Beyond stochastic gradient descent for large-scale machine learning

Size: px
Start display at page:

Download "Beyond stochastic gradient descent for large-scale machine learning"

Transcription

1 Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines - October 2014

2 Big data revolution? A new scientific context Data everywhere: size does not (always) matter Science and industry Size and variety Learning from examples n observations in dimension p

3 Search engines - Advertising

4 Marketing - Personalized recommendation

5 Visual object recognition

6 Personal photos

7 Bioinformatics Protein: Crucial elements of cell life Massive data: 2 millions for humans Complex data

8 Context Machine learning for big data Large-scale machine learning: large p, large n p : dimension of each observation (input) n : number of observations Examples: computer vision, bioinformatics, advertising Ideal running-time complexity: O(pn) Going back to simple methods Stochastic gradient methods (Robbins and Monro, 1951) Mixing statistics and optimization Using smoothness to go beyond stochastic gradient descent

9 Context Machine learning for big data Large-scale machine learning: large p, large n p : dimension of each observation (input) n : number of observations Examples: computer vision, bioinformatics, advertising Ideal running-time complexity: O(pn) Going back to simple methods Stochastic gradient methods (Robbins and Monro, 1951) Mixing statistics and optimization Using smoothness to go beyond stochastic gradient descent

10 Context Machine learning for big data Large-scale machine learning: large p, large n p : dimension of each observation (input) n : number of observations Examples: computer vision, bioinformatics, advertising Ideal running-time complexity: O(pn) Going back to simple methods Stochastic gradient methods (Robbins and Monro, 1951) Mixing statistics and optimization Using smoothness to go beyond stochastic gradient descent

11 Scaling to large problems with convex optimization Retour aux sources 1950 s: computers not powerful enough IBM 1620, 1959 CPU frequency: 50 KHz Price > dollars 2010 s: Data too massive One pass through the data (Robbins et Monro, 1956) Algorithm: θ n = θ n 1 γ n l (y n, θ n 1,Φ(x n ) )Φ(x n )

12 Scaling to large problems with convex optimization Retour aux sources 1950 s: computers not powerful enough IBM 1620, 1959 CPU frequency: 50 KHz Price > dollars 2010 s: Data too massive One pass through the data (Robbins et Monro, 1951) Algorithm: θ n = θ n 1 γ n l (y n, θ n 1,Φ(x n ) )Φ(x n )

13 Outline Introduction: stochastic approximation algorithms Supervised machine learning and convex optimization Stochastic gradient and averaging Strongly convex vs. non-strongly convex O(1/(nµ)) vs. O(1/ n) for all non-smooth functions Least-squares regressions Constant step-sizes O(1/n) convergence rate for all quadratic functions Smooth losses Online Newton steps O(1/n) convergence rate for all convex functions

14 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n, i.i.d. Prediction as a linear function θ,φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 n min l ( y i, θ,φ(x i ) ) + µω(θ) θ R p n i=1 convex data fitting term + regularizer

15 Usual losses Regression: y R, prediction ŷ = θ,φ(x) quadratic loss 1 2 (y ŷ)2 = 1 2 (y θ,φ(x) )2

16 Usual losses Regression: y R, prediction ŷ = θ,φ(x) quadratic loss 1 2 (y ŷ)2 = 1 2 (y θ,φ(x) )2 Classification : y { 1,1}, prediction ŷ = sign( θ,φ(x) ) loss of the form l(y θ,φ(x) ) True 0-1 loss: l(y θ,φ(x) ) = 1 y θ,φ(x) <0 Usual convex losses: hinge square logistic

17 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n, i.i.d. Prediction as a linear function θ,φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 n min l ( y i, θ,φ(x i ) ) + µω(θ) θ R p n i=1 convex data fitting term + regularizer

18 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n, i.i.d. Prediction as a linear function θ,φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 n min l ( y i, θ,φ(x i ) ) + µω(θ) θ R p n i=1 convex data fitting term + regularizer Empirical risk: ˆf(θ) = 1 n n i=1 l(y i, θ,φ(x i ) ) training cost Expected risk: f(θ) = E (x,y) l(y, θ,φ(x) ) testing cost Two fundamental questions: (1) computing ˆθ and (2) analyzing ˆθ May be tackled simultaneously

