Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes

Size: px
Start display at page:

Download "Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes"

Transcription

1 Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Salman H. Khan 1, Mohammed Bennamoun 1, Ferdous Sohel 1 and Roberto Togneri 2 School of CSSE 1, School of EECE 2 The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 1 Disintegration of Higher Order Energies In this appendix, we will show how the higher order energy potentials can be minimized using graph cuts. Since, graph cuts can efficiently minimize submodular functions, we will transform our higher order energy function (Eq. 9 to a submodular second order energy function. For the case of both αβ-swap and α- expansion move making algorithms, we will explain this transformation and the process of optimal moves computation 1. All of the previously defined notations are used in the same context and all of the newly introduced symbols are defined in this section. The function that accounts for the number of disagreeing nodes in a clique is defined as: n l (y c = i c w l i 1 yi=l The function 1 yi=l is a zero-one indicator function that returns a unit value when y i = l. We suppose here that weights are symmetric for all labels l L i.e., wi l = w i. Further, for our implementation we set w i = 1 i c. This setting satisfies the required constraints for these parameters, i.e., wi l 0 and wi l = #c l L. We define a summation function that adds the weights for a subset s of c, i c W (s = i s w l i = #s l L. 1.1 Disintegration of Higher Order Energies to Second Order Sub-Modular Energies for Swap Moves Suppose, in a clique c, the locations of the active nodes is represented by a set of indices c a. The nodes which remain inactive during the move making process 1 The development of this section is similar to [13]. We also used the same notation - wherever possible - to allow the reader to easily sort out differences and commonalities.

2 2 S. H. Khan, M. Bennamoun, F. Sohel and R. Togneri are termed as passive nodes. Their locations are denoted by c a = {c \ c i c a }. The corresponding set of available moves to the swap move making algorithm are encoded in the form of a vector t ca. For the sake of simple demonstration, let us focus on the two class labeling problem i.e., l {0, 1}. The induced labeling is the combination of the old labeling for the inactive nodes and the new labeling for the active nodes i.e., yc n = y c a T αβ (yc a, t ca. If yc n denotes the new labeling induced by move t ca and yc denotes the old labeling, we can define the energy of move for an αβ swap as: ψ m c (t ca = ψ c (y n c = ψ c (y c a T αβ (y c a, t ca = min {λ max (λ max λ l exp( W (c n l(y ca T αβ(y ca,t ca l L Q } l = min l L {λ max (λ max λ α exp( W (c nm 0 (t ca, λ max (λ max λ β exp( W (c c a+n m 0 (t ca Q β }, where, W (c a = n m 0 (t ca + n m 1 (t ca. The minimization operation in the above equation can be replaced by defining a piecewise function: λ max (λ max λ α exp( W (c nm 0 (t ca if n m 0 (t ca > ϱ αβ ( W (c W (c ca Q β ψc m log( λmax λα λ (t ca = max λ β λ max (λ max λ β exp( W (c c a+n m 0 (t ca Q β if n m 0 (t ca < ϱ αβ ( W (c W (c ca Q β log( λmax λα λ max λ β where, ϱ αβ = QαQ β +Q β. The function n m l (t c a is defined as: n m l (t ca = i c a w i δ l (t i. From Theorem 1 in [1], the energy defined above can be transformed to the submodular quadratic pseudo-boolean function with two binary meta variables. In this form the αβ-swap algorithm can be used for minimizing the energy function. 1.2 Disintegration of Higher Order Energies to Second Order Sub-Modular Energies for Expansion Moves Suppose, in a clique c, the location of the nodes with label l is represented by a set of indices c l. The current labeling solution is denoted by y c. If the dominant label is denoted by d L in the current labeling y c is, s.t W (c d > W (c Q d where d α,

