Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY

Size: px
Start display at page:

Download "Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY"

Transcription

1 Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY

2 Department of Reasoning for Intelligence, Division of Information and Quantum Sciences, The Institute of Scientific and Industrial Research, Osaka University Our Research Scope 1. Data Mining and Machine Learning Techniques 2. Application to Science, Engineering and Society Useful Information and Knowledge Data Mining, Machine Learning We have been developing 1. Graph mining 2. Structural regularization 3. Causal inference 4. Mass based learning 5. Scientific discovery, and so on We have been applying to industrial quality control, chemical activity analysis, medical KDD, bioinformatics, high dimensional sensing, and so on Research Staffs Helsinki Max Planck Takashi Washio (Prof.) Univ. Tubingen Beijing Washington State Yoshinobu Kawahara (Assoc. Prof.) Joseph Fourier Univ. Univ., Seattle Univ., Grenoble Stanford Univ., Shohei Shimizu (Assoc. Prof.) National Uiv. San Francisco Singapore Mahito Sugiyama (Assistant Prof.) Monash Univ. Post Docs Melbourne

3 Background High dimensional big data are rapidly growing based on recent sensing, storage and network technologies. Science and Engineering Society The needs to efficiently and accurately derive models of the high dimensional big data and to analyze/ estimate their important characteristics are increasing.

4 Contents 1. Mass based density and dissimilarity estimations and their application to ML tasks (IEEE ICDM11 and IEEE ICDM14) The curse of dimensionality and the computational intractability of the big data is alleviated by using an ensemble of data subsamples and projections without any distance measures. 2. Structural regularization based ML and its application to bioinformatics (NIPS09,NIPS10, UAI13, ISMB/ECCB13) Accuracy and efficiency of ML for the high dimensional big data significantly increase by introducing structural prior knowledge to the model regularization.

5 Mass based density and dissimilarity estimations and their application to ML tasks (Joint Work with Monash University, Australia) Density Estimation Based on Mass (ICDM2011) High dim. big data x x x x 1.Data are subsampled in each frame. 2.Data mass in a randomly given axis parallel vicinity of a point x is computed. 3.Mass based density of x is their ensemble. pˆ d (x) = 1 t t i= 1 m( Ti ( x D nv i i ) Squared Bias = O(d 2 L 2 ) Variance = O(t -2 L -d ) Mass enables consistent density estimation WITHOUT DISTANCE. Its accuracy is comparable with the kernel density estimator. Its computational complexity is O(nt) (far less than O(N)).

6 Density Estimation Based on Mass (Continued) Comparison with Kernel Density Est. Density-based Clustering: DBSCAN vs DEMass-DBSCAN At Data size ratio = 150, Runtime: 4.5 hours vs 36 days Replacing conventional density estimator with DEMass improves time and space complexities of existing algorithms without loosing accuracy. Anomaly Detection: LOF VS DEMass-LOF At Data size ratio = 128, Runtime: 45 seconds vs 28 hours

7 m p -dissimilarity: A mass-based dissimilarity measure (ICDM2014) We consider to reflect the relative position of the two instances with respect to the rest of the data to the dissimilarity measure. Similar Similar? m p -dissimilarity evaluates the dissimilarity between two instances in terms of probability mass in a region covering the two instances in each dimension (No use of the special distance). p p p p mass 1 ( x, y) + mass2( x, y) + mass3( x, y)

8 m p -dissimilarity (Continued) Real world benchmark data Size n : Dimensions d : Classes c : 2-52 knn classification (accuracy) Relevance feedback based information retrieval (accuracy) ML using mass based dissimilarity reflecting the data distribution outperforms the conventional distance based ML for high dimensional data.

9 Structural regularization based ML and its application to bioinformatics (Joint Work with Max Planck Inst., Tubingen, Germany) (NIPS09,NIPS10,UAI13) High dim. data ML Model estimation Loss (error) Generally, this is a Submodular optimization problem which is NP-hard. Minimum Cost Flow Problem which is efficiently solved by parametric flow algorithm. (Gallo et al, 1989) Estimated parameters Prior Graph structured regularization for classification and regression This regularization term avoids excessively complex modeling.

10 Structural regularization based ML and its application to bioinformatics (Continued) (ISMB/ECCB13) Modeling for phenotype prediction from SNPs Q + λ Objective phenotype min S V ( S) F( S) SNPs By courtesy of D. Weigel Prediction Performance: FDR vs Power Neighbour and related genes are linked by prior knowledge. Significant performance is attained by the structural regularization.

