Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration

Size: px
Start display at page:

Download "Bayes Factors, posterior predictives, short intro to RJMCMC. Thermodynamic Integration"

Transcription

1 Bayes Factors, posterior predictives, short intro to RJMCMC Thermodynamic Integration Dave Campbell 2016

2 Bayesian Statistical Inference P(θ Y ) P(Y θ)π(θ) Once you have posterior samples you can compute the predictive distribution of future observations: P(Y new θ,y old )

3 To do this you sample a θ * from P(θ Y ) (Sample 1 value from your collection of posterior samples) Generate simulated data from the likelihood: P(Y new θ * ) Repeat for a large sample of from to get at the posterior predictive distribution θ * P(θ Y )

4 Posterior predictive distribution: No need to use asymptotic normal assumptions or a single point and variance estimate for θ * Any shaped distribution on P(θ Y ) naturally feeds it s entire distribution through to the data generating process!

5 Obtaining P(Y θ,y ) is related to new old obtaining a set of fake data samples for parametric bootstrap, except that the distribution assumption on the parameters doesn t require asymptotic arguments.

6 Uses: Another diagnostic tool; Obtain a sample from P(Y new θ,y old ) and see if it is similar to the data. Use the posterior predictive distribution for sequential experimental design: Choose the new covariate points that optimize some criterion.

7 Hypothesis testing; model comparison

8 Ultimately we want inference on P(M Y ) But computing the marginal likelihood is difficult. P(M Y ) = Θ P(Y θm )π(θ) π(m )dθ P(Y )

9 Usually Bayesians make model decisions through Bayes Factors B 12 (y) = w 1 (y) w 2 (y) w(y) = Θ π(θ) f (y θ)dθ

10 Bayes Factor interpretation B 12 (y) = w 1 (y) w 2 (y) w(y) = Θ π(θ) f (y θ)dθ

11 The odds ratio for two models: posterior odds = Bayes Factor X prior odds Uniform prior odds across models implies that posterior odds = Bayes Factor

12 posterior odds = Bayes Factor X prior odds So the Bayes factor is the amount of evidence for one model compared to another. Bf = the change in odds when moving from the prior to the posterior

13 Recall: P(θ Y ) = P(y θ)p(θ) P(y) P(Y ) = P(y θ)p(θ)dθ

14 Newton & Raftery (1994) P(θ Y ) = P(y θ)p(θ) P(Y ) P(θ Y ) P(y θ) = P(θ) P(y) P(θ Y ) P(Y ) P(y θ) dθ = P(θ)dθ = 1

15 Newton & Raftery (1994) P(θ Y ) P(Y ) P(y θ) dθ = 1 E 1 P(y θ) P(θ Y ) = 1 P(Y ) And estimated P(Y) by ˆP (Y )= " 1 NX 1 # 1 N i=1 P (y )

16 Newton & Raftery (1994) ˆP (Y )= " 1 N NX i=1 1 P (y ) # 1 Compute this by calculating the likelihood for each value of θ that was obtained i from the posterior sampling step

17 Newton & Raftery (1994) The harmonic mean estimator is very very very very very sensitive to outliers with extremely small values of P(y θ) But it is asymptotically unbiased Estimate P(Y) by ˆP (Y )= " 1 N NX i=1 1 P (y ) # 1

18 Calderhead and Girolami (2009) showed that the harmonic mean estimator is can be massively biased for finite samples

19 Thermodynamic Integration Friel, N., Pettitt, A., Marginal likelihood estimation via power posteriors. Journal of the Royal Statistical Society: Series B 70 (3) Calderhead, Ben, and Mark Girolami. "Estimating Bayes Factors Via Thermodynamic Integration and Population MCMC." Computational Statistics and Data Analysis 53 (2009)

20 In Parallel Tempering we sample from P m (θ Y ) = P(y θ)β m P(θ) P m (y) But we can get the marginal likelihood via: log(p(y )) = 1 0 log p(y θ) P (θ Y )dθ dβ m log(p(y )) = 1 0 { } Pm E log p(y θ) (θ Y ) dβ

21 log(p(y )) = 1 0 { } Pm E log p(y θ) (θ Y ) dβ Compute via 1-dimensional quadrature over the temperature! log(p(y )) = 1 2 m ( β β )[ E + E ] m m 1 m m 1 { } Pm E = E log p(y θ) m (θ Y )

22 log(p(y )) = 1 2 m ( β β )[ E + E ] m m 1 m m 1 { } Pm E = E log p(y θ) m (θ Y ) To compute log(marginal likelihoods) all we need is to define a good grid for temperatures Calderhead and Girolami (2009) suggest β = seq( from = 1,to = N) N 5