3 Geometry Driven Semantic Labeling of Indoor Scenes 3 there must be one dominant label: Q a + Q b < W (c a b L, ψ m c (t c = ψ c (T α (y c, t c = min {λ max (λ max λ α exp( l L λ max (λ max λ d exp( w it i i c, W (c i c w it i Q d }. The minimization operator in the above function can be replaced by a piecewise function: λ max (λ max λ α exp( nm 0 (t c if n m 0 (t c > ϱ αd ( W (c ψc m log( λmax λα λ (t c, t cd = max λ d λ max (λ max λ d exp( W (c nm 0 (t c d Q d if n m 0 (t c < ϱ αd ( W (c log( λmax λα λ max λ d where, ϱ αd = QαQ d +Q d and function n m l (t c is defined as: n m l (t c = i c w i δ l (t i. From Theorem 2 in [1], the energy defined above can be transformed to the submodular quadratic pseudo-boolean function with two binary meta variables. In this form the α-expansion algorithm can be used for minimizing the energy function. 2 Plane Detection Algorithm Algorithm 1 shows our region growing algorithm for depth based segmentation. Note that, point normals are found by local plane fitting and Singular Value Decomposition (SVD. In step 2, k sm is the smoothing kernel and N sm is the smooth version of local normal image. In step 23, we also check if n r idx already been replaced by another region or not. If n r idx is found to be previously replaced, we use the updated value. In the following section, we list some example results of our algorithm. 2.1 More Example Results

4 4 S. H. Khan, M. Bennamoun, F. Sohel and R. Togneri Algorithm 1 Region Growing Algorithm for Depth Based Segmentation Input: Point cloud = {P}, Depth map = {D}, RGB image = {I}, Edge matching threshold e th, Normalized boundary matching threshold b th Output: Labeled planar regions = {R} 1: Calculate point normals: {N} F normal (D 2: Remove inconsistencies by low-pass filtering: {N sm} N k sm 3: Cluster 3D points with similar normal orientations: {N clu } F k means (N sm 4: Initialize: R N clu 5: Line segment detector: {L} F LSD(I 6: Diffused line map: {L sm} L k sm 7: Identify planar regions with missing depth values: {M} F holes (N clu, D 8: Find adjacency relationships for each cluster in N clu : A clu 9: Identify all unique neighbors of clusters in M: U nb 10: From U nb, separate correct and faulty clusters into N cor and N inc respectively 11: Initialize available cluster list: L avl N cor 12: Initialize label propagation list: L prp 13: while list L avl is not empty do 14: Randomly draw a cluster from available N cor: r idx 15: Identify r idx neighbors (N r idx with faulty depth values using A clu and M 16: for each neighbor n r idx in N r idx do 17: Find mutual boundary (b m of r idx and n r idx 18: Calculate edge strength at b m using L sm: e str 19: Calculate normalized boundary matching cost: b str = b m/ Area of n r idx 20: if e str < e th b str > b th then add add 21: n r idx N cor, n r idx L avl rem rem 22: r idx L avl, n r idx N inc 23: Update L prp with r idx and n r idx rem 24: r idx L avl 25: for any leftover clusters in N inc do 26: Randomly draw a cluster from available N inc: r idx 27: Execute similar steps (from line 15 to 24 for r idx 28: Update R according to L prp 29: return {R}

5 Geometry Driven Semantic Labeling of Indoor Scenes 5 Fig. 1. Comparison of our algorithm (last row with [2] (middle row is shown. Note that the maroon color in middle row shows non-planar regions (but not in the last row where all regions are approximated by planes. The last row shows detected planes averaged over super-pixels.

6 Bibliography [1] Kohli, P., Torr, P.H., et al.: Robust higher order potentials for enforcing label consistency. IJCV 82(3, (2009 [2] Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV, pp Springer (2012

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University Diffusion/Inference geometries of data features, situational awareness and visualization Ronald R Coifman Mathematics Yale University Digital data is generally converted to point clouds in high dimensional

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Part 6: Structured Prediction and Energy Minimization (1/2)

Part 6: Structured Prediction and Energy Minimization (1/2) Part 6: Structured Prediction and Energy Minimization (1/2) Providence, 21st June 2012 Prediction Problem Prediction Problem y = f (x) = argmax y Y g(x, y) g(x, y) = p(y x), factor graphs/mrf/crf, g(x,

More information

Pushmeet Kohli Microsoft Research

Pushmeet Kohli Microsoft Research Pushmeet Kohli Microsoft Research E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04] E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x)

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

Markov Random Fields for Computer Vision (Part 1)