11 Structural regularization based ML and its application to bioinformatics (Continued) (ISMB/ECCB13) Computation Time for ,000snps(200 population) Proposed method Linear regression + Statistical test Our proposed method is faster in two orders of magnitudes than graph-lasso and nclasso. This is applicable to very high dimensional data.

12 Summary The needs of modeling high dimensional big data and estimating target information from it are increasing. Both the curse of dimensionality and the computational intractability of big data should be alleviated. We are developing machine learning approaches for the needs by introducing various principles; random sampling, model ensemble, structural regularization and fast algorithms.

13 Department of Reasoning for Intelligence, Division of Information and Quantum Sciences, The Institute of Scientific and Industrial Research, Osaka University ISIR, Osaka University Location and Members

MASS ESTIMATION: ENABLING DENSITY BASED

MASS ESTIMATION: ENABLING DENSITY BASED MASS ESTIMATION: ENABLING DENSITY BASED OR DISTANCE BASED ALGORITHMS TO DO WHAT THEY CANNOT DO Kai Ming Ting Federation University Australia 16 November 2016 A Tutorial at ACML 2016 Blind Men and Elephant

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

m p -dissimilarity: A data dependent dissimilarity measure

m p -dissimilarity: A data dependent dissimilarity measure m p -dissimilarity: A data dependent dissimilarity measure Sunil Aryal, Kai Ming Ting, Gholamreza Haffari and Takashi Washio Clayton School of Information Technology, Monash University, Australia Email:

More information

Joint estimation of linear non-gaussian acyclic models

Joint estimation of linear non-gaussian acyclic models Joint estimation of linear non-gaussian acyclic models Shohei Shimizu The Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan Abstract A linear

More information

Submodularity beyond submodular energies: Coupling edges in graph cuts

Submodularity beyond submodular energies: Coupling edges in graph cuts Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems Tübingen, Germany University of Washington Seattle,

More information

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Jasjeet S. Sekhon UC Berkeley June 21, 2016 Jasjeet S. Sekhon (UC Berkeley) Methods for Massive

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Cause-Effect Inference by Comparing Regression Errors

Cause-Effect Inference by Comparing Regression Errors Cause-Effect Inference by Comparing Regression Errors Patrick Blöbaum Dominik Janzing Takashi Washio Osaka University MPI for Intelligent Systems Osaka University Japan Tübingen, Germany Japan Shohei Shimizu

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Models to carry out inference vs. Models to mimic (spatio-temporal) systems 5/5/15

Models to carry out inference vs. Models to mimic (spatio-temporal) systems 5/5/15 Models to carry out inference vs. Models to mimic (spatio-temporal) systems 5/5/15 Ring-Shaped Hotspot Detection: A Summary of Results, IEEE ICDM 2014 (w/ E. Eftelioglu et al.) Where is a crime source?

More information

Discovery of Linear Acyclic Models Using Independent Component Analysis

Discovery of Linear Acyclic Models Using Independent Component Analysis Created by S.S. in Jan 2008 Discovery of Linear Acyclic Models Using Independent Component Analysis Shohei Shimizu, Patrik Hoyer, Aapo Hyvarinen and Antti Kerminen LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/

More information

Learning Theory Continued

Learning Theory Continued Learning Theory Continued Machine Learning CSE446 Carlos Guestrin University of Washington May 13, 2013 1 A simple setting n Classification N data points Finite number of possible hypothesis (e.g., dec.

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Supporting Statistical Hypothesis Testing Over Graphs

Supporting Statistical Hypothesis Testing Over Graphs Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner,

More information

3 Comparison with Other Dummy Variable Methods

3 Comparison with Other Dummy Variable Methods Stats 300C: Theory of Statistics Spring 2018 Lecture 11 April 25, 2018 Prof. Emmanuel Candès Scribe: Emmanuel Candès, Michael Celentano, Zijun Gao, Shuangning Li 1 Outline Agenda: Knockoffs 1. Introduction

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015 Causality Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen MLSS, Tübingen 21st July 2015 Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Hierarchical models for the rainfall forecast DATA MINING APPROACH

Hierarchical models for the rainfall forecast DATA MINING APPROACH Hierarchical models for the rainfall forecast DATA MINING APPROACH Thanh-Nghi Do dtnghi@cit.ctu.edu.vn June - 2014 Introduction Problem large scale GCM small scale models Aim Statistical downscaling local

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013 SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA Outlier Detection And Description Workshop 2013 Authors Andrew Emmott emmott@eecs.oregonstate.edu Thomas Dietterich tgd@eecs.oregonstate.edu

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING

DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING ZHE WANG, TONG ZHANG AND YUHAO ZHANG Abstract. Graph properties suitable for the classification of instance hardness for the NP-hard

