Submodularity beyond submodular energies: Coupling edges in graph cuts

Size: px
Start display at page:

Download "Submodularity beyond submodular energies: Coupling edges in graph cuts"

Transcription

1 Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems Tübingen, Germany University of Washington Seattle, USA 1 / 18

2 local pairwise random fields... 2 / 18

3 Graph Cuts Cooperative Cuts Optimization Applications 3 / 18

4 Graph Cuts Cooperative Cuts Optimization Random Walker Curvature reg. Applications Graph Cut 3 / 18

5 Graph Cuts Cooperative Cuts Optimization Random Walker Curvature reg. Applications Graph Cut 3 / 18

6 Markov Random Fields and Energies p(x z) exp( E Ψ (x; z)) MAP x = arg min x E Ψ (x; z) s t 4 / 18

7 Markov Random Fields and Energies p(x z) exp( E Ψ (x; z)) MAP x = arg min x E Ψ (x; z) s E(x; z) = i Ψ i (x i ) + (i,j) N Ψ ij (x i, x j ) t 4 / 18

8 Markov Random Fields and Energies p(x z) exp( E Ψ (x; z)) MAP x = arg min x E Ψ (x; z) s E(x; z) = Ψ i (x i ) i E(x; z) = + Ψ ij (x i, x j ) (i,j) N e Γx E t w e + e Γx E n w e t 4 / 18

9 Markov Random Fields and Energies p(x z) exp( E Ψ (x; z)) MAP x = arg min x E Ψ (x; z) E(x; z) = Ψ i (x i ) + Ψ ij (x i, x j ) i (i,j) N E(x; z) = w e + w e e Γx E t e Γx E n 1 s t 4 / 18

10 s t 5 / 18

11 s t 5 / 18

12 s t 5 / 18

13 s t Couple edges globally 5 / 18

14 Richer Cuts: Cooperative Cuts E(x) = e Γx w(e) s = w(γx) t 6 / 18

15 Richer Cuts: Cooperative Cuts E(x) = e Γx w(e) s = w(γx) t E f (x) = f (Γx) submodular function on edges 6 / 18

16 Richer Cuts: Cooperative Cuts E(x) = e Γx w(e) s = w(γx) t E f (x) = f (Γx) submodular function on edges non-submodular & global energy 6 / 18

17 Coupling via Submodularity s t 7 / 18

18 Coupling via Submodularity e e A B A B f (A e) f (A) f (A B e) f (A B) t Graph Cuts: LHS = RHS it does not matter which other edges are cut s 8 / 18

19 Coupling via Submodularity e e A B A B f (A e) f (A) f (A B e) f (A B) s t Graph Cuts: LHS = RHS it does not matter which other edges are cut submodularity: reward co-occurrence structure 8 / 18

20 Generality Special cases of cooperative cuts: s labels t features... boundary (robust) P n potentials (Kohli et al. 07, 09) label costs (Delong et al. 11) discrete versions of norm-based cuts (Sinop & Grady 07)... 9 / 18

21 Optimization? 10 / 18

22 Optimization? (s, t)-cut Γ E with min cost f (Γ). Theorem Minimum Cooperative Cut is NP-hard. 10 / 18

23 Optimization Γ 0 = ; repeat compute upper bound ˆf i f based on Γ i 1 ; until convergence ; ˆf i (Γ i 1 ) = f (Γ i 1 ) 11 / 18

24 Optimization Γ 0 = ; repeat compute upper bound ˆf i f based on Γ i 1 ; Γ i argmin{ ˆf i (Γ) Γ a cut } ; i = i + 1; until convergence ; // Min-cut! ˆf i (Γ i 1 ) = f (Γ i 1 ) 11 / 18

25 Optimization Γ 0 = ; repeat compute upper bound ˆf i f based on Γ i 1 ; Γ i argmin{ ˆf i (Γ) Γ a cut } ; i = i + 1; until convergence ; // Min-cut! Worst-case approximation bound: E f (x) Γ 1+( Γ 1)ν E f (x ) for ν = min e Γ ρe(e\e) max e C f (e) 11 / 18

26 Image Segmentation Random Walker Curvature reg. Graph Cut 12 / 18

27 Image Segmentation Random Walker Curvature reg. Graph Cut prefer congruous boundaries 12 / 18

28 Selective Discount for Congruous Boundaries s t E w (x) = w e +λ e Γ E t E f (x) = w e +λ f (Γ E n ) e Γ E t e Γ E n w e 13 / 18