23 Parallel Tempering To the Extreme! R Studio plots for the Galaxy data set (3 groups, density of one of the mean parameters vs temperature

24 Parallel Tempering densities That dip just before temperature β = 1 is real. It is caused by the introduction of new modes

25 Compare the 3 group Galaxy to the 6 group galaxy. Show plots of mean density vs temperature B 12 (y) = w 1 (y) w 2 (y) 25,000 iterations with 30 parallel chains

26 Now, back to RStudio to compare the Galaxy data with k=3 groups vs k=6 groups. (the result: there is decisive evidence that the k=3 groups model is better)

27 Alternative to Bayes Factors: RJMCMC

28 MODEL POSTERIOR PROBABILITY Likelihood: P(Y θ j, M j ) Parameter Prior: P(θ j M j ) Model Prior: P(M j Ω) for M j Ω The marginal posterior probability of a model is helpful when the answer is not clear P(M j Y,Ω) = P(Y θ j, M j,ω)p(θ j M j,ω)p(m j Ω)dθ j P(Y ) P(M j Y,Ω) = P(θ j, M j Y,Ω)dθ j

29 Our goal is to get in a single MCMC chain P(M j Y,Ω) = P(θ j, M j Y,Ω)dθ j even if Ω contains a lot of models We need simulation methods that sample across models.

30 REVERSIBLE JUMP MCMC Biometrika (1995), 82, 4, pp We can avoid extensive MCMC for each model and instead sample from directly! P(M j Y,Ω) We just adjust MCMC so at each iteration we: 1. Sample j, i.e. choose a model M new θ new 2. Then propose a from M new 3. Keep M new and with probability θ new α = min P(Y θ new,m new )P(θ new,m new )P new (v new ) P(Y θ old,m old )P(θ old,m old )P old (v old ) J old,new,1

31 V We use auxiliary variables v to augment the dimension space so that dim(m old ) = dim (M new ) α = min P(Y θ new,m new )P(θ new,m new )P new (v new ) P(Y θ old,m old )P(θ old,m old )P old (v old ) J old,new,1

32 JACOBIAN We need the Jacobian for the transformation J = θ old,1 θ new, θ old,1 θ new, pnew... And the proposed values θ new possibility of being accepted. θ old,1 v new M O M M θ old, pold θ new,1 θ new, pnew θ old, pold M M O M v old θ new, v old v new needs to allow the

33 POTENTIAL PROBLEMS M 1 and M 2 have different parameter dimensions Often model parameters don t have an obvious a transformation allowing an intuitive transition The last accepted value might be from a different model and may require a large jump in the parameter space.

34 M 1 : Y N( 1,0 + 1,1 X, 2 1) M 2 : Y N( 2,0 + 2,1 X + 2,2 X 2, 2 2) Moving from M 1 to M 2 to will require moving β 1,0 quite far to get to a reasonable location for β 2,0

35 M 1 : Galaxy with 3 Gaussians M 2 : Galaxy with 4 Gaussians Moving from M 1 to M 2 can be done by dividing one of the current Gaussians. From M 2 to M 1 can be done through merging 2 components

36 RJMCMC: Beautiful in principle, nasty in practice Needs: transition function between parameters in multiple model spaces. Efficiency depends completely on this functional choice and the distribution for the auxiliary variables. Works well when we can use birth / death process (change-point analysis).

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Improving power posterior estimation of statistical evidence

Improving power posterior estimation of statistical evidence Improving power posterior estimation of statistical evidence Nial Friel, Merrilee Hurn and Jason Wyse Department of Mathematical Sciences, University of Bath, UK 10 June 2013 Bayesian Model Choice Possible

More information

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks (9) Model selection and goodness-of-fit checks Objectives In this module we will study methods for model comparisons and checking for model adequacy For model comparisons there are a finite number of candidate

More information

Assessing Regime Uncertainty Through Reversible Jump McMC

Assessing Regime Uncertainty Through Reversible Jump McMC Assessing Regime Uncertainty Through Reversible Jump McMC August 14, 2008 1 Introduction Background Research Question 2 The RJMcMC Method McMC RJMcMC Algorithm Dependent Proposals Independent Proposals

More information

A Note on Lenk s Correction of the Harmonic Mean Estimator

A Note on Lenk s Correction of the Harmonic Mean Estimator Central European Journal of Economic Modelling and Econometrics Note on Lenk s Correction of the Harmonic Mean Estimator nna Pajor, Jacek Osiewalski Submitted: 5.2.203, ccepted: 30.0.204 bstract The paper