Markov Random Fields for Computer Vision (Part 1) Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011) Stephen Gould stephen.gould@anu.edu.au Australian National University 13 17 June, 2011 Stephen Gould 1/23 Pixel

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

A Graph Cut Algorithm for Higher-order Markov Random Fields

A Graph Cut Algorithm for Higher-order Markov Random Fields A Graph Cut Algorithm for Higher-order Markov Random Fields Alexander Fix Cornell University Aritanan Gruber Rutgers University Endre Boros Rutgers University Ramin Zabih Cornell University Abstract Higher-order

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

Truncated Max-of-Convex Models Technical Report

Truncated Max-of-Convex Models Technical Report Truncated Max-of-Convex Models Technical Report Pankaj Pansari University of Oxford The Alan Turing Institute pankaj@robots.ox.ac.uk M. Pawan Kumar University of Oxford The Alan Turing Institute pawan@robots.ox.ac.uk

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

Feedback Loop between High Level Semantics and Low Level Vision

Feedback Loop between High Level Semantics and Low Level Vision Feedback Loop between High Level Semantics and Low Level Vision Varun K. Nagaraja Vlad I. Morariu Larry S. Davis {varun,morariu,lsd}@umiacs.umd.edu University of Maryland, College Park, MD, USA. Abstract.

More information

Low-level Image Processing

Low-level Image Processing Low-level Image Processing In-Place Covariance Operators for Computer Vision Terry Caelli and Mark Ollila School of Computing, Curtin University of Technology, Perth, Western Australia, Box U 1987, Emaihtmc@cs.mu.oz.au

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

Protein Complex Identification by Supervised Graph Clustering

Protein Complex Identification by Supervised Graph Clustering Protein Complex Identification by Supervised Graph Clustering Yanjun Qi 1, Fernanda Balem 2, Christos Faloutsos 1, Judith Klein- Seetharaman 1,2, Ziv Bar-Joseph 1 1 School of Computer Science, Carnegie

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

Probabilistic Graphical Models Lecture Notes Fall 2009

Probabilistic Graphical Models Lecture Notes Fall 2009 Probabilistic Graphical Models Lecture Notes Fall 2009 October 28, 2009 Byoung-Tak Zhang School of omputer Science and Engineering & ognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

Graph Cut based Inference with Co-occurrence Statistics

Graph Cut based Inference with Co-occurrence Statistics Graph Cut based Inference with Co-occurrence Statistics Lubor Ladicky 1,3, Chris Russell 1,3, Pushmeet Kohli 2, and Philip H.S. Torr 1 1 Oxford Brookes 2 Microsoft Research Abstract. Markov and Conditional

More information

Learning to Segment Under Various Forms of Weak Supervision Supplementary Material

Learning to Segment Under Various Forms of Weak Supervision Supplementary Material Learning to Segment Under Various Forms of Weak Supervision Supplementary Material Jia Xu 1 Alexander G. Schwing 2 Raquel Urtasun 2 1 University of Wisconsin-Madison 2 University of Toronto jiaxu@cs.wisc.edu

More information

Spatial Bayesian Nonparametrics for Natural Image Segmentation

Spatial Bayesian Nonparametrics for Natural Image Segmentation Spatial Bayesian Nonparametrics for Natural Image Segmentation Erik Sudderth Brown University Joint work with Michael Jordan University of California Soumya Ghosh Brown University Parsing Visual Scenes

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information

COOKBOOK KVL AND KCL A COMPLETE GUIDE

COOKBOOK KVL AND KCL A COMPLETE GUIDE 1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+,- ) and a current flow measurement (arrow): By the passive sign convention,

More information

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications Edge Detection Roadmap Introduction to image analysis (computer vision) Its connection with psychology and neuroscience Why is image analysis difficult? Theory of edge detection Gradient operator Advanced

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs On Partial Optimality in Multi-label MRFs P. Kohli 1 A. Shekhovtsov 2 C. Rother 1 V. Kolmogorov 3 P. Torr 4 1 Microsoft Research Cambridge 2 Czech Technical University in Prague 3 University College London