19 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n, i.i.d. Prediction as a linear function θ,φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 n min l ( y i, θ,φ(x i ) ) + µω(θ) θ R p n i=1 convex data fitting term + regularizer Empirical risk: ˆf(θ) = 1 n n i=1 l(y i, θ,φ(x i ) ) training cost Expected risk: f(θ) = E (x,y) l(y, θ,φ(x) ) testing cost Two fundamental questions: (1) computing ˆθ and (2) analyzing ˆθ May be tackled simultaneously

20 Smoothness and strong convexity A function g : R p R is L-smooth if and only if it is twice differentiable and θ R p, eigenvalues [ g (θ) ] L smooth non smooth

21 Smoothness and strong convexity A function g : R p R is L-smooth if and only if it is twice differentiable and θ R p, eigenvalues [ g (θ) ] L Machine learning with g(θ) = 1 n n i=1 l(y i, θ,φ(x i ) ) Hessian covariance matrix 1 n n i=1 Φ(x i) Φ(x i ) Bounded data

22 Smoothness and strong convexity A twice differentiable function g : R p R is µ-strongly convex if and only if θ R p, eigenvalues [ g (θ) ] µ convex strongly convex

23 Smoothness and strong convexity A twice differentiable function g : R p R is µ-strongly convex if and only if θ R p, eigenvalues [ g (θ) ] µ (large µ) (small µ)

24 Smoothness and strong convexity A twice differentiable function g : R p R is µ-strongly convex if and only if θ R p, eigenvalues [ g (θ) ] µ Machine learning with g(θ) = 1 n n i=1 l(y i, θ,φ(x i ) ) Hessian covariance matrix 1 n n i=1 Φ(x i) Φ(x i ) Data with invertible covariance matrix (low correlation/dimension)

25 Smoothness and strong convexity A twice differentiable function g : R p R is µ-strongly convex if and only if θ R p, eigenvalues [ g (θ) ] µ Machine learning with g(θ) = 1 n n i=1 l(y i, θ,φ(x i ) ) Hessian covariance matrix 1 n n i=1 Φ(x i) Φ(x i ) Data with invertible covariance matrix (low correlation/dimension) Adding regularization by µ 2 θ 2 creates additional bias unless µ is small

26 Iterative methods for minimizing smooth functions Assumption: g convex and smooth on R p Gradient descent: θ t = θ t 1 γ t g (θ t 1 ) O(1/t) convergence rate for convex functions O(e ρt ) convergence rate for strongly convex functions

27 Iterative methods for minimizing smooth functions Assumption: g convex and smooth on R p Gradient descent: θ t = θ t 1 γ t g (θ t 1 ) O(1/t) convergence rate for convex functions O(e ρt ) convergence rate for strongly convex functions Newton method: θ t = θ t 1 g (θ t 1 ) 1 g (θ t 1 ) O ( e ρ2t ) convergence rate

28 Iterative methods for minimizing smooth functions Assumption: g convex and smooth on R p Gradient descent: θ t = θ t 1 γ t g (θ t 1 ) O(1/t) convergence rate for convex functions O(e ρt ) convergence rate for strongly convex functions Newton method: θ t = θ t 1 g (θ t 1 ) 1 g (θ t 1 ) O ( e ρ2t ) convergence rate Key insights from Bottou and Bousquet (2008) 1. In machine learning, no need to optimize below statistical error 2. In machine learning, cost functions are averages Stochastic approximation

29 Stochastic approximation Goal: Minimizing a function f defined on R p given only unbiased estimates f n(θ n ) of its gradients f (θ n ) at certain points θ n R p

30 Stochastic approximation Goal: Minimizing a function f defined on R p given only unbiased estimates f n(θ n ) of its gradients f (θ n ) at certain points θ n R p Machine learning - statistics f(θ) = Ef n (θ) = El(y n, θ,φ(x n ) ) = generalization error Loss for a single pair of observations: f n (θ) = l(y n, θ,φ(x n ) ) Expected gradient: f (θ) = Ef n(θ) = E { l (y n, θ,φ(x n ) )Φ(x n ) } Beyond convex optimization: see, e.g., Benveniste et al. (2012)