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

A note on Reversible Jump Markov Chain Monte Carlo

A note on Reversible Jump Markov Chain Monte Carlo A note on Reversible Jump Markov Chain Monte Carlo Hedibert Freitas Lopes Graduate School of Business The University of Chicago 5807 South Woodlawn Avenue Chicago, Illinois 60637 February, 1st 2006 1 Introduction

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham NC 778-5 - Revised April,

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA)

Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA) Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA) arxiv:1611.01450v1 [stat.co] 4 Nov 2016 Aliaksandr Hubin Department of Mathematics, University of Oslo and Geir Storvik

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

BAYESIAN MODEL CRITICISM

BAYESIAN MODEL CRITICISM Monte via Chib s BAYESIAN MODEL CRITICM Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

Evidence estimation for Markov random fields: a triply intractable problem

Evidence estimation for Markov random fields: a triply intractable problem Evidence estimation for Markov random fields: a triply intractable problem January 7th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers

More information

Model comparison. Christopher A. Sims Princeton University October 18, 2016

Model comparison. Christopher A. Sims Princeton University October 18, 2016 ECO 513 Fall 2008 Model comparison Christopher A. Sims Princeton University sims@princeton.edu October 18, 2016 c 2016 by Christopher A. Sims. This document may be reproduced for educational and research

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Using Bayes Factors for Model Selection in High-Energy Astrophysics

Using Bayes Factors for Model Selection in High-Energy Astrophysics Using Bayes Factors for Model Selection in High-Energy Astrophysics Shandong Zhao Department of Statistic, UCI April, 203 Model Comparison in Astrophysics Nested models (line detection in spectral analysis):

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

Sequential Monte Carlo Methods

Sequential Monte Carlo Methods University of Pennsylvania Bradley Visitor Lectures October 23, 2017 Introduction Unfortunately, standard MCMC can be inaccurate, especially in medium and large-scale DSGE models: disentangling importance

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Empirical Likelihood Based Deviance Information Criterion

Empirical Likelihood Based Deviance Information Criterion Empirical Likelihood Based Deviance Information Criterion Yin Teng Smart and Safe City Center of Excellence NCS Pte Ltd June 22, 2016 Outline Bayesian empirical likelihood Definition Problems Empirical

More information

Bayesian hypothesis testing

Bayesian hypothesis testing Bayesian hypothesis testing Dr. Jarad Niemi STAT 544 - Iowa State University February 21, 2018 Jarad Niemi (STAT544@ISU) Bayesian hypothesis testing February 21, 2018 1 / 25 Outline Scientific method Statistical

More information

Bayesian Analysis (Optional)

Bayesian Analysis (Optional) Bayesian Analysis (Optional) 1 2 Big Picture There are two ways to conduct statistical inference 1. Classical method (frequentist), which postulates (a) Probability refers to limiting relative frequencies

More information

Inexact approximations for doubly and triply intractable problems

Inexact approximations for doubly and triply intractable problems Inexact approximations for doubly and triply intractable problems March 27th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers of) interacting

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

ST 740: Model Selection

ST 740: Model Selection ST 740: Model Selection Alyson Wilson Department of Statistics North Carolina State University November 25, 2013 A. Wilson (NCSU Statistics) Model Selection November 25, 2013 1 / 29 Formal Bayesian Model

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors RicardoS.Ehlers Laboratório de Estatística e Geoinformação- UFPR http://leg.ufpr.br/ ehlers ehlers@leg.ufpr.br II Workshop on Statistical

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Nested Sampling. Brendon J. Brewer. brewer/ Department of Statistics The University of Auckland

Nested Sampling. Brendon J. Brewer.   brewer/ Department of Statistics The University of Auckland Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ is a Monte Carlo method (not necessarily MCMC) that was introduced by John Skilling in 2004. It is very popular

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

SMC 2 : an efficient algorithm for sequential analysis of state-space models

SMC 2 : an efficient algorithm for sequential analysis of state-space models SMC 2 : an efficient algorithm for sequential analysis of state-space models N. CHOPIN 1, P.E. JACOB 2, & O. PAPASPILIOPOULOS 3 1 ENSAE-CREST 2 CREST & Université Paris Dauphine, 3 Universitat Pompeu Fabra

More information

Infer relationships among three species: Outgroup:

Infer relationships among three species: Outgroup: Infer relationships among three species: Outgroup: Three possible trees (topologies): A C B A B C Model probability 1.0 Prior distribution Data (observations) probability 1.0 Posterior distribution Bayes

More information

MONTE CARLO METHODS. Hedibert Freitas Lopes

MONTE CARLO METHODS. Hedibert Freitas Lopes MONTE CARLO METHODS Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Eco517 Fall 2014 C. Sims MIDTERM EXAM

Eco517 Fall 2014 C. Sims MIDTERM EXAM Eco57 Fall 204 C. Sims MIDTERM EXAM You have 90 minutes for this exam and there are a total of 90 points. The points for each question are listed at the beginning of the question. Answer all questions.