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns

Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns Aly Kane alykane@stanford.edu Ariel Sagalovsky asagalov@stanford.edu Abstract Equipped with an understanding of the factors that influence

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Short Note: Naive Bayes Classifiers and Permanence of Ratios

Short Note: Naive Bayes Classifiers and Permanence of Ratios Short Note: Naive Bayes Classifiers and Permanence of Ratios Julián M. Ortiz (jmo1@ualberta.ca) Department of Civil & Environmental Engineering University of Alberta Abstract The assumption of permanence

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Tsuyoshi Idé ( Ide-san ), Ankush Khandelwal*, Jayant Kalagnanam IBM Research, T. J. Watson Research Center (*Currently with University

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Class Prior Estimation from Positive and Unlabeled Data

Class Prior Estimation from Positive and Unlabeled Data IEICE Transactions on Information and Systems, vol.e97-d, no.5, pp.1358 1362, 2014. 1 Class Prior Estimation from Positive and Unlabeled Data Marthinus Christoffel du Plessis Tokyo Institute of Technology,

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Supervised locally linear embedding

Supervised locally linear embedding Supervised locally linear embedding Dick de Ridder 1, Olga Kouropteva 2, Oleg Okun 2, Matti Pietikäinen 2 and Robert P.W. Duin 1 1 Pattern Recognition Group, Department of Imaging Science and Technology,

More information

Earthquake-Induced Structural Damage Classification Algorithm

Earthquake-Induced Structural Damage Classification Algorithm Earthquake-Induced Structural Damage Classification Algorithm Max Ferguson, maxkferg@stanford.edu, Amory Martin, amorym@stanford.edu Department of Civil & Environmental Engineering, Stanford University

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

Random projection ensemble classification

Random projection ensemble classification Random projection ensemble classification Timothy I. Cannings Statistics for Big Data Workshop, Brunel Joint work with Richard Samworth Introduction to classification Observe data from two classes, pairs

More information

6. Regularized linear regression

6. Regularized linear regression Foundations of Machine Learning École Centrale Paris Fall 2015 6. Regularized linear regression Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Lucas Janson, Stanford Department of Statistics WADAPT Workshop, NIPS, December 2016 Collaborators: Emmanuel

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

The Union of Intersections (UoI) Method for Interpretable Data Driven Discovery and Prediction Kristofer E. Bouchard 1,2,3*, Alejandro Bujan 3,

The Union of Intersections (UoI) Method for Interpretable Data Driven Discovery and Prediction Kristofer E. Bouchard 1,2,3*, Alejandro Bujan 3, The Union of Intersections (UoI) Method for Interpretable Data Driven Discovery and Prediction Kristofer E. Bouchard 1,2,3*, Alejandro Bujan 3, Farbod Roosta 4, Prabhat 5, Antoine Snijdes 1, J-H Mao 1,

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu November 3, 2015 Methods to Learn Matrix Data Text Data Set Data Sequence Data Time Series Graph

More information

MULTIPLEKERNELLEARNING CSE902

MULTIPLEKERNELLEARNING CSE902 MULTIPLEKERNELLEARNING CSE902 Multiple Kernel Learning -keywords Heterogeneous information fusion Feature selection Max-margin classification Multiple kernel learning MKL Convex optimization Kernel classification

More information

Agronomy at scale Principles and approaches with examples from

Agronomy at scale Principles and approaches with examples from Agronomy at scale Principles and approaches with examples from Pieter Pypers, 22-11-2016 What is agronomy at scale? Definition: agronomy = the science of soil management and crop production at scale =

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Virtual Sensors and Large-Scale Gaussian Processes

Virtual Sensors and Large-Scale Gaussian Processes Virtual Sensors and Large-Scale Gaussian Processes Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov Coauthors: Kamalika

More information

A Statistical Framework for Analysing Big Data Global Conference on Big Data for Official Statistics October, 2015 by S Tam, Chief

A Statistical Framework for Analysing Big Data Global Conference on Big Data for Official Statistics October, 2015 by S Tam, Chief A Statistical Framework for Analysing Big Data Global Conference on Big Data for Official Statistics 20-22 October, 2015 by S Tam, Chief Methodologist Australian Bureau of Statistics 1 Big Data (BD) Issues

More information

That s Hot: Predicting Daily Temperature for Different Locations

That s Hot: Predicting Daily Temperature for Different Locations That s Hot: Predicting Daily Temperature for Different Locations Alborz Bejnood, Max Chang, Edward Zhu Stanford University Computer Science 229: Machine Learning December 14, 2012 1 Abstract. The problem

