Latent variable models for discrete data

Size: px
Start display at page:

Download "Latent variable models for discrete data"

Transcription

1 Latent variable models for discrete data Jianfei Chen Department of Computer Science and Technology Tsinghua University, Beijing Janurary 13, 2014 Murphy, Kevin P. Machine learning: a probabilistic perspective. The MIT Press, Chapter 27.

2 Introduction We want to model three types of discrete data Sequence of tokens: p(y i,1:li ) Bag of words: p(n i ) Discrete features: p(y i,1:r ) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

3 Outline Mixture Models LSA / PLSI / LDA / GaP / NMF LDA Evaluation Inference Variants: CTM, DTM, LDA-HMM, SLDA, MedLDA, etc. RBM Jianfei Chen (THU) Latent variable models Janurary 13, / 21

4 Mixture models p(y) = k p(y q i = k)p(q i = k) Sequence of tokens: p(y i,1:li q i = k) = L i l=1 Cat(y il b k ) Discrete features: p(y i,1:r q i = k) = R r=1 Cat(y ir b (r) k ) Bag of words (known L i ): p(n i L i, q i = k) = Mu(n i L i, b k ) Bag of words (unknown L i ): p(n i q i = k) = V v=1 Poi(n iv λvk) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

5 Mixture models Theorem If i, X i Poi(λ i ), let n = i X i where π i = λ i k λ k. p(x 1,, X k n) = Mu(X n, π) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

6 Exponential Family PCA latent semantic analysis (LSA) / latent semantic indexing (LSI) Sequence of tokens: p(y i,1:li z i ) = L i l=1 Cat(y il S(Wz i )) Discrete features: p(y i,1:r z i ) = R r=1 Cat(y ir S(W r z i )) Bag of words (known L i ): p(n i L i, z i ) = Mu(n i L i, S(Wz i )) Bag of words (unknown L i ): p(n i z i ) = V v=1 Poi(n iv exp(w v,: z i )) where S( ) is the softmax transformation, z i R K, W, W r R V K. Inference coordinate ascent / degenerated EM (problem: overfitting?) variational EM / MCMC Jianfei Chen (THU) Latent variable models Janurary 13, / 21

7 LSA / PLSI / LDA Unigram: p(y i,1:li q i = k) = L i l=1 Cat(y il b k ) LSI: p(y i,1:li z i ) = L i l=1 Cat(y il S(Wz i )) PLSI: p(y i,1:li π i ) = L i l=1 Cat(y il Bπ i ) LDA: p(y i,1:li π i ) = L i l=1 Cat(y il Bπ i ), π i Dir(π i α) LDA for other data types Bag of words:p(n i L i, π i ) = Mu(n i L i, Bπ i ) Discrete features:p(y i,1:r π i ) = R r=1 Cat(y ir B (r) π i ) Question: What is dual parameter? Why is it convenient? Marlin, Benjamin M. Modeling user rating profiles for collaborative filtering. Advances in neural information processing systems Jianfei Chen (THU) Latent variable models Janurary 13, / 21

8 Gamma-Poisson Model LDA GaP models p(n i L i, π i ) = Mu(n i L i, Bπ i ) Prior π i Dir(α) Constraint 0 π ik, j π ik = 1, 0 B vk, v B vk = 1 models p(n i z + i ) = V v=1 Poi(n iv b v,:z + i ) Prior p(z + i ) = k Ga(z+ ik α k, β k ) Constraint 0 z ik, 0 B vk Can use sparse-inducing prior (27.17) GaP only have non-negative constraints Jianfei Chen (THU) Latent variable models Janurary 13, / 21

9 Non-negative matrix factorization Given non-negative matrix V, find non-negative matrix factors W, H such that V W H V i k W ik H k Can be view as GaP when prior α k = β k = 0. Seung, D., and L. Lee. Algorithms for non-negative matrix factorization. Advances in neural information processing systems. Jianfei Chen (THU) Latent variable models Janurary 13, / 21

10 Latent Dirichlet Allocation (LDA) Notation π z α Dir(α) (1) q il π i Cat(π i ) (2) b k γ Dir(γ) (3) y il q il = k, B Cat(b k ) (4) Geometric interpretation Simplex: handle ambiguity (?) Unidentifiable: Labeled LDA D. Blei et al. Latent dirichlet allocation. JMLR G. Heinrich. Parameter estimation for text analysis. D. Ramage, et al. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. EMNLP Jianfei Chen (THU) Latent variable models Janurary 13, / 21