29 Selective Discount for Congruous Boundaries s t E w (x) = w e +λ e Γ E t E f (x) = w e +λ f (Γ E n ) e Γ E t e Γ E n w e discount for co-occurring similar edges no discount for dissimilar edges 13 / 18

30 Structured Discounts groups S i of edges f (Γ) = i f i(γ S i ) / 18

31 Structured Discounts groups S i of edges f (Γ) = i f i(γ S i ) / 18

32 Structured Discounts groups S i of edges f (Γ) = i f i(γ S i ) / 18

33 Graph Cuts Cooperative Cuts Optimization Applications Some Results: Shading Graph Cut CoopCut 7.39% 2.23% 7.65% 3.50% 15 / 18

34 Some Results: Shading gray color high-freq Graph Cut: no discount CoopCut (1 group): discount CoopCut (15 groups): structured discount Graph Cut CoopCut 5.08% 0.64% 16 / 18

35 Shrinking bias GC twig CoopC twig GC total CoopC total ψ i (x i ) + λ w e e Γx i total error (%) twig error (%) λ Graph Cut 17 / 18

36 Shrinking bias GC twig CoopC twig GC total CoopC total ψ i (x i ) + λ w e e Γx i total error (%) twig error (%) λ Graph Cut 17 / 18

37 Shrinking bias GC twig CoopC twig GC total CoopC total ψ i (x i ) + λ f (Γx) i total error (%) twig error (%) CoopCut λ Graph Cut 17 / 18

38 Shrinking bias GC twig CoopC twig GC total CoopC total ψ i (x i ) + λ f (Γx) i total error (%) twig error (%) CoopCut λ Graph Cut 17 / 18

39 Summary: Coupling Edges in Graph Cuts global, non-submodular family of energies NP-hard, but... graph structure indirect submodularity efficient approximation algorithm applications guide segmentations via edge coupling 18 / 18

Pushmeet Kohli Microsoft Research

Pushmeet Kohli Microsoft Research Pushmeet Kohli Microsoft Research E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04] E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x)

More information

Applications of Submodular Functions in Speech and NLP

Applications of Submodular Functions in Speech and NLP Applications of Submodular Functions in Speech and NLP Jeff Bilmes Department of Electrical Engineering University of Washington, Seattle http://ssli.ee.washington.edu/~bilmes June 27, 2011 J. Bilmes Applications

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 3 -

More information

Word Alignment via Submodular Maximization over Matroids

Word Alignment via Submodular Maximization over Matroids Word Alignment via Submodular Maximization over Matroids Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 21, 2011 Lin and Bilmes Submodular Word Alignment June

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Truncated Max-of-Convex Models Technical Report

Truncated Max-of-Convex Models Technical Report Truncated Max-of-Convex Models Technical Report Pankaj Pansari University of Oxford The Alan Turing Institute pankaj@robots.ox.ac.uk M. Pawan Kumar University of Oxford The Alan Turing Institute pawan@robots.ox.ac.uk

More information

Part 6: Structured Prediction and Energy Minimization (1/2)

Part 6: Structured Prediction and Energy Minimization (1/2) Part 6: Structured Prediction and Energy Minimization (1/2) Providence, 21st June 2012 Prediction Problem Prediction Problem y = f (x) = argmax y Y g(x, y) g(x, y) = p(y x), factor graphs/mrf/crf, g(x,

More information

Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY

Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY Department of Reasoning for Intelligence, Division of Information

More information

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Adrian Weller University of Cambridge CP 2015 Cork, Ireland Slides and full paper at http://mlg.eng.cam.ac.uk/adrian/ 1 / 21 Motivation:

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Markov Random Fields for Computer Vision (Part 1)

Markov Random Fields for Computer Vision (Part 1) Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011) Stephen Gould stephen.gould@anu.edu.au Australian National University 13 17 June, 2011 Stephen Gould 1/23 Pixel

More information

Higher-Order Energies for Image Segmentation

Higher-Order Energies for Image Segmentation IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Higher-Order Energies for Image Segmentation Jianbing Shen, Senior Member, IEEE, Jianteng Peng, Xingping Dong, Ling Shao, Senior Member, IEEE, and Fatih Porikli,

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Discrete Optimization in Machine Learning. Colorado Reed

Discrete Optimization in Machine Learning. Colorado Reed Discrete Optimization in Machine Learning Colorado Reed [ML-RCC] 31 Jan 2013 1 Acknowledgements Some slides/animations based on: Krause et al. tutorials: http://www.submodularity.org Pushmeet Kohli tutorial:

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Semi-Markov/Graph Cuts

Semi-Markov/Graph Cuts Semi-Markov/Graph Cuts Alireza Shafaei University of British Columbia August, 2015 1 / 30 A Quick Review For a general chain-structured UGM we have: n n p(x 1, x 2,..., x n ) φ i (x i ) φ i,i 1 (x i, x

More information

arxiv: v1 [cs.ds] 1 Nov 2014

arxiv: v1 [cs.ds] 1 Nov 2014 Provable Submodular Minimization using Wolfe s Algorithm Deeparnab Chakrabarty Prateek Jain Pravesh Kothari November 4, 2014 arxiv:1411.0095v1 [cs.ds] 1 Nov 2014 Abstract Owing to several applications

More information

How to learn from very few examples?

How to learn from very few examples? How to learn from very few examples? Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Outline Introduction Part A

More information

Approximation Bounds for Inference using Cooperative Cuts

Approximation Bounds for Inference using Cooperative Cuts Stefanie Jegelka Max Planck Institute for Intelligent Systems, Tübingen, Germany Jeff Bilmes University of Washington, Seattle, WA 98195, USA jegelka@tuebingen.mpg.de bilmes@u.washington.edu Abstract We

More information

Discrete Optimization Lecture 5. M. Pawan Kumar

Discrete Optimization Lecture 5. M. Pawan Kumar Discrete Optimization Lecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Exam Question Type 1 v 1 s v 0 4 2 1 v 4 Q. Find the distance of the shortest path from s=v 0 to all vertices in the graph using Dijkstra

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Winter Quarter, 2011 http://ee.washington.edu/class/235/2011wtr/index.html

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

Random walks for deformable image registration Dana Cobzas

Random walks for deformable image registration Dana Cobzas Random walks for deformable image registration Dana Cobzas with Abhishek Sen, Martin Jagersand, Neil Birkbeck, Karteek Popuri Computing Science, University of Alberta, Edmonton Deformable image registration?t

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

PAC-learning bounded tree-width Graphical Models

PAC-learning bounded tree-width Graphical Models 410 NARAIMHAN & BILME UAI 2004 PAC-learning bounded tree-width Graphical Models Mukund Narasimhan Dept. of Electrical Engineering University of Washington eattle, WA 98195 Jeff Bilmes Dept. of Electrical

More information

Tightness of LP Relaxations for Almost Balanced Models

Tightness of LP Relaxations for Almost Balanced Models Tightness of LP Relaxations for Almost Balanced Models Adrian Weller University of Cambridge AISTATS May 10, 2016 Joint work with Mark Rowland and David Sontag For more information, see http://mlg.eng.cam.ac.uk/adrian/

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture 12 http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/ Prof. Jeff Bilmes University

More information

Connectedness of Random Walk Segmentation

Connectedness of Random Walk Segmentation Connectedness of Random Walk Segmentation Ming-Ming Cheng and Guo-Xin Zhang TNList, Tsinghua University, Beijing, China. Abstract Connectedness of random walk segmentation is examined, and novel properties

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation B. A. Zalesky 1 2 1. Plan of Talk 1. Introduction 2. Multiresolution Network Flow Minimum Cut Algorithm 3. Integer Minimization

More information

An indicator for the number of clusters using a linear map to simplex structure

An indicator for the number of clusters using a linear map to simplex structure An indicator for the number of clusters using a linear map to simplex structure Marcus Weber, Wasinee Rungsarityotin, and Alexander Schliep Zuse Institute Berlin ZIB Takustraße 7, D-495 Berlin, Germany

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Spring Quarter, 2011 http://ssli.ee.washington.edu/~bilmes/ee595a_spring_2011/

More information

WE address a general class of binary pairwise nonsubmodular

WE address a general class of binary pairwise nonsubmodular IN IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2017 - TO APPEAR 1 Local Submodularization for Binary Pairwise Energies Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed, Andrew

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

MANY problems in computer vision, such as segmentation,

MANY problems in computer vision, such as segmentation, 134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 6, JUNE 011 Transformation of General Binary MRF Minimization to the First-Order Case Hiroshi Ishikawa, Member, IEEE Abstract

More information

Maximum likelihood in log-linear models

Maximum likelihood in log-linear models Graphical Models, Lecture 4, Michaelmas Term 2010 October 22, 2010 Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs Let A denote an arbitrary set of subsets