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Bayesian RL Seminar. Chris Mansley September 9, 2008

Bayesian RL Seminar. Chris Mansley September 9, 2008 Bayesian RL Seminar Chris Mansley September 9, 2008 Bayes Basic Probability One of the basic principles of probability theory, the chain rule, will allow us to derive most of the background material in

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Bayesian Computations for DSGE Models

Bayesian Computations for DSGE Models Bayesian Computations for DSGE Models Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 This Lecture is Based on Bayesian Estimation of DSGE Models Edward P. Herbst &

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods

Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods Lampros Bouranis *, Nial Friel, Florian Maire School of Mathematics and Statistics & Insight Centre for Data

More information

Bayes factors, marginal likelihoods, and how to choose a population model

Bayes factors, marginal likelihoods, and how to choose a population model ayes factors, marginal likelihoods, and how to choose a population model Peter eerli Department of Scientific omputing Florida State University, Tallahassee Overview 1. Location versus Population 2. ayes

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017 Chalmers April 6, 2017 Bayesian philosophy Bayesian philosophy Bayesian statistics versus classical statistics: War or co-existence? Classical statistics: Models have variables and parameters; these are

More information

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Joost van Rosmalen 1, David Dejardin 2,3, and Emmanuel Lesaffre

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters Introduction Start with a probability distribution f(y θ) for the data y = (y 1,...,y n ) given a vector of unknown parameters θ = (θ 1,...,θ K ), and add a prior distribution p(θ η), where η is a vector

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Mixture models. Mixture models MCMC approaches Label switching MCMC for variable dimension models. 5 Mixture models

Mixture models. Mixture models MCMC approaches Label switching MCMC for variable dimension models. 5 Mixture models 5 MCMC approaches Label switching MCMC for variable dimension models 291/459 Missing variable models Complexity of a model may originate from the fact that some piece of information is missing Example

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information

Will Penny. SPM short course for M/EEG, London 2013

Will Penny. SPM short course for M/EEG, London 2013 SPM short course for M/EEG, London 2013 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

Bayesian search for other Earths

Bayesian search for other Earths Bayesian search for other Earths Low-mass planets orbiting nearby M dwarfs Mikko Tuomi University of Hertfordshire, Centre for Astrophysics Research Email: mikko.tuomi@utu.fi Presentation, 19.4.2013 1

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models

Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models (with special attention to epidemics of Escherichia coli O157:H7 in cattle) Simon Spencer 3rd May

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida Bayesian Statistical Methods Jeff Gill Department of Political Science, University of Florida 234 Anderson Hall, PO Box 117325, Gainesville, FL 32611-7325 Voice: 352-392-0262x272, Fax: 352-392-8127, Email:

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 8: Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk Based on slides by Sharon Goldwater October 14, 2016 Frank Keller Computational

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013 Bayesian Methods Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2013 1 What about prior n Billionaire says: Wait, I know that the thumbtack is close to 50-50. What can you

More information

Annealing Between Distributions by Averaging Moments

Annealing Between Distributions by Averaging Moments Annealing Between Distributions by Averaging Moments Chris J. Maddison Dept. of Comp. Sci. University of Toronto Roger Grosse CSAIL MIT Ruslan Salakhutdinov University of Toronto Partition Functions We

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

Importance sampling methods for Bayesian discrimination between embedded models

Importance sampling methods for Bayesian discrimination between embedded models Importance sampling methods for Bayesian discrimination between embedded models arxiv:0910.2325v1 [stat.co] 13 Oct 2009 J.-M. Marin 1,3, and C.P. Robert 2,3, 1 Institut de Mathématiques et Modélisation

More information

Hierarchical Models & Bayesian Model Selection

Hierarchical Models & Bayesian Model Selection Hierarchical Models & Bayesian Model Selection Geoffrey Roeder Departments of Computer Science and Statistics University of British Columbia Jan. 20, 2016 Contact information Please report any typos or

More information

An ABC interpretation of the multiple auxiliary variable method

An ABC interpretation of the multiple auxiliary variable method School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2016-07 27 April 2016 An ABC interpretation of the multiple auxiliary variable method by Dennis Prangle

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling 2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction and Motivating

More information

Bayes Model Selection with Path Sampling: Factor Models

Bayes Model Selection with Path Sampling: Factor Models with Path Sampling: Factor Models Ritabrata Dutta and Jayanta K Ghosh Purdue University 07/02/11 Factor Models in Applications Factor Models in Applications Factor Models Factor Models and Factor analysis

More information