11 Evaluation: Perplexity Perplexity of language model q given language p is defined as (both p, q are stocastic process) where H(p, q) is cross-entrypy Approximations N is finite perplexity(p, q) = 2 H(p,q) H(p, q) = lim N 1 N p(y 1:N ) = δ y 1:N (y 1:N ) y 1:N p(y 1:N ) log q(y 1:N ) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

12 Evaluation: Perplexity H(p, q) = 1 N log q(y 1:N) Intuition: weighted average branching factor For unigram model H = 1 N N 1 L i L i=1 i l=1 log q(y il ) For LDA H = 1 N i=1 N p(y i,1:l i ) Use variational evidence lower bound (ELBO) Use annealed importance sampling Use validation set and plug in approximation H. Wallach, et al. Evaluation methods for topic models. ICML 2009 Jianfei Chen (THU) Latent variable models Janurary 13, / 21

13 Evaluation: Coherence TODO D. Newman et al. Automatic evaluation of topic coherence. NAACL HLT Jianfei Chen (THU) Latent variable models Janurary 13, / 21

14 Inference Exponential number of inference algorithms Variational inference vs sampling vs both Collapsed vs non-collpased Online vs stocastic vs offline Empirical Bayes vs fully Bayes Other algorithms: expectation propagation, etc. Jianfei Chen (THU) Latent variable models Janurary 13, / 21

15 Inference: towards large scale algorithms Online / stocastic Sparsity Spectral methods system Distributed: Yahoo-LDA, Petuum, Parameter-Server, etc. GPU: BIDMach, etc. Jianfei Chen (THU) Latent variable models Janurary 13, / 21

16 Model Selection Compute evidence with AIS / ELBO Cross validation Bayesian non-parametrics Teh et al. Hierarchical dirichlet processes. Journal of the american statistical association (2006). Jianfei Chen (THU) Latent variable models Janurary 13, / 21

17 Extensions of LDA Correlation: Correlated topic model Time series: Dynamic topic model Syntax: LDA-HMM Supervision: many 1D categorial label: SLDA (generative), DLDA (discrimitive), MedLDA (regularized) nd label: MR-LDA, random effects mixture of experts, conditional topic random field, Dirchlet multinomial regression LDA K labels per document: labeled LDA labels per word: TagLDA Structural: RTM Jianfei Chen (THU) Latent variable models Janurary 13, / 21

18 Restricted Boltzmann machines Restricted Boltzmann machines p(h, v θ) = 1 Z(θ) R r=1 k=1 K ψ rk (v r, h k ) where h, v are binary vectors. factorized posterior p(h v, θ) = k p(h k v, θ) advantage: symmetric, both posterior inference (backward) and generating (forward) are easy. Exponential family harmonium (harmonium is 2-layer UGM) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

19 Restricted Boltzmann machines Binary latent and binary visiable (other models exist, see Table 27.2) p(v, h θ) = 1 exp( E(v, h; θ)) (5) Z(θ) E(v, h; θ) = v Wh (6) p(h v, θ) = k Ber(h k sigm(w:,k, v)) (7) p(v h, θ) = r Ber(v r sigm(w r,:, h)) (8) Jianfei Chen (THU) Latent variable models Janurary 13, / 21

20 Restricted Boltzmann machines Goal: maximize p(v θ) w l = E pemp( θ)[vh ] E p( θ) [vh ] Jianfei Chen (THU) Latent variable models Janurary 13, / 21

21 Conclusions Why there are many things to do Exponential number of inference algorithms Exponential number of models Exponential exponential number of solutions Application, evaluation, theory (e.g. spectral), etc. Need a way for information retriver, data miners find correct & fast solutions for them... Jianfei Chen (THU) Latent variable models Janurary 13, / 21

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Nitish Srivastava nitish@cs.toronto.edu Ruslan Salahutdinov rsalahu@cs.toronto.edu Geoffrey Hinton hinton@cs.toronto.edu

More information

Information retrieval LSI, plsi and LDA. Jian-Yun Nie

Information retrieval LSI, plsi and LDA. Jian-Yun Nie Information retrieval LSI, plsi and LDA Jian-Yun Nie Basics: Eigenvector, Eigenvalue Ref: http://en.wikipedia.org/wiki/eigenvector For a square matrix A: Ax = λx where x is a vector (eigenvector), and

