Towards a Bayesian model for Cyber Security

Size: px
Start display at page:

Download "Towards a Bayesian model for Cyber Security"

Transcription

1 Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute 1

2 The Alan Turing Institute is the national centre for data science, headquartered at the British Library. 27 September 2017 The Alan Turing Institute 2

3 Priorities at The Alan Turing Institute Engineering Technology Defence & security Smart cities Financial services Health & wellbeing Mathematical representations Inference and learning Systems and platforms Understanding human behaviour 27 September 2017 The Alan Turing Institute 3

4 Motivation Uncertainty representation There exists a large amount of expertise in the Cyber domain There is often a significant amount of prior information used in statistical modelling A Bayesian approach should be considered for rigorous quantification of uncertainty in this environment Long-term goal is to incrementally develop a full Bayesian model for Cyber security This presentation introduces a probabilistic model for detecting the state of a device 27 September 2017 The Alan Turing Institute 4

5 Contents An overview of sequential Bayesian inference State-space models Pseudo-marginal distribution An overview of a Markov Modulated Poisson Process Application to Cyber security Next steps 27 September 2017 The Alan Turing Institute 5

6 Introduction State-space models Interested in quantifying the uncertainty associated with an unobserved variable, X, given some information pertaining to that variable, Y. In a sequential context, this relates to the calculation of the posterior distribution, P (X 1:T 2 dx 1:T jy 1:T = y 1:T ), where x 1:T = fx 1 ; : : : ; x T g, y 1:T = fy 1 ; : : : ; y T g, are generic points in path space of the signal and observation processes and t 2 N +. Standard Markov assumptions: X t jx t 1 = x t 1 f ( jx t 1 ); Y t jx t = x t g( jx t ): 27 September 2017 The Alan Turing Institute 6

7 Introduction Prediction, filtering and smoothing Many state-space applications interested in p(x t jy 1:l ). if l < t then prediction; if l = t then filtering; if l > t then smoothing. We will concentrate on the latter of these. Two available formulations: Forward-backward smoothing; Two-filter smoothing. 27 September 2017 The Alan Turing Institute 7

8 Probabilistic recursion Filtering Filtering is the term used to describe the process of recursively calculating the marginal posterior distribution and is required to perform smoothing. By Bayes rule: p(x t jy 1:t ) = p(x t jy 1:t 1 ; y t ) p(x t jy 1:t 1 ) = = / g(y t jx t )p(x t jy 1:t 1 ); Z Z p(x t ; x t 1 jy 1:t 1 )dx t 1 f (x t jx t 1 )p(x t 1 jy 1:t 1 )dx t 1 ; 27 September 2017 The Alan Turing Institute 8

9 Probabilistic recursion Forward-backward smoothing Compute filtered and predicted distributions in a forward filtering recursion and then execute a backward recursion as follows: Z p(x t jy 1:T ) = p(x t ; x t+1 jy 1:T )dx t+1 Z = p(x t+1 jy 1:T )p(x t jx t+1 ; y 1:T )dx t+1 Z = p(x t+1 jy 1:T )p(x t jx t+1 ; y 1:t )dx t+1 Z p(xt+1 jy 1:T )f (x t+1 jx t ) = p(x t jy 1:t ) dx t+1 : p(x t+1 jy 1:t ) 27 September 2017 The Alan Turing Institute 9

10 Probabilistic recursion Two-filter smoothing Combines forward time filter with backward time filter: p(x t jy 1:T ) = p(x t jy 1:t 1 ; y t:t ) = p(x tjy 1:t 1 )p(y t:t jy 1:t 1 ; x t ) p(y t:t jy 1:t 1 ) / p(x t jy 1:t 1 )p(y t:t jx t ): 27 September 2017 The Alan Turing Institute 10

11 Probabilistic recursion Two-filter smoothing A backward information filter can be used to calculate p(y t:t jx t ) sequentially from p(y t+1:t jx t+1 ) p(y t:t jx t ) = = Z Z p(y t ; y t+1:t ; x t+1 jx t )dx t+1 p(y t+1:t jx t+1 )f (x t+1 jx t )g(y t jx t )dx t+1 : Problem: p(y t:t jx t ) is a function of x t (and so not a pdf) - R p(y t:t jx t )dx t is not necessarily finite so SMC methods cannot be used. 27 September 2017 The Alan Turing Institute 11