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Optimisation in imaging

Optimisation in imaging Optimisation in imaging Hugues Talbot ICIP 2014 Tutorial Optimisation on Hierarchies H. Talbot : Optimisation 1/59 Outline of the lecture 1 Concepts in optimization Cost function Constraints Duality 2

More information

Submodular Maximization and Diversity in Structured Output Spaces

Submodular Maximization and Diversity in Structured Output Spaces Submodular Maximization and Diversity in Structured Output Spaces Adarsh Prasad Virginia Tech, UT Austin adarshprasad27@gmail.com Stefanie Jegelka UC Berkeley stefje@eecs.berkeley.edu Dhruv Batra Virginia

More information

Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model

Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model Csaba Benedek 12 Tamás Szirányi 1 1 Distributed Events Analysis Research Group Computer and Automation Research

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi Problems HW problem 5.7 Math 504. Spring 2008. CSUF by Nasser Abbasi 1 Problem 6.3 Part(A) Let I n be an indicator variable de ned as 1 when (n = jj I n = 0 = i) 0 otherwise Hence Now we see that E (V

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically.

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically. . Introduction The quick summary, going forwards: Start with random variable X. 2 Compute the mean EX and variance 2 = varx. 3 Approximate X by the normal distribution N with mean µ = EX and standard deviation.

More information

Superdifferential Cuts for Binary Energies

Superdifferential Cuts for Binary Energies Superdifferential Cuts for Binary Energies Tatsunori Taniai University of Tokyo, Japan Yasuyuki Matsushita Osaka University, Japan Takeshi Naemura University of Tokyo, Japan taniai@iis.u-tokyo.ac.jp yasumat@ist.osaka-u.ac.jp

More information

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Salman H. Khan 1, Mohammed Bennamoun 1, Ferdous Sohel 1 and Roberto Togneri 2 School of CSSE 1, School of EECE 2 The

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs On Partial Optimality in Multi-label MRFs P. Kohli 1 A. Shekhovtsov 2 C. Rother 1 V. Kolmogorov 3 P. Torr 4 1 Microsoft Research Cambridge 2 Czech Technical University in Prague 3 University College London

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

A Compact Linear Programming Relaxation for Binary Sub-modular MRF

A Compact Linear Programming Relaxation for Binary Sub-modular MRF A Compact Linear Programming Relaxation for Binary Sub-modular MRF Junyan Wang and Sai-Kit Yeung Singapore University of Technology and Design {junyan_wang,saikit}@sutd.edu.sg Abstract. Direct linear programming

More information

Discrete DC Programming by Discrete Convex Analysis

Discrete DC Programming by Discrete Convex Analysis Combinatorial Optimization (Oberwolfach, November 9 15, 2014) Discrete DC Programming by Discrete Convex Analysis Use of Conjugacy Kazuo Murota (U. Tokyo) with Takanori Maehara (NII, JST) 141111DCprogOberwolfLong

More information

arxiv: v1 [cs.ds] 5 Aug 2013

arxiv: v1 [cs.ds] 5 Aug 2013 Fast Semidifferential-based Submodular Function Optimization Rishabh Iyer 1, Stefanie Jegelka 2, and Jeff Bilmes 1 1 Department of EE, University of Washington, Seattle 2 Department of EECS, University

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

Optimizing Ratio of Monotone Set Functions

Optimizing Ratio of Monotone Set Functions Optimizing Ratio of Monotone Set Functions Chao Qian, Jing-Cheng Shi 2, Yang Yu 2, Ke Tang, Zhi-Hua Zhou 2 UBRI, School of Computer Science and Technology, University of Science and Technology of China,

More information

Random walks and anisotropic interpolation on graphs. Filip Malmberg

Random walks and anisotropic interpolation on graphs. Filip Malmberg Random walks and anisotropic interpolation on graphs. Filip Malmberg Interpolation of missing data Assume that we have a graph where we have defined some (real) values for a subset of the nodes, and that

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Outline lecture 2 2(30)

Outline lecture 2 2(30) Outline lecture 2 2(3), Lecture 2 Linear Regression it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic Control

More information

Quiz 1 Date: Monday, October 17, 2016

Quiz 1 Date: Monday, October 17, 2016 10-704 Information Processing and Learning Fall 016 Quiz 1 Date: Monday, October 17, 016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.. Write your name, Andrew

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

From MAP to Marginals: Variational Inference in Bayesian Submodular Models

From MAP to Marginals: Variational Inference in Bayesian Submodular Models From MAP to Marginals: Variational Inference in Bayesian Submodular Models Josip Djolonga Department of Computer Science ETH Zürich josipd@inf.ethz.ch Andreas Krause Department of Computer Science ETH

