of Posterior Computations: RWH (black) versus SMC (red) P (ξ w > ρ w) P (ρ w > µ w) P (ξ w > µ w) P (ξ p > ρ p) P (ρ p > µ p) P (ξ p > µ p)

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Bradley Visitor Lectures October 23, 2017 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance

More information

Bayesian Computations for DSGE Models

Bayesian Computations for DSGE Models Bayesian Computations for DSGE Models Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 This Lecture is Based on Bayesian Estimation of DSGE Models Edward P. Herbst &

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania EABCN Training School May 10, 2016 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance of

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Econ 722 Part 1 February 13, 2019 Introduction Posterior expectations can be approximated by Monte Carlo averages. If we have draws from {θ s } N s=1 from p(θ Y ), then (under

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Sequential Monte Carlo Methods (for DSGE Models)

Sequential Monte Carlo Methods (for DSGE Models) Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 Some References These lectures use material from our joint work: Tempered

More information

Sequential Monte Carlo Sampling for DSGE Models

Sequential Monte Carlo Sampling for DSGE Models Sequential Monte Carlo Sampling for DSGE Models Edward Herbst Federal Reserve Board Frank Schorfheide University of Pennsylvania CEPR, and NBER September 15, 2013 Abstract We develop a sequential Monte

More information

WORKING PAPER NO SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward Herbst Federal Reserve Board

WORKING PAPER NO SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward Herbst Federal Reserve Board WORKING PAPER NO. 12-27 SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS Edward Herbst Federal Reserve Board Frank Schorfheide University of Pennsylvania and Visiting Scholar, Federal Reserve Bank of Philadelphia

More information

Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations

Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations Sungbae An Singapore Management University Bank Indonesia/BIS Workshop: STRUCTURAL DYNAMIC MACROECONOMIC MODELS IN ASIA-PACIFIC

More information

NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward P. Herbst Frank Schorfheide

NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. Edward P. Herbst Frank Schorfheide NBER WORKING PAPER SERIES SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS Edward P. Herbst Frank Schorfheide Working Paper 19152 http://www.nber.org/papers/w19152 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050

More information

DSGE Model Forecasting

DSGE Model Forecasting University of Pennsylvania EABCN Training School May 1, 216 Introduction The use of DSGE models at central banks has triggered a strong interest in their forecast performance. The subsequent material draws

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Estimation of moment-based models with latent variables

Estimation of moment-based models with latent variables Estimation of moment-based models with latent variables work in progress Ra aella Giacomini and Giuseppe Ragusa UCL/Cemmap and UCI/Luiss UPenn, 5/4/2010 Giacomini and Ragusa (UCL/Cemmap and UCI/Luiss)Moments

More information

Sequential Monte Carlo samplers for Bayesian DSGE models

Sequential Monte Carlo samplers for Bayesian DSGE models Sequential Monte Carlo samplers for Bayesian DSGE models Drew Creal First version: February 8, 27 Current version: March 27, 27 Abstract Dynamic stochastic general equilibrium models have become a popular

More information

Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models

Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models Point, Interval, and Density Forecast Evaluation of Linear versus Nonlinear DSGE Models Francis X. Diebold Frank Schorfheide Minchul Shin University of Pennsylvania May 4, 2014 1 / 33 Motivation The use

More information

Piecewise Linear Continuous Approximations and Filtering for DSGE Models with Occasionally-Binding Constraints

Piecewise Linear Continuous Approximations and Filtering for DSGE Models with Occasionally-Binding Constraints The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System. Piecewise Linear Continuous Approximations

More information

DSGE Methods. Estimation of DSGE models: Maximum Likelihood & Bayesian. Willi Mutschler, M.Sc.

DSGE Methods. Estimation of DSGE models: Maximum Likelihood & Bayesian. Willi Mutschler, M.Sc. DSGE Methods Estimation of DSGE models: Maximum Likelihood & Bayesian Willi Mutschler, M.Sc. Institute of Econometrics and Economic Statistics University of Münster willi.mutschler@uni-muenster.de Summer

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Estimating Macroeconomic Models: A Likelihood Approach

Estimating Macroeconomic Models: A Likelihood Approach Estimating Macroeconomic Models: A Likelihood Approach Jesús Fernández-Villaverde University of Pennsylvania, NBER, and CEPR Juan Rubio-Ramírez Federal Reserve Bank of Atlanta Estimating Dynamic Macroeconomic

More information

DSGE Models in a Liquidity Trap and Japan s Lost Decade

DSGE Models in a Liquidity Trap and Japan s Lost Decade DSGE Models in a Liquidity Trap and Japan s Lost Decade Koiti Yano Economic and Social Research Institute ESRI International Conference 2009 June 29, 2009 1 / 27 Definition of a Liquidity Trap Terminology

More information

Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan

Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan Hirokuni Iiboshi 1, Mototsugu Shintani 2, Kozo Ueda 3 August 218 @ EEA-ESEM 1 Tokyo Metropolitan University 2 University of