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Latent Dirichlet Allocation

Latent Dirichlet Allocation Outlines Advanced Artificial Intelligence October 1, 2009 Outlines Part I: Theoretical Background Part II: Application and Results 1 Motive Previous Research Exchangeability 2 Notation and Terminology

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Online Bayesian Passive-Agressive Learning

Online Bayesian Passive-Agressive Learning Online Bayesian Passive-Agressive Learning International Conference on Machine Learning, 2014 Tianlin Shi Jun Zhu Tsinghua University, China 21 August 2015 Presented by: Kyle Ulrich Introduction Online

More information

Topic Modelling and Latent Dirichlet Allocation

Topic Modelling and Latent Dirichlet Allocation Topic Modelling and Latent Dirichlet Allocation Stephen Clark (with thanks to Mark Gales for some of the slides) Lent 2013 Machine Learning for Language Processing: Lecture 7 MPhil in Advanced Computer

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank Shoaib Jameel Shoaib Jameel 1, Wai Lam 2, Steven Schockaert 1, and Lidong Bing 3 1 School of Computer Science and Informatics,

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) D. Blei, A. Ng, and M. Jordan. Journal of Machine Learning Research, 3:993-1022, January 2003. Following slides borrowed ant then heavily modified from: Jonathan Huang

More information

Measuring Topic Quality in Latent Dirichlet Allocation

Measuring Topic Quality in Latent Dirichlet Allocation Measuring Topic Quality in Sergei Koltsov Olessia Koltsova Steklov Institute of Mathematics at St. Petersburg Laboratory for Internet Studies, National Research University Higher School of Economics, St.

More information

Classical Predictive Models

Classical Predictive Models Laplace Max-margin Markov Networks Recent Advances in Learning SPARSE Structured I/O Models: models, algorithms, and applications Eric Xing epxing@cs.cmu.edu Machine Learning Dept./Language Technology

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Using Both Latent and Supervised Shared Topics for Multitask Learning

Using Both Latent and Supervised Shared Topics for Multitask Learning Using Both Latent and Supervised Shared Topics for Multitask Learning Ayan Acharya, Aditya Rawal, Raymond J. Mooney, Eduardo R. Hruschka UT Austin, Dept. of ECE September 21, 2013 Problem Definition An

More information

Language Information Processing, Advanced. Topic Models

Language Information Processing, Advanced. Topic Models Language Information Processing, Advanced Topic Models mcuturi@i.kyoto-u.ac.jp Kyoto University - LIP, Adv. - 2011 1 Today s talk Continue exploring the representation of text as histogram of words. Objective:

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Yuriy Sverchkov Intelligent Systems Program University of Pittsburgh October 6, 2011 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa)

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) A review of topic modeling and customer interactions application 3/11/2015 1 Agenda Agenda Items 1 What is topic modeling? Intro Text Mining & Pre-Processing Natural Language

More information

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way.

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way. 10-708: Probabilistic Graphical Models, Spring 2015 22 : Optimization and GMs (aka. LDA, Sparse Coding, Matrix Factorization, and All That ) Lecturer: Yaoliang Yu Scribes: Yu-Xiang Wang, Su Zhou 1 Introduction

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Dirichlet Enhanced Latent Semantic Analysis

Dirichlet Enhanced Latent Semantic Analysis Dirichlet Enhanced Latent Semantic Analysis Kai Yu Siemens Corporate Technology D-81730 Munich, Germany Kai.Yu@siemens.com Shipeng Yu Institute for Computer Science University of Munich D-80538 Munich,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

topic modeling hanna m. wallach

topic modeling hanna m. wallach university of massachusetts amherst wallach@cs.umass.edu Ramona Blei-Gantz Helen Moss (Dave's Grandma) The Next 30 Minutes Motivations and a brief history: Latent semantic analysis Probabilistic latent

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Bayesian Nonparametrics for Speech and Signal Processing

Bayesian Nonparametrics for Speech and Signal Processing Bayesian Nonparametrics for Speech and Signal Processing Michael I. Jordan University of California, Berkeley June 28, 2011 Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux Computer

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Deep Sequence Models. Context Representation, Regularization, and Application to Language. Adji Bousso Dieng

Deep Sequence Models. Context Representation, Regularization, and Application to Language. Adji Bousso Dieng Deep Sequence Models Context Representation, Regularization, and Application to Language Adji Bousso Dieng All Data Are Born Sequential Time underlies many interesting human behaviors. Elman, 1990. Why