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018 Graphical Models Clique trees & Belief Propagation Siamak Ravanbakhsh Winter 2018 Learning objectives message passing on clique trees its relation to variable elimination two different forms of belief

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

Random walks and anisotropic interpolation on graphs. Filip Malmberg

Random walks and anisotropic interpolation on graphs. Filip Malmberg Random walks and anisotropic interpolation on graphs. Filip Malmberg Interpolation of missing data Assume that we have a graph where we have defined some (real) values for a subset of the nodes, and that

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Show that the following problems are NP-complete

Show that the following problems are NP-complete Show that the following problems are NP-complete April 7, 2018 Below is a list of 30 exercises in which you are asked to prove that some problem is NP-complete. The goal is to better understand the theory

More information

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation B. A. Zalesky 1 2 1. Plan of Talk 1. Introduction 2. Multiresolution Network Flow Minimum Cut Algorithm 3. Integer Minimization

More information

Markov and Gibbs Random Fields

Markov and Gibbs Random Fields Markov and Gibbs Random Fields Bruno Galerne bruno.galerne@parisdescartes.fr MAP5, Université Paris Descartes Master MVA Cours Méthodes stochastiques pour l analyse d images Lundi 6 mars 2017 Outline The

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture Notes Fall 2009 November, 2009 Byoung-Ta Zhang School of Computer Science and Engineering & Cognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts June 23 rd 2008 Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts Christian Wolf Laboratoire d InfoRmatique en Image et Systèmes

More information

Higher-Order Clique Reduction Without Auxiliary Variables

Higher-Order Clique Reduction Without Auxiliary Variables Higher-Order Clique Reduction Without Auxiliary Variables Hiroshi Ishikawa Department of Computer Science and Engineering Waseda University Okubo 3-4-1, Shinjuku, Tokyo, Japan hfs@waseda.jp Abstract We

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time

Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time Michael Krivelevich and Dan Vilenchik Tel-Aviv University Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time p. 1/2

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Anuva Kulkarni Carnegie Mellon University Filipe Condessa Carnegie Mellon, IST-University of Lisbon Jelena Kovacevic Carnegie

More information

Introduction to Kleene Algebras

Introduction to Kleene Algebras Introduction to Kleene Algebras Riccardo Pucella Basic Notions Seminar December 1, 2005 Introduction to Kleene Algebras p.1 Idempotent Semirings An idempotent semiring is a structure S = (S, +,, 1, 0)

More information

Efficient Approximation for Restricted Biclique Cover Problems

Efficient Approximation for Restricted Biclique Cover Problems algorithms Article Efficient Approximation for Restricted Biclique Cover Problems Alessandro Epasto 1, *, and Eli Upfal 2 ID 1 Google Research, New York, NY 10011, USA 2 Department of Computer Science,

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter

Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter Road Map n Graphical models n Constraint networks Model n Inference n Search n Probabilistic

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations

Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations Lihi Zelnik-Manor Michal Irani Dept. of Computer Science and Applied Math The Weizmann Institute of Science

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Adrian Weller University of Cambridge CP 2015 Cork, Ireland Slides and full paper at http://mlg.eng.cam.ac.uk/adrian/ 1 / 21 Motivation:

More information

State of the art Image Compression Techniques

State of the art Image Compression Techniques Chapter 4 State of the art Image Compression Techniques In this thesis we focus mainly on the adaption of state of the art wavelet based image compression techniques to programmable hardware. Thus, an

More information

Graphical Models. Outline. HMM in short. HMMs. What about continuous HMMs? p(o t q t ) ML 701. Anna Goldenberg ... t=1. !