More information

Ambiguous Business Cycles: Online Appendix

Ambiguous Business Cycles: Online Appendix Ambiguous Business Cycles: Online Appendix By Cosmin Ilut and Martin Schneider This paper studies a New Keynesian business cycle model with agents who are averse to ambiguity (Knightian uncertainty). Shocks

More information

DSGE Model Econometrics

DSGE Model Econometrics DSGE Model Econometrics Frank Schorfheide University of Pennsylvania, CEPR, NBER, PIER June 2017 Cowles Lunch Papers and software available at https://web.sas.upenn.edu/schorf/ A Potted History 1993-1994:

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Sequential Monte Carlo samplers for Bayesian DSGE models

Sequential Monte Carlo samplers for Bayesian DSGE models Sequential Monte Carlo samplers for Bayesian DSGE models Drew Creal Department of Econometrics, Vrije Universitiet Amsterdam, NL-8 HV Amsterdam dcreal@feweb.vu.nl August 7 Abstract Bayesian estimation

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

Monetary and Exchange Rate Policy Under Remittance Fluctuations. Technical Appendix and Additional Results

Monetary and Exchange Rate Policy Under Remittance Fluctuations. Technical Appendix and Additional Results Monetary and Exchange Rate Policy Under Remittance Fluctuations Technical Appendix and Additional Results Federico Mandelman February In this appendix, I provide technical details on the Bayesian estimation.

More information

Signaling Effects of Monetary Policy

Signaling Effects of Monetary Policy Signaling Effects of Monetary Policy Leonardo Melosi London Business School 24 May 2012 Motivation Disperse information about aggregate fundamentals Morris and Shin (2003), Sims (2003), and Woodford (2002)

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

WORKING PAPER NO BAYESIAN ANALYSIS OF DSGE MODELS. Sungbae An University of Pennsylvania

WORKING PAPER NO BAYESIAN ANALYSIS OF DSGE MODELS. Sungbae An University of Pennsylvania WORKING PAPER NO. 06-5 BAYESIAN ANALYSIS OF DSGE MODELS Sungbae An University of Pennsylvania Frank Schorfheide University of Pennsylvania, CEPR, and Visiting Scholar, Federal Reserve Bank of Philadelphia

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints. Markku Lanne and Jani Luoto

Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints. Markku Lanne and Jani Luoto Estimation of DSGE Models under Diffuse Priors and Data- Driven Identification Constraints Markku Lanne and Jani Luoto CREATES Research Paper 2015-37 Department of Economics and Business Economics Aarhus

More information

arxiv: v1 [stat.co] 23 Apr 2018

arxiv: v1 [stat.co] 23 Apr 2018 Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm Thomas A. Catanach and James L. Beck arxiv:1804.08738v1 [stat.co] 23 Apr

More information

ESTIMATION of a DSGE MODEL

ESTIMATION of a DSGE MODEL ESTIMATION of a DSGE MODEL Paris, October 17 2005 STÉPHANE ADJEMIAN stephane.adjemian@ens.fr UNIVERSITÉ DU MAINE & CEPREMAP Slides.tex ESTIMATION of a DSGE MODEL STÉPHANE ADJEMIAN 16/10/2005 21:37 p. 1/3

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Forecasting with DSGE Models: Theory and Practice

Forecasting with DSGE Models: Theory and Practice Forecasting with DSGE Models: Theory and Practice Marco Del Negro Federal Reserve Bank of New York Frank Schorfheide University of Pennsylvania, CEPR, NBER August, 2011 CIGS Conference on Macroeconomic

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Evaluating DSGE Model Forecasts of Comovements

Evaluating DSGE Model Forecasts of Comovements Evaluating DSGE Model Forecasts of Comovements Frank Schorfheide University of Pennsylvania Edward Herbst University of Pennsylvania CEPR and NBER October 17, 2010 Preliminary Draft Abstract This paper

More information

Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB:

Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB: Nonlinear DSGE model with Asymmetric Adjustment Costs under ZLB: Bayesian Estimation with Particle Filter for Japan Hirokuni Iiboshi Tokyo Metropolitan University Economic and Social Research Institute,

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Tailored Randomized-block MCMC Methods with Application to DSGE Models

Tailored Randomized-block MCMC Methods with Application to DSGE Models Tailored Randomized-block MCMC Methods with Application to DSGE Models Siddhartha Chib Srikanth Ramamurthy September 28; January 29; August 29 Abstract In this paper we develop new Markov chain Monte Carlo

More information

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, )

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, ) Econometrica Supplementary Material SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, 653 710) BY SANGHAMITRA DAS, MARK ROBERTS, AND

More information

SMC 2 : an efficient algorithm for sequential analysis of state-space models

SMC 2 : an efficient algorithm for sequential analysis of state-space models SMC 2 : an efficient algorithm for sequential analysis of state-space models N. CHOPIN 1, P.E. JACOB 2, & O. PAPASPILIOPOULOS 3 1 ENSAE-CREST 2 CREST & Université Paris Dauphine, 3 Universitat Pompeu Fabra

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Infinite-State Markov-switching for Dynamic. Volatility Models : Web Appendix