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Topic Modeling: Beyond Bag-of-Words

Topic Modeling: Beyond Bag-of-Words University of Cambridge hmw26@cam.ac.uk June 26, 2006 Generative Probabilistic Models of Text Used in text compression, predictive text entry, information retrieval Estimate probability of a word in a

More information

AN INTRODUCTION TO TOPIC MODELS

AN INTRODUCTION TO TOPIC MODELS AN INTRODUCTION TO TOPIC MODELS Michael Paul December 4, 2013 600.465 Natural Language Processing Johns Hopkins University Prof. Jason Eisner Making sense of text Suppose you want to learn something about

More information

The supervised hierarchical Dirichlet process

The supervised hierarchical Dirichlet process 1 The supervised hierarchical Dirichlet process Andrew M. Dai and Amos J. Storkey Abstract We propose the supervised hierarchical Dirichlet process (shdp), a nonparametric generative model for the joint

More information

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media Hybrid Models for Text and Graphs 10/23/2012 Analysis of Social Media Newswire Text Formal Primary purpose: Inform typical reader about recent events Broad audience: Explicitly establish shared context

More information

Modeling Documents with a Deep Boltzmann Machine

Modeling Documents with a Deep Boltzmann Machine Modeling Documents with a Deep Boltzmann Machine Nitish Srivastava, Ruslan Salakhutdinov & Geoffrey Hinton UAI 2013 Presented by Zhe Gan, Duke University November 14, 2014 1 / 15 Outline Replicated Softmax

More information

Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation

Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation Taesun Moon Katrin Erk and Jason Baldridge Department of Linguistics University of Texas at Austin 1

More information

Latent Dirichlet Conditional Naive-Bayes Models

Latent Dirichlet Conditional Naive-Bayes Models Latent Dirichlet Conditional Naive-Bayes Models Arindam Banerjee Dept of Computer Science & Engineering University of Minnesota, Twin Cities banerjee@cs.umn.edu Hanhuai Shan Dept of Computer Science &

More information

Modeling User Rating Profiles For Collaborative Filtering

Modeling User Rating Profiles For Collaborative Filtering Modeling User Rating Profiles For Collaborative Filtering Benjamin Marlin Department of Computer Science University of Toronto Toronto, ON, M5S 3H5, CANADA marlin@cs.toronto.edu Abstract In this paper

More information

Modeling Environment

Modeling Environment Topic Model Modeling Environment What does it mean to understand/ your environment? Ability to predict Two approaches to ing environment of words and text Latent Semantic Analysis (LSA) Topic Model LSA

More information

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza.

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. Lecture 4 Generative Models for Discrete Data - Part 3 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 6, 2017 Luigi Freda ( La Sapienza University) Lecture 4 October 6, 2017 1 / 46 Outline

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

Mixtures of Multinomials

Mixtures of Multinomials Mixtures of Multinomials Jason D. M. Rennie jrennie@gmail.com September, 25 Abstract We consider two different types of multinomial mixtures, () a wordlevel mixture, and (2) a document-level mixture. We

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign sun22@illinois.edu Hongbo Deng Department of Computer Science University

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

Lecture 8: Graphical models for Text

Lecture 8: Graphical models for Text Lecture 8: Graphical models for Text 4F13: Machine Learning Joaquin Quiñonero-Candela and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Variational Inference for Scalable Probabilistic Topic Modelling

Variational Inference for Scalable Probabilistic Topic Modelling M A S T E R T H E S I S Variational Inference for Scalable Probabilistic Topic Modelling vorgelegt von Kai Brusch MIN-Fakultät Fachbereich Informatik Language Technology Group Studiengang: Intelligent

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection (non-examinable material) Matthew J. Beal February 27, 2004 www.variational-bayes.org Bayesian Model Selection

More information

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures 17th Europ. Conf. on Machine Learning, Berlin, Germany, 2006. Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures Shipeng Yu 1,2, Kai Yu 2, Volker Tresp 2, and Hans-Peter

More information

Present and Future of Text Modeling

Present and Future of Text Modeling Present and Future of Text Modeling Daichi Mochihashi NTT Communication Science Laboratories daichi@cslab.kecl.ntt.co.jp T-FaNT2, University of Tokyo 2008-2-13 (Wed) Present and Future of Text Modeling