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Term Filtering with Bounded Error

Term Filtering with Bounded Error Term Filtering with Bounded Error Zi Yang, Wei Li, Jie Tang, and Juanzi Li Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University, China {yangzi, tangjie, ljz}@keg.cs.tsinghua.edu.cn

More information

P leiades: Subspace Clustering and Evaluation

P leiades: Subspace Clustering and Evaluation P leiades: Subspace Clustering and Evaluation Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, and Thomas Seidl Data management and exploration group, RWTH Aachen University, Germany {assent,mueller,krieger,jansen,seidl}@cs.rwth-aachen.de

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Non-parametric Methods

Non-parametric Methods Non-parametric Methods Machine Learning Torsten Möller Möller/Mori 1 Reading Chapter 2 of Pattern Recognition and Machine Learning by Bishop (with an emphasis on section 2.5) Möller/Mori 2 Outline Last

More information

Recent advances in Time Series Classification

Recent advances in Time Series Classification Distance Shapelet BoW Kernels CCL Recent advances in Time Series Classification Simon Malinowski, LinkMedia Research Team Classification day #3 S. Malinowski Time Series Classification 21/06/17 1 / 55

More information

Research Article Comparative Features Extraction Techniques for Electrocardiogram Images Regression

Research Article Comparative Features Extraction Techniques for Electrocardiogram Images Regression Research Journal of Applied Sciences, Engineering and Technology (): 6, 7 DOI:.96/rjaset..6 ISSN: -79; e-issn: -767 7 Maxwell Scientific Organization Corp. Submitted: September 8, 6 Accepted: November,

More information

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation Instance-based Domain Adaptation via Multi-clustering Logistic Approximation FENG U, Nanjing University of Science and Technology JIANFEI YU, Singapore Management University RUI IA, Nanjing University

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Lecture 3-A - Convex) SUVRIT SRA Massachusetts Institute of Technology Special thanks: Francis Bach (INRIA, ENS) (for sharing this material, and permitting its use) MPI-IS

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

The Nearest Feature Midpoint - A Novel Approach for Pattern Classification. Abstract

The Nearest Feature Midpoint - A Novel Approach for Pattern Classification. Abstract International Journal of Information Technology, Vol. No. The Nearest Feature Midpoint - A Novel Approach for Pattern Classification Zonglin Zhou and Chee Keong Kwoh Department of Computer Science Hong

More information

Kaviti Sai Saurab. October 23,2014. IIT Kanpur. Kaviti Sai Saurab (UCLA) Quantum methods in ML October 23, / 8

Kaviti Sai Saurab. October 23,2014. IIT Kanpur. Kaviti Sai Saurab (UCLA) Quantum methods in ML October 23, / 8 A review of Quantum Algorithms for Nearest-Neighbor Methods for Supervised and Unsupervised Learning Nathan Wiebe,Ashish Kapoor,Krysta M. Svore Jan.2014 Kaviti Sai Saurab IIT Kanpur October 23,2014 Kaviti

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

Estimation of linear non-gaussian acyclic models for latent factors

Estimation of linear non-gaussian acyclic models for latent factors Estimation of linear non-gaussian acyclic models for latent factors Shohei Shimizu a Patrik O. Hoyer b Aapo Hyvärinen b,c a The Institute of Scientific and Industrial Research, Osaka University Mihogaoka

More information

Performance Analysis of Some Machine Learning Algorithms for Regression Under Varying Spatial Autocorrelation

Performance Analysis of Some Machine Learning Algorithms for Regression Under Varying Spatial Autocorrelation Performance Analysis of Some Machine Learning Algorithms for Regression Under Varying Spatial Autocorrelation Sebastian F. Santibanez Urban4M - Humboldt University of Berlin / Department of Geography 135

More information

Approximating the Covariance Matrix with Low-rank Perturbations

Approximating the Covariance Matrix with Low-rank Perturbations Approximating the Covariance Matrix with Low-rank Perturbations Malik Magdon-Ismail and Jonathan T. Purnell Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180 {magdon,purnej}@cs.rpi.edu

More information

Discovery Through Situational Awareness

Discovery Through Situational Awareness Discovery Through Situational Awareness BRETT AMIDAN JIM FOLLUM NICK BETZSOLD TIM YIN (UNIVERSITY OF WYOMING) SHIKHAR PANDEY (WASHINGTON STATE UNIVERSITY) Pacific Northwest National Laboratory February

More information

Data Mining Based Anomaly Detection In PMU Measurements And Event Detection

Data Mining Based Anomaly Detection In PMU Measurements And Event Detection Data Mining Based Anomaly Detection In PMU Measurements And Event Detection P. Banerjee, S. Pandey, M. Zhou, A. Srivastava, Y. Wu Smart Grid Demonstration and Research Investigation Lab (SGDRIL) Energy