Graphical Models. Outline. HMM in short. HMMs. What about continuous HMMs? p(o t q t ) ML 701. Anna Goldenberg ... t=1. ! Outline Graphical Models ML 701 nna Goldenberg! ynamic Models! Gaussian Linear Models! Kalman Filter! N! Undirected Models! Unification! Summary HMMs HMM in short! is a ayes Net hidden states! satisfies

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models Features (Ising,

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Undirected Graphical Models

Undirected Graphical Models Readings: K&F 4. 4.2 4.3 4.4 Undirected Graphical Models Lecture 4 pr 6 20 SE 55 Statistical Methods Spring 20 Instructor: Su-In Lee University of Washington Seattle ayesian Network Representation irected

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015 Course 16:198:520: Introduction To Artificial Intelligence Lecture 9 Markov Networks Abdeslam Boularias Monday, October 14, 2015 1 / 58 Overview Bayesian networks, presented in the previous lecture, are

More information

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if Lecture notes 3 Denition. Let z be a set function on the nite set V i.e z : 2 V R, then z is submodular if z A) + z B) z A B) + z A B) A, B V. Denition 2. If z is submodular then z is supermodular. Denition

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

Representation Theory. Ricky Roy Math 434 University of Puget Sound

Representation Theory. Ricky Roy Math 434 University of Puget Sound Representation Theory Ricky Roy Math 434 University of Puget Sound May 2, 2010 Introduction In our study of group theory, we set out to classify all distinct groups of a given order up to isomorphism.

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Semi-Markov/Graph Cuts

Semi-Markov/Graph Cuts Semi-Markov/Graph Cuts Alireza Shafaei University of British Columbia August, 2015 1 / 30 A Quick Review For a general chain-structured UGM we have: n n p(x 1, x 2,..., x n ) φ i (x i ) φ i,i 1 (x i, x

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

high thresholds in two dimensions

high thresholds in two dimensions Fault-tolerant quantum computation - high thresholds in two dimensions Robert Raussendorf, University of British Columbia QEC11, University of Southern California December 5, 2011 Outline Motivation Topological

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec Presented by: Jesse Bettencourt and Harris Chan March 9, 2018 University

More information

Conditional Independence and Markov Properties

Conditional Independence and Markov Properties Conditional Independence and Markov Properties Lecture 1 Saint Flour Summerschool, July 5, 2006 Steffen L. Lauritzen, University of Oxford Overview of lectures 1. Conditional independence and Markov properties

More information

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016 Matrix factorization models for patterns beyond blocks 18 February 2016 What does a matrix factorization do?? A = U V T 2 For SVD that s easy! 3 Inner-product interpretation Element (AB) ij is the inner

More information

Higher-Order Clique Reduction in Binary Graph Cut

Higher-Order Clique Reduction in Binary Graph Cut CVPR009: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida. June 0-5, 009. Hiroshi Ishikawa Nagoya City University Department of Information and Biological

More information

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT 1 Algebraic Methods In an algebraic system Boolean constraints are expressed as a system of algebraic equations or inequalities which has a solution if and only if the constraints are satisfiable. Equations

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course Course on Bayesian Networks, winter term 2007 0/31 Bayesian Networks Bayesian Networks I. Bayesian Networks / 1. Probabilistic Independence and Separation in Graphs Prof. Dr. Lars Schmidt-Thieme, L. B.

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Submodularity beyond submodular energies: Coupling edges in graph cuts

Submodularity beyond submodular energies: Coupling edges in graph cuts Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems Tübingen, Germany University of Washington Seattle,

More information

Graphical Models and Independence Models

Graphical Models and Independence Models Graphical Models and Independence Models Yunshu Liu ASPITRG Research Group 2014-03-04 References: [1]. Steffen Lauritzen, Graphical Models, Oxford University Press, 1996 [2]. Christopher M. Bishop, Pattern

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

Poisson Image Editing

Poisson Image Editing Poisson Image Editing Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0 January 21, 2016 Contents Introduction 1 Modelling the Problem 2 Harmonic Functions 5 The irichlet Problem 8 Harmonic/Fourier

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Daipei LIU 1 ; Herwig PETERS 1 ; Nicole KESSISSOGLOU 1 ; Steffen MARBURG 2 ; 1 School of

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone:

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone: Neural Networks Nethra Sambamoorthi, Ph.D Jan 2003 CRMportals Inc., Nethra Sambamoorthi, Ph.D Phone: 732-972-8969 Nethra@crmportals.com What? Saying it Again in Different ways Artificial neural network

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016 GloVe on Spark Alex Adamson SUNet ID: aadamson June 6, 2016 Introduction Pennington et al. proposes a novel word representation algorithm called GloVe (Global Vectors for Word Representation) that synthesizes

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information