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Web-Mining Agents Topic Analysis: plsi and LDA. Tanya Braun Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Web-Mining Agents Topic Analysis: plsi and LDA. Tanya Braun Ralf Möller Universität zu Lübeck Institut für Informationssysteme Web-Mining Agents Topic Analysis: plsi and LDA Tanya Braun Ralf Möller Universität zu Lübeck Institut für Informationssysteme Acknowledgments Pilfered from: Ramesh M. Nallapati Machine Learning applied

More information

Autoencoders and Score Matching. Based Models. Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas

Autoencoders and Score Matching. Based Models. Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas On for Energy Based Models Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas Toronto Machine Learning Group Meeting, 2011 Motivation Models Learning Goal: Unsupervised

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

Topic Models. Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW. Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1

Topic Models. Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW. Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1 Topic Models Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1 Low-Dimensional Space for Documents Last time: embedding space

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644:

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644: Gibbs Sampling Héctor Corrada Bravo University of Maryland, College Park, USA CMSC 644: 2019 03 27 Latent semantic analysis Documents as mixtures of topics (Hoffman 1999) 1 / 60 Latent semantic analysis

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Lawrence Livermore National Laboratory Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Keith Henderson and Tina Eliassi-Rad keith@llnl.gov and eliassi@llnl.gov This work was performed

More information

Distributed ML for DOSNs: giving power back to users

Distributed ML for DOSNs: giving power back to users Distributed ML for DOSNs: giving power back to users Amira Soliman KTH isocial Marie Curie Initial Training Networks Part1 Agenda DOSNs and Machine Learning DIVa: Decentralized Identity Validation for

More information

Relevance Topic Model for Unstructured Social Group Activity Recognition

Relevance Topic Model for Unstructured Social Group Activity Recognition Relevance Topic Model for Unstructured Social Group Activity Recognition Fang Zhao Yongzhen Huang Liang Wang Tieniu Tan Center for Research on Intelligent Perception and Computing Institute of Automation,

More information

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling Christophe Dupuy INRIA - Technicolor christophe.dupuy@inria.fr Francis Bach INRIA - ENS francis.bach@inria.fr Abstract

More information

LSI, plsi, LDA and inference methods

LSI, plsi, LDA and inference methods LSI, plsi, LDA and inference methods Guillaume Obozinski INRIA - Ecole Normale Supérieure - Paris RussIR summer school Yaroslavl, August 6-10th 2012 Guillaume Obozinski LSI, plsi, LDA and inference methods

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Statistical Debugging with Latent Topic Models

Statistical Debugging with Latent Topic Models Statistical Debugging with Latent Topic Models David Andrzejewski, Anne Mulhern, Ben Liblit, Xiaojin Zhu Department of Computer Sciences University of Wisconsin Madison European Conference on Machine Learning,

More information

Understanding Comments Submitted to FCC on Net Neutrality. Kevin (Junhui) Mao, Jing Xia, Dennis (Woncheol) Jeong December 12, 2014

Understanding Comments Submitted to FCC on Net Neutrality. Kevin (Junhui) Mao, Jing Xia, Dennis (Woncheol) Jeong December 12, 2014 Understanding Comments Submitted to FCC on Net Neutrality Kevin (Junhui) Mao, Jing Xia, Dennis (Woncheol) Jeong December 12, 2014 Abstract We aim to understand and summarize themes in the 1.65 million

More information

Topic Models and Applications to Short Documents

Topic Models and Applications to Short Documents Topic Models and Applications to Short Documents Dieu-Thu Le Email: dieuthu.le@unitn.it Trento University April 6, 2011 1 / 43 Outline Introduction Latent Dirichlet Allocation Gibbs Sampling Short Text

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Non-parametric Clustering with Dirichlet Processes

Non-parametric Clustering with Dirichlet Processes Non-parametric Clustering with Dirichlet Processes Timothy Burns SUNY at Buffalo Mar. 31 2009 T. Burns (SUNY at Buffalo) Non-parametric Clustering with Dirichlet Processes Mar. 31 2009 1 / 24 Introduction

More information

RECSM Summer School: Facebook + Topic Models. github.com/pablobarbera/big-data-upf

RECSM Summer School: Facebook + Topic Models. github.com/pablobarbera/big-data-upf RECSM Summer School: Facebook + Topic Models Pablo Barberá School of International Relations University of Southern California pablobarbera.com Networked Democracy Lab www.netdem.org Course website: github.com/pablobarbera/big-data-upf

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information