31 Convex stochastic approximation Key assumption: smoothness and/or strong convexity Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro) θ n = θ n 1 γ n f n(θ n 1 ) Polyak-Ruppert averaging: θ n = 1 n+1 n k=0 θ k Which learning rate sequence γ n? Classical setting: γ n = Cn α

32 Convex stochastic approximation Key assumption: smoothness and/or strong convexity Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro) θ n = θ n 1 γ n f n(θ n 1 ) Polyak-Ruppert averaging: θ n = 1 n+1 n k=0 θ k Which learning rate sequence γ n? Classical setting: γ n = Cn α Running-time = O(np) Single pass through the data One line of code among many

33 Convex stochastic approximation Existing work Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012) Strongly convex: O((µn) 1 ) Attainedbyaveragedstochasticgradientdescentwithγ n (µn) 1 Non-strongly convex: O(n 1/2 ) Attained by averaged stochastic gradient descent with γ n n 1/2

34 Convex stochastic approximation Existing work Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012) Strongly convex: O((µn) 1 ) Attainedbyaveragedstochasticgradientdescentwithγ n (µn) 1 Non-strongly convex: O(n 1/2 ) Attained by averaged stochastic gradient descent with γ n n 1/2 Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988) All step sizes γ n = Cn α with α (1/2,1) lead to O(n 1 ) for smooth strongly convex problems A single algorithm with global adaptive convergence rate for smooth problems?

35 Convex stochastic approximation Existing work Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012) Strongly convex: O((µn) 1 ) Attainedbyaveragedstochasticgradientdescentwithγ n (µn) 1 Non-strongly convex: O(n 1/2 ) Attained by averaged stochastic gradient descent with γ n n 1/2 Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988) All step sizes γ n = Cn α with α (1/2,1) lead to O(n 1 ) for smooth strongly convex problems A single algorithm for smooth problems with convergence rate O(1/n) in all situations?

36 Least-mean-square algorithm Least-squares: f(θ) = 1 2 E[ (y n Φ(x n ),θ ) 2] with θ R p SGD = least-mean-square algorithm (see, e.g., Macchi, 1995) usually studied without averaging and decreasing step-sizes with strong convexity assumption E [ Φ(x n ) Φ(x n ) ] = H µ Id

37 Least-mean-square algorithm Least-squares: f(θ) = 1 2 E[ (y n Φ(x n ),θ ) 2] with θ R p SGD = least-mean-square algorithm (see, e.g., Macchi, 1995) usually studied without averaging and decreasing step-sizes with strong convexity assumption E [ Φ(x n ) Φ(x n ) ] = H µ Id New analysis for averaging and constant step-size γ = 1/(4R 2 ) Assume Φ(x n ) R and y n Φ(x n ),θ σ almost surely No assumption regarding lowest eigenvalues of H Main result: Ef( θ n 1 ) f(θ ) 4σ2 p n + 4R2 θ 0 θ 2 n Matches statistical lower bound (Tsybakov, 2003) Non-asymptotic robust version of Györfi and Walk (1996)

38 Markov chain interpretation of constant step sizes LMS recursion for f n (θ) = 1 2 ( yn Φ(x n ),θ ) 2 θ n = θ n 1 γ ( Φ(x n ),θ n 1 y n ) Φ(xn ) The sequence (θ n ) n is a homogeneous Markov chain convergence to a stationary distribution π γ with expectation θ γ def = θπ γ (dθ) - For least-squares, θ γ = θ θ n θ γ θ 0

39 Markov chain interpretation of constant step sizes LMS recursion for f n (θ) = 1 2 ( yn Φ(x n ),θ ) 2 θ n = θ n 1 γ ( Φ(x n ),θ n 1 y n ) Φ(xn ) The sequence (θ n ) n is a homogeneous Markov chain convergence to a stationary distribution π γ with expectation θ γ def = θπ γ (dθ) For least-squares, θ γ = θ θ n θ θ 0

40 Markov chain interpretation of constant step sizes LMS recursion for f n (θ) = 1 2 ( yn Φ(x n ),θ ) 2 θ n = θ n 1 γ ( Φ(x n ),θ n 1 y n ) Φ(xn ) The sequence (θ n ) n is a homogeneous Markov chain convergence to a stationary distribution π γ with expectation θ γ def = θπ γ (dθ) For least-squares, θ γ = θ θ n θ n θ θ 0