Infinite-State Markov-switching for Dynamic. Volatility Models : Web Appendix Infinite-State Markov-switching for Dynamic Volatility Models : Web Appendix Arnaud Dufays 1 Centre de Recherche en Economie et Statistique March 19, 2014 1 Comparison of the two MS-GARCH approximations

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Sequential Bayesian Updating

Sequential Bayesian Updating BS2 Statistical Inference, Lectures 14 and 15, Hilary Term 2009 May 28, 2009 We consider data arriving sequentially X 1,..., X n,... and wish to update inference on an unknown parameter θ online. In a

More information

MONTE CARLO METHODS. Hedibert Freitas Lopes

MONTE CARLO METHODS. Hedibert Freitas Lopes MONTE CARLO METHODS Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Wen Xu Department of Economics & Oxford-Man Institute University of Oxford (Preliminary, Comments Welcome) Theme y it =

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Tutorial on ABC Algorithms

Tutorial on ABC Algorithms Tutorial on ABC Algorithms Dr Chris Drovandi Queensland University of Technology, Australia c.drovandi@qut.edu.au July 3, 2014 Notation Model parameter θ with prior π(θ) Likelihood is f(ý θ) with observed

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Lawrence J Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Problem: the time series dimension of data is relatively

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Inference. Jesús Fernández-Villaverde University of Pennsylvania

Inference. Jesús Fernández-Villaverde University of Pennsylvania Inference Jesús Fernández-Villaverde University of Pennsylvania 1 A Model with Sticky Price and Sticky Wage Household j [0, 1] maximizes utility function: X E 0 β t t=0 G t ³ C j t 1 1 σ 1 1 σ ³ N j t

More information

Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes

Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes Kristoffer Nimark CREI, Universitat Pompeu Fabra and Barcelona GSE June 30, 2014 Bayesian Methods for DSGE models Course

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Monetary Policy and Unemployment: A New Keynesian Perspective

Monetary Policy and Unemployment: A New Keynesian Perspective Monetary Policy and Unemployment: A New Keynesian Perspective Jordi Galí CREI, UPF and Barcelona GSE April 215 Jordi Galí (CREI, UPF and Barcelona GSE) Monetary Policy and Unemployment April 215 1 / 16

More information

On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers. Working Paper Research. by Arnaud Dufays. September 2014 No 263

On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers. Working Paper Research. by Arnaud Dufays. September 2014 No 263 On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers Working Paper Research by Arnaud Dufays September 2014 No 263 Editorial Director Jan Smets, Member of the Board of Directors of

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models ... Econometric Methods for the Analysis of Dynamic General Equilibrium Models 1 Overview Multiple Equation Methods State space-observer form Three Examples of Versatility of state space-observer form:

More information

DSGE MODELS WITH STUDENT-t ERRORS

DSGE MODELS WITH STUDENT-t ERRORS Econometric Reviews, 33(1 4):152 171, 2014 Copyright Taylor & Francis Group, LLC ISSN: 0747-4938 print/1532-4168 online DOI: 10.1080/07474938.2013.807152 DSGE MODELS WITH STUDENT-t ERRORS Siddhartha Chib

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Combining Macroeconomic Models for Prediction

Combining Macroeconomic Models for Prediction Combining Macroeconomic Models for Prediction John Geweke University of Technology Sydney 15th Australasian Macro Workshop April 8, 2010 Outline 1 Optimal prediction pools 2 Models and data 3 Optimal pools

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

A New Class of Nonlinear Time Series Models for the Evaluation of DSGE Models

A New Class of Nonlinear Time Series Models for the Evaluation of DSGE Models A New Class of Nonlinear Time Series Models for the Evaluation of DSGE Models S. Borağan Aruoba University of Maryland Luigi Bocola UPenn May 14, 212 Frank Schorfheide UPenn, CEPR, NBER Abstract We develop

More information

Identification problems in DSGE models

Identification problems in DSGE models Identification problems in DSGE models Fabio Canova ICREA-UPF, CREI, AMeN and CEPR August 7 References Canova, F. (99) Sensitivity analysis and model evaluation in dynamic GE economies, International Economic

More information

Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models

Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models Fall 22 Contents Introduction 2. An illustrative example........................... 2.2 Discussion...................................

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE

ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE International Journal for Uncertainty Quantification, 3 (5): 445 474 (213) ASYMPTOTICALLY IDEPEDET MARKOV SAMPLIG: A EW MARKOV CHAI MOTE CARLO SCHEME FOR BAYESIA IFERECE James L. Beck & Konstantin M. Zuev

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Non-nested model selection. in unstable environments

Non-nested model selection. in unstable environments Non-nested model selection in unstable environments Raffaella Giacomini UCLA (with Barbara Rossi, Duke) Motivation The problem: select between two competing models, based on how well they fit thedata Both

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Prelim Examination. Friday August 11, Time limit: 150 minutes

Prelim Examination. Friday August 11, Time limit: 150 minutes University of Pennsylvania Economics 706, Fall 2017 Prelim Prelim Examination Friday August 11, 2017. Time limit: 150 minutes Instructions: (i) The total number of points is 80, the number of points for

More information