12 Probabilistic recursion Solution options Solution 1: Restrict the models used - not good in practice. Solution 2 (our solution): Introduce an artificial prior distribution that gets removed when one forms the smoothing distribution. 27 September 2017 The Alan Turing Institute 12

13 Probabilistic recursion: solution Backward recursion constructed as follows: p(x t jy 1:T ) /p(x t jy 1:t 1 )p(y t:t jx t ) / p(x tjy 1:t 1 )ep(x t jy t:t ) : t (x t ) where: and ep(x t jy t:t ) = g(y tjx t )ep(x t jy t+1:t ) R g(yt jx 0 t )ep(x0 t jy t+1:t )dx 0 ; t Z ep(x t jy t+1:t ) ep(xt+1jy t+1:t ) f(x t+1jx t ) t (x t ) dx t+1 : t+1 (x t+1 ) 27 September 2017 The Alan Turing Institute 13

14 Importance sampling approximation Importance sampling! computation of Monte Carlo estimates e.g. expectations E (x) [f(x)]: Z Z f(x)(x)dx = NX i=1 f(x) (x) q(x) q(x)dx w (i) f(x (i) ) 27 September 2017 The Alan Turing Institute 14

15 Importance sampling approximation 27 September 2017 The Alan Turing Institute 15

16 SMC approximation Sequential importance sampling! sequential (recursive) computation of Monte Carlo estimates Sample X (i) t q( jx (i) t 1 ; y t) Update weight: w (i) t / w (i) t 1 f(x (i) t jx (i) t 1 )g(y tjx (i) t ) q(x (i) t jx (i) t 1 ; y t) 27 September 2017 The Alan Turing Institute 16

17 SMC approximation 27 September 2017 The Alan Turing Institute 17

18 Forward-backward smoothing SMC-based approximation Forward-backward smoothing: NX p(x t jy 1:T ) bp(x t jy 1:T ) = w (i) tjt X (i) t i=1 (x t ); where w (i) tjt denotes the (smoothed) weight of the ith particle at time t conditioned on the data y 1:T. Problem: Reliance on particle support of the filtering distribution for approximation to smoothing distribution. Solution: Two-filter particle smoother. 27 September 2017 The Alan Turing Institute 18

19 Two-filter SMC algorithm Initialise at time t = T. For i = 1; : : : ; N, sample X f(i) T eq( jy T ). For i = 1; : : : ; N, compute and normalise the importance weights: ew (i) T / T ( X f(i) T )g(y T jx f(i) eq( f X (i) T jy T ) T ) : 27 September 2017 The Alan Turing Institute 19

20 Two-filter SMC algorithm For times t = (T 1); : : : ; 1, For i = 1; : : : ; N, sample f X (i) t eq( j f X (i) t+1 ; y t). For i = 1; : : : ; N, compute and normalise the importance weights: ew (i) t / ew (i) t+1 ) t ( X f(i) t )f( X f(i) jf t+1 X (i) t ) t+1 ( X f(i) )eq(f t+1 X (i) t jx f : (i) t+1 ; y t) g(y t j f X (i) t 27 September 2017 The Alan Turing Institute 20

21 Two-filter SMC algorithm: weight calculation bp(x t jy 1:T ) = / Z N X NX j=1 i=1 ew (j) t w (i) t 1 X (i) t 1 NX i=1 f w (i) t 1 1 (x t 1 ) A f(xt jx t 1 ) fx (j) t jx (i) t 1 t fx (j) t (x t f X (j) PN j=1 ew(j) t (x t X f(j) t ) t ): t (x t ) dx t 1 Based on the support of the forward and backward filters Intuitively, should give a better approximation 27 September 2017 The Alan Turing Institute 21

22 Parameter estimation using EM In many cases of interest, the state-space model depends on unknown parameters 2. That is, assume is independent of. X t jx t 1 = x t 1 f ( jx t 1 ); Y t jx t = x t g ( jx t ); Use EM algorithm to maximise (log) likelihood. 27 September 2017 The Alan Turing Institute 22