41 Markov chain interpretation of constant step sizes LMS recursion for f n (θ) = 1 2 ( yn Φ(x n ),θ ) 2 θ n = θ n 1 γ ( Φ(x n ),θ n 1 y n ) Φ(xn ) The sequence (θ n ) n is a homogeneous Markov chain convergence to a stationary distribution π γ with expectation θ γ def = θπ γ (dθ) For least-squares, θ γ = θ θ n does not converge to θ but oscillates around it oscillations of order γ Ergodic theorem: Averaged iterates converge to θ γ = θ at rate O(1/n)

42 Simulations - synthetic examples Gaussian distributions - p = 20 0 synthetic square log 10 [f(θ) f(θ * )] /2R 2 1/8R 2 4 1/32R 2 1/2R 2 n 1/ log 10 (n)

43 Simulations - benchmarks alpha (p = 500, n = ), news (p = , n = ) log 10 [f(θ) f(θ * )] alpha square C=1 test 1/R 2 1/R 2 n 1/2 SAG log (n) alpha square C=opt test C/R 2 C/R 2 n 1/2 SAG log (n) news square C=1 test 0.2 news square C=opt test log 10 [f(θ) f(θ * )] /R 2 1/R 2 n 1/2 SAG log (n) C/R 2 C/R 2 n 1/2 SAG log 10 (n)

44 Beyond least-squares - Markov chain interpretation Recursion θ n = θ n 1 γf n(θ n 1 ) also defines a Markov chain Stationary distribution π γ such that f (θ)π γ (dθ) = 0 When f is not linear, f ( θπ γ (dθ)) f (θ)π γ (dθ) = 0

45 Beyond least-squares - Markov chain interpretation Recursion θ n = θ n 1 γf n(θ n 1 ) also defines a Markov chain Stationary distribution π γ such that f (θ)π γ (dθ) = 0 When f is not linear, f ( θπ γ (dθ)) f (θ)π γ (dθ) = 0 θ n oscillates around the wrong value θ γ θ θ n θ n θ γ θ 0 θ

46 Beyond least-squares - Markov chain interpretation Recursion θ n = θ n 1 γf n(θ n 1 ) also defines a Markov chain Stationary distribution π γ such that f (θ)π γ (dθ) = 0 When f is not linear, f ( θπ γ (dθ)) f (θ)π γ (dθ) = 0 θ n oscillates around the wrong value θ γ θ moreover, θ θ n = O p ( γ) Ergodic theorem averaged iterates converge to θ γ θ at rate O(1/n) moreover, θ θ γ = O(γ) (Bach, 2013)

47 Simulations - synthetic examples Gaussian distributions - p = 20 0 synthetic logistic 1 log 10 [f(θ) f(θ * )] 1 2 1/2R 2 3 1/8R 2 4 1/32R 2 5 1/2R 2 n 1/ log 10 (n)

48 Restoring convergence through online Newton steps Known facts 1. Averaged SGD with γ n n 1/2 leads to robust rate O(n 1/2 ) for all convex functions 2. Averaged SGD with γ n constant leads to robust rate O(n 1 ) for all convex quadratic functions 3. Newton s method squares the error at each iteration for smooth functions 4. A single step of Newton s method is equivalent to minimizing the quadratic Taylor expansion Online Newton step Rate: O((n 1/2 ) 2 +n 1 ) = O(n 1 ) Complexity: O(p) per iteration

49 Restoring convergence through online Newton steps Known facts 1. Averaged SGD with γ n n 1/2 leads to robust rate O(n 1/2 ) for all convex functions 2. Averaged SGD with γ n constant leads to robust rate O(n 1 ) for all convex quadratic functions O(n 1 ) 3. Newton s method squares the error at each iteration for smooth functions O((n 1/2 ) 2 ) 4. A single step of Newton s method is equivalent to minimizing the quadratic Taylor expansion Online Newton step Rate: O((n 1/2 ) 2 +n 1 ) = O(n 1 ) Complexity: O(p) per iteration

50 Restoring convergence through online Newton steps The Newton step for f = Ef n (θ) def = E [ l(y n, θ,φ(x n ) ) ] at θ is equivalent to minimizing the quadratic approximation g(θ) = f( θ)+ f ( θ),θ θ θ θ,f ( θ)(θ θ) = f( θ)+ Ef n( θ),θ θ θ θ,ef n( θ)(θ θ) [ = E f( θ)+ f n( θ),θ θ θ θ,f n( θ)(θ θ) ]