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory In the last unit we looked at regularization - adding a w 2 penalty. We add a bias - we prefer classifiers with low norm. How to incorporate more complicated

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture http://www.ee.washington.edu/people/faculty/bilmes/classes/ee_spring_0/ Prof. Jeff Bilmes University of

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

arxiv: v1 [cs.ne] 6 May 2014

arxiv: v1 [cs.ne] 6 May 2014 Training Restricted Boltzmann Machine by Perturbation arxiv:1405.1436v1 [cs.ne] 6 May 2014 Siamak Ravanbakhsh, Russell Greiner Department of Computing Science University of Alberta {mravanba,rgreiner@ualberta.ca}

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Scalable Variational Inference in Log-supermodular Models

Scalable Variational Inference in Log-supermodular Models Josip Djolonga Andreas Krause Department of Computer Science, ETH Zurich JOSIPD@INF.ETHZ.CH KRAUSEA@ETHZ.CH Abstract We consider the problem of approximate Bayesian inference in log-supermodular models.

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

The generative approach to classification. A classification problem. Generative models CSE 250B

The generative approach to classification. A classification problem. Generative models CSE 250B The generative approach to classification The generative approach to classification CSE 250B The learning process: Fit a probability distribution to each class, individually To classify a new point: Which

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Generalized Roof Duality for Pseudo-Boolean Optimization

Generalized Roof Duality for Pseudo-Boolean Optimization Generalized Roof Duality for Pseudo-Boolean Optimization Fredrik Kahl Petter Strandmark Centre for Mathematical Sciences, Lund University, Sweden {fredrik,petter}@maths.lth.se Abstract The number of applications

More information

Quadratization of symmetric pseudo-boolean functions

Quadratization of symmetric pseudo-boolean functions of symmetric pseudo-boolean functions Yves Crama with Martin Anthony, Endre Boros and Aritanan Gruber HEC Management School, University of Liège Liblice, April 2013 of symmetric pseudo-boolean functions

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Energy Minimization via Graph Cuts

Energy Minimization via Graph Cuts Energy Minimization via Graph Cuts Xiaowei Zhou, June 11, 2010, Journal Club Presentation 1 outline Introduction MAP formulation for vision problems Min-cut and Max-flow Problem Energy Minimization via

More information

Parsing beyond context-free grammar: Parsing Multiple Context-Free Grammars

Parsing beyond context-free grammar: Parsing Multiple Context-Free Grammars Parsing beyond context-free grammar: Parsing Multiple Context-Free Grammars Laura Kallmeyer, Wolfgang Maier University of Tübingen ESSLLI Course 2008 Parsing beyond CFG 1 MCFG Parsing Multiple Context-Free

More information

Introduction To Graphical Models

Introduction To Graphical Models Peter Gehler Introduction to Graphical Models Introduction To Graphical Models Peter V. Gehler Max Planck Institute for Intelligent Systems, Tübingen, Germany ENS/INRIA Summer School, Paris, July 2013

More information

University of Washington Department of Electrical Engineering EE512 Spring, 2006 Graphical Models

University of Washington Department of Electrical Engineering EE512 Spring, 2006 Graphical Models University of Washington Department of Electrical Engineering EE512 Spring, 2006 Graphical Models Jeff A. Bilmes Lecture 1 Slides March 28 th, 2006 Lec 1: March 28th, 2006 EE512

More information

Probabilistic Models for Sequence Labeling

Probabilistic Models for Sequence Labeling Probabilistic Models for Sequence Labeling Besnik Fetahu June 9, 2011 Besnik Fetahu () Probabilistic Models for Sequence Labeling June 9, 2011 1 / 26 Background & Motivation Problem introduction Generative

More information

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Kohta Aoki 1 and Hiroshi Nagahashi 2 1 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

More information

Rounding-based Moves for Semi-Metric Labeling

Rounding-based Moves for Semi-Metric Labeling Rounding-based Moves for Semi-Metric Labeling M. Pawan Kumar, Puneet K. Dokania To cite this version: M. Pawan Kumar, Puneet K. Dokania. Rounding-based Moves for Semi-Metric Labeling. Journal of Machine

More information

Bayesian Inference by Density Ratio Estimation

Bayesian Inference by Density Ratio Estimation Bayesian Inference by Density Ratio Estimation Michael Gutmann https://sites.google.com/site/michaelgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information