More information

Issues and Techniques in Pattern Classification

Issues and Techniques in Pattern Classification Issues and Techniques in Pattern Classification Carlotta Domeniconi www.ise.gmu.edu/~carlotta Machine Learning Given a collection of data, a machine learner eplains the underlying process that generated

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Human-level concept learning through probabilistic program induction

Human-level concept learning through probabilistic program induction B.M Lake, R. Salakhutdinov, J.B. Tenenbaum Human-level concept learning through probabilistic program induction journal club at two aspects in which machine learning spectacularly lags behind human learning

More information

Machine Learning. Instructor: Pranjal Awasthi

Machine Learning. Instructor: Pranjal Awasthi Machine Learning Instructor: Pranjal Awasthi Course Info Requested an SPN and emailed me Wait for Carol Difrancesco to give them out. Not registered and need SPN Email me after class No promises It s a

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines - October 2014 Big data revolution? A new

More information

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS Maya Gupta, Luca Cazzanti, and Santosh Srivastava University of Washington Dept. of Electrical Engineering Seattle,

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Raied Aljadaany, Shi Zong, Chenchen Zhu Disclaimer: A large

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Fast and Accurate Causal Inference from Time Series Data

Fast and Accurate Causal Inference from Time Series Data Fast and Accurate Causal Inference from Time Series Data Yuxiao Huang and Samantha Kleinberg Stevens Institute of Technology Hoboken, NJ {yuxiao.huang, samantha.kleinberg}@stevens.edu Abstract Causal inference

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Big Data Analytics for Materials Science: Concepts, Challenges, and Hype Luca Ghiringhelli, Jan Vybiral, Claudia Draxl, et al.

Big Data Analytics for Materials Science: Concepts, Challenges, and Hype Luca Ghiringhelli, Jan Vybiral, Claudia Draxl, et al. Big Data Analytics for Materials Science: Concepts, Challenges, and Hype Matthias Scheffler (*) Fritz Haber Institut der Ma Planck Gesellschaft, Berlin; http://th.fhi berlin.mpg.de/ From the periodic table

More information

Heterogeneous Learning. Jingrui He Computer Science Department Stevens Institute of Technology

Heterogeneous Learning. Jingrui He Computer Science Department Stevens Institute of Technology Heterogeneous Learning Jingrui He Computer Science Department Stevens Institute of Technology jingrui.he@gmail.com What is Heterogeneity? n Definition q Inhomogeneous property of a target application n

More information

CPSC 340: Machine Learning and Data Mining. Feature Selection Spring 2019

CPSC 340: Machine Learning and Data Mining. Feature Selection Spring 2019 CPSC 340: Machine Learning and Data Mining Feature Selection Spring 2019 Admin Assignment 3 is due tonight. You can use a late day to submit up to 48 hours late. Solutions will be posted at the start of

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Non-parametric Methods

Non-parametric Methods Non-parametric Methods Machine Learning Alireza Ghane Non-Parametric Methods Alireza Ghane / Torsten Möller 1 Outline Machine Learning: What, Why, and How? Curve Fitting: (e.g.) Regression and Model Selection

More information

Predictive analysis on Multivariate, Time Series datasets using Shapelets

Predictive analysis on Multivariate, Time Series datasets using Shapelets 1 Predictive analysis on Multivariate, Time Series datasets using Shapelets Hemal Thakkar Department of Computer Science, Stanford University hemal@stanford.edu hemal.tt@gmail.com Abstract Multivariate,

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

SMO Algorithms for Support Vector Machines without Bias Term

SMO Algorithms for Support Vector Machines without Bias Term Institute of Automatic Control Laboratory for Control Systems and Process Automation Prof. Dr.-Ing. Dr. h. c. Rolf Isermann SMO Algorithms for Support Vector Machines without Bias Term Michael Vogt, 18-Jul-2002

More information

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Lawrence Livermore National Laboratory Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Keith Henderson and Tina Eliassi-Rad keith@llnl.gov and eliassi@llnl.gov This work was performed

More information

Knockoffs as Post-Selection Inference

Knockoffs as Post-Selection Inference Knockoffs as Post-Selection Inference Lucas Janson Harvard University Department of Statistics blank line blank line WHOA-PSI, August 12, 2017 Controlled Variable Selection Conditional modeling setup:

More information

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier Seiichi Ozawa, Shaoning Pang, and Nikola Kasabov Graduate School of Science and Technology, Kobe

More information