51 Restoring convergence through online Newton steps The Newton step for f = Ef n (θ) def = E [ l(y n, θ,φ(x n ) ) ] at θ is equivalent to minimizing the quadratic approximation g(θ) = f( θ)+ f ( θ),θ θ θ θ,f ( θ)(θ θ) = f( θ)+ Ef n( θ),θ θ θ θ,ef n( θ)(θ θ) [ = E f( θ)+ f n( θ),θ θ θ θ,f n( θ)(θ θ) ] Complexity of least-mean-square recursion for g is O(p) θ n = θ n 1 γ [ f n( θ)+f n( θ)(θ n 1 θ) ] f n( θ) = l (y n, θ,φ(x n ) )Φ(x n ) Φ(x n ) has rank one New online Newton step without computing/inverting Hessians

52 Choice of support point for online Newton step Two-stage procedure (1) Run n/2 iterations of averaged SGD to obtain θ (2) Run n/2 iterations of averaged constant step-size LMS Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000) Provable convergence rate of O(p/n) for logistic regression Additional assumptions but no strong convexity

53 Choice of support point for online Newton step Two-stage procedure (1) Run n/2 iterations of averaged SGD to obtain θ (2) Run n/2 iterations of averaged constant step-size LMS Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000) Provable convergence rate of O(p/n) for logistic regression Additional assumptions but no strong convexity Update at each iteration using the current averaged iterate Recursion: θ n = θ n 1 γ [ f n( θ n 1 )+f n( θ n 1 )(θ n 1 θ n 1 ) ] No provable convergence rate (yet) but best practical behavior Note (dis)similarity with regular SGD: θ n = θ n 1 γf n(θ n 1 )

54 Simulations - synthetic examples Gaussian distributions - p = 20 0 synthetic logistic 1 0 synthetic logistic 2 log 10 [f(θ) f(θ * )] /2R 2 3 1/8R 2 3 every 2 p 4 1/32R 2 every iter. 4 2 step 5 1/2R 2 n 1/2 5 2 step dbl log 10 (n) log 10 (n) log 10 [f(θ) f(θ * )] 1

55 Simulations - benchmarks alpha (p = 500, n = ), news (p = , n = ) alpha logistic C=1 test alpha logistic C=opt test log 10 [f(θ) f(θ * )] /R /R 2 n 1/2 SAG 2 Adagrad Newton log (n) C/R C/R 2 n 1/2 SAG 2 Adagrad Newton log (n) news logistic C=1 test 0.2 news logistic C=opt test log 10 [f(θ) f(θ * )] /R /R 2 n 1/2 SAG 0.8 Adagrad 1 Newton log (n) C/R C/R 2 n 1/2 SAG 0.8 Adagrad 1 Newton log 10 (n)

56 Conclusions Constant-step-size averaged stochastic gradient descent Reaches convergence rate O(1/n) in all regimes Improves on the O(1/ n) lower-bound of non-smooth problems Efficient online Newton step for non-quadratic problems Robustness to step-size selection Extensions and future work Going beyond a single pass Pre-conditioning Proximal extensions fo non-differentiable terms kernels and non-parametric estimation(dieuleveut and Bach, 2014) line-search parallelization Non-convex problems

57 References A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. Information Theory, IEEE Transactions on, 58(5): , F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. Technical Report , HAL, Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic approximations. Springer Publishing Company, Incorporated, L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, A. Dieuleveut and F. Bach. Non-parametric Stochastic Approximation with Large Step sizes. Technical report, ArXiv, L. Györfi and H. Walk. On the averaged stochastic approximation for linear regression. SIAM Journal on Control and Optimization, 34(1):31 61, O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission. Wiley West Sussex, A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4): , 1992.