23 Parameter estimation using EM This iterative algorithm proceeds as follows: given a current estimate (i 1) of then where (i) = arg max 2 Q (i 1) ; Q (i 1) ; =E (i 1) [log (p (x 1:T ; y 1:T ))j y 1:T ] Z = log (p (x 1:T ; y 1:T ))p (i 1)(x 1:T j y 1:T ) dx 1:T : 27 September 2017 The Alan Turing Institute 23

24 Bayesian modelling of event data Netflow We will consider netflow data as a point process Develop a Markov Modulated Poisson Process model that outputs probability estimates of the device state Can we model user present vs user not present (for e.g. UADs)? 27 September 2017 The Alan Turing Institute 24

25 Exploratory Data Analysis - LANL netflow "No modelling plan survives first contact with data" - N Lawrence We have a model selection problem to solve too (future work!) 27 September 2017 The Alan Turing Institute 25

26 Markov Modulated Poisson Process Definition Informal: An inhomogeneous Poisson process whose rate is governed by a continuous time Markov chain i.e. The intensity of the Poisson process is i when X(t) = i, i = 1; : : : ; r < 1 Also known as a doubly stochastic Cox process For notational convenience, let f 1 ; : : : ; r g T and diag() Intuitively, we use the netflow event (Point process) data to estimate the hidden state of the device 27 September 2017 The Alan Turing Institute 26

27 Continuous-time Markov chain Notation Introduce the infinitesimal generator of a continuous-time Markov chain, Q = fq i;j g i;j2e, where E is a finite index set Let X k be the state of the MMPP at the time of the kth event and let Y k be the time difference between event k and k 1 It is possible to view fx k ; Y k g 1 k=1 as a Markov renewal process, with transition density matrix: f (y) = exp f(q )yg For each device, we wish to estimate the state of the hidden process and the model parameters 27 September 2017 The Alan Turing Institute 27

28 Joint parameter and state estimation It is "straightforward" to estimate the joint distribution of the hidden states fx(t)g, and the parameters (Q; Λ) Estimation can be done via Expectation Maximisation or Gibbs sampling For the latter, a hierarchical model is utilised, with appropriate prior distributions specified Both estimation procedures require construction of the smoothed distribution, P (X(t ) = i; X(t) = jjy 1:n ) 27 September 2017 The Alan Turing Institute 28

29 Backward filtering algorithm We need to ensure that the backward recursion computes a probability measure (rather than a finite measure in the general case) ( ) is chosen to allow the construction of the backward Markov kernel This requires the marginal distribution at each time step: P (X(t k )) / P (X(t k 1 )) exp f(q )g Using this quantity, we are able to compute the backward information filtering quantity (as a probability measure) ~P (X(t k )jy k+1:n ) = ~ P (X(t k+1 )jy k+1:n )P (X(t k )jx(t k+1 )) 27 September 2017 The Alan Turing Institute 29

30 Results - state estimation 27 September 2017 The Alan Turing Institute 30

31 Results - parameter estimation 27 September 2017 The Alan Turing Institute 31

32 Data - known user activity 27 September 2017 The Alan Turing Institute 32

33 Results - known user activity 27 September 2017 The Alan Turing Institute 33

34 Summary Initial model Our goal is to devise a large-scale probabilistic model that incorporates as much prior information as possible Started with simplistic model - device state estimation from event data Used an MMPP to model data Introduced a procedure for parameter estimation of (Q; Λ) 27 September 2017 The Alan Turing Institute 34

35 Summary Initial model Used this model and parameter estimates to produce estimate of device state Future work Online parameter estimation What is an appropriate number of states and what do they correspond to? A heirarchical model may offer a solution to this problem... Welcome collaborations (mbriers@turing.ac.uk or m.briers@imperial.ac.uk) 27 September 2017 The Alan Turing Institute 35

36 27 September 2017 The Alan Turing Institute 36

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

An EM algorithm for Gaussian Markov Random Fields

An EM algorithm for Gaussian Markov Random Fields An EM algorithm for Gaussian Markov Random Fields Will Penny, Wellcome Department of Imaging Neuroscience, University College, London WC1N 3BG. wpenny@fil.ion.ucl.ac.uk October 28, 2002 Abstract Lavine

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Hidden Markov Models. AIMA Chapter 15, Sections 1 5. AIMA Chapter 15, Sections 1 5 1

Hidden Markov Models. AIMA Chapter 15, Sections 1 5. AIMA Chapter 15, Sections 1 5 1 Hidden Markov Models AIMA Chapter 15, Sections 1 5 AIMA Chapter 15, Sections 1 5 1 Consider a target tracking problem Time and uncertainty X t = set of unobservable state variables at time t e.g., Position

More information

Lecture 4: State Estimation in Hidden Markov Models (cont.)

Lecture 4: State Estimation in Hidden Markov Models (cont.) EE378A Statistical Signal Processing Lecture 4-04/13/2017 Lecture 4: State Estimation in Hidden Markov Models (cont.) Lecturer: Tsachy Weissman Scribe: David Wugofski In this lecture we build on previous

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Hidden Markov models 1

Hidden Markov models 1 Hidden Markov models 1 Outline Time and uncertainty Markov process Hidden Markov models Inference: filtering, prediction, smoothing Most likely explanation: Viterbi 2 Time and uncertainty The world changes;

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

Monte Carlo Approximation of Monte Carlo Filters

Monte Carlo Approximation of Monte Carlo Filters Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Context & Outline Filtering in State-Space

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Approximate Bayesian computation for the parameters of PRISM programs

Approximate Bayesian computation for the parameters of PRISM programs Approximate Bayesian computation for the parameters of PRISM programs James Cussens Department of Computer Science & York Centre for Complex Systems Analysis University of York Heslington, York, YO10 5DD,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Inference and estimation in probabilistic time series models

Inference and estimation in probabilistic time series models 1 Inference and estimation in probabilistic time series models David Barber, A Taylan Cemgil and Silvia Chiappa 11 Time series The term time series refers to data that can be represented as a sequence

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Efficient Sensitivity Analysis in Hidden Markov Models

Efficient Sensitivity Analysis in Hidden Markov Models Efficient Sensitivity Analysis in Hidden Markov Models Silja Renooij Department of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands silja@cs.uu.nl

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

A Note on Auxiliary Particle Filters

A Note on Auxiliary Particle Filters A Note on Auxiliary Particle Filters Adam M. Johansen a,, Arnaud Doucet b a Department of Mathematics, University of Bristol, UK b Departments of Statistics & Computer Science, University of British Columbia,

More information

Non-Factorised Variational Inference in Dynamical Systems

Non-Factorised Variational Inference in Dynamical Systems st Symposium on Advances in Approximate Bayesian Inference, 08 6 Non-Factorised Variational Inference in Dynamical Systems Alessandro D. Ialongo University of Cambridge and Max Planck Institute for Intelligent

More information

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named We Live in Exciting Times ACM (an international computing research society) has named CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Apr. 2, 2019 Yoshua Bengio,

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models Jeff A. Bilmes (bilmes@cs.berkeley.edu) International Computer Science Institute

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 2004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data A Bayesian Perspective on Residential Demand Response Using Smart Meter Data Datong-Paul Zhou, Maximilian Balandat, and Claire Tomlin University of California, Berkeley [datong.zhou, balandat, tomlin]@eecs.berkeley.edu

More information

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Mike Tipping Gaussian prior Marginal prior: single α Independent α Cambridge, UK Lecture 3: Overview

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Nonparametric inference in hidden Markov and related models

Nonparametric inference in hidden Markov and related models Nonparametric inference in hidden Markov and related models Roland Langrock, Bielefeld University Roland Langrock Bielefeld University 1 / 47 Introduction and motivation Roland Langrock Bielefeld University

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Probabilistic Robotics

Probabilistic Robotics University of Rome La Sapienza Master in Artificial Intelligence and Robotics Probabilistic Robotics Prof. Giorgio Grisetti Course web site: http://www.dis.uniroma1.it/~grisetti/teaching/probabilistic_ro

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models 6 Dependent data The AR(p) model The MA(q) model Hidden Markov models Dependent data Dependent data Huge portion of real-life data involving dependent datapoints Example (Capture-recapture) capture histories

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Particle Filters: Convergence Results and High Dimensions

Particle Filters: Convergence Results and High Dimensions Particle Filters: Convergence Results and High Dimensions Mark Coates mark.coates@mcgill.ca McGill University Department of Electrical and Computer Engineering Montreal, Quebec, Canada Bellairs 2012 Outline

More information