58 H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22: , ISSN D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, A. B. Tsybakov. Optimal rates of aggregation A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - CAP, July

More information

Stochastic gradient descent and robustness to ill-conditioning

Stochastic gradient descent and robustness to ill-conditioning Stochastic gradient descent and robustness to ill-conditioning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Aymeric Dieuleveut, Nicolas Flammarion,

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Aymeric Dieuleveut, Nicolas Flammarion,

More information

Large-scale machine learning and convex optimization

Large-scale machine learning and convex optimization Large-scale machine learning and convex optimization Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Allerton Conference - September 2015 Slides available at www.di.ens.fr/~fbach/gradsto_allerton.pdf

More information

Large-scale machine learning and convex optimization

Large-scale machine learning and convex optimization Large-scale machine learning and convex optimization Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE IFCAM, Bangalore - July 2014 Big data revolution? A new scientific

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - January 2013 Context Machine

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - September 2012 Context Machine

More information

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Loucas Pillaud-Vivien

More information

Statistical machine learning and convex optimization

Statistical machine learning and convex optimization Statistical machine learning and convex optimization Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Mastère M2 - Paris-Sud - Spring 2018 Slides available: www.di.ens.fr/~fbach/fbach_orsay_2018.pdf

More information

Stochastic optimization: Beyond stochastic gradients and convexity Part I

Stochastic optimization: Beyond stochastic gradients and convexity Part I Stochastic optimization: Beyond stochastic gradients and convexity Part I Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint tutorial with Suvrit Sra, MIT - NIPS

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Lecture 3-A - Convex) SUVRIT SRA Massachusetts Institute of Technology Special thanks: Francis Bach (INRIA, ENS) (for sharing this material, and permitting its use) MPI-IS

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

Linearly-Convergent Stochastic-Gradient Methods

Linearly-Convergent Stochastic-Gradient Methods Linearly-Convergent Stochastic-Gradient Methods Joint work with Francis Bach, Michael Friedlander, Nicolas Le Roux INRIA - SIERRA Project - Team Laboratoire d Informatique de l École Normale Supérieure

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization racle Complexity of Second-rder Methods for Smooth Convex ptimization Yossi Arjevani had Shamir Ron Shiff Weizmann Institute of Science Rehovot 7610001 Israel Abstract yossi.arjevani@weizmann.ac.il ohad.shamir@weizmann.ac.il

More information

Stochastic gradient descent on Riemannian manifolds

Stochastic gradient descent on Riemannian manifolds Stochastic gradient descent on Riemannian manifolds Silvère Bonnabel 1 Centre de Robotique - Mathématiques et systèmes Mines ParisTech SMILE Seminar Mines ParisTech Novembre 14th, 2013 1 silvere.bonnabel@mines-paristech

More information

Stochastic Composition Optimization

Stochastic Composition Optimization Stochastic Composition Optimization Algorithms and Sample Complexities Mengdi Wang Joint works with Ethan X. Fang, Han Liu, and Ji Liu ORFE@Princeton ICCOPT, Tokyo, August 8-11, 2016 1 / 24 Collaborators

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Ergodic Subgradient Descent

Ergodic Subgradient Descent Ergodic Subgradient Descent John Duchi, Alekh Agarwal, Mikael Johansson, Michael Jordan University of California, Berkeley and Royal Institute of Technology (KTH), Sweden Allerton Conference, September

More information

Non-asymptotic bound for stochastic averaging

Non-asymptotic bound for stochastic averaging Non-asymptotic bound for stochastic averaging S. Gadat and F. Panloup Toulouse School of Economics PGMO Days, November, 14, 2017 I - Introduction I - 1 Motivations I - 2 Optimization I - 3 Stochastic Optimization

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Perturbed Proximal Gradient Algorithm

Perturbed Proximal Gradient Algorithm Perturbed Proximal Gradient Algorithm Gersende FORT LTCI, CNRS, Telecom ParisTech Université Paris-Saclay, 75013, Paris, France Large-scale inverse problems and optimization Applications to image processing

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Joint work with Nicolas Le Roux and Francis Bach University of British Columbia Context: Machine Learning for Big Data Large-scale

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Algorithmic Stability and Generalization Christoph Lampert

Algorithmic Stability and Generalization Christoph Lampert Algorithmic Stability and Generalization Christoph Lampert November 28, 2018 1 / 32 IST Austria (Institute of Science and Technology Austria) institute for basic research opened in 2009 located in outskirts

More information

Static Parameter Estimation using Kalman Filtering and Proximal Operators Vivak Patel

Static Parameter Estimation using Kalman Filtering and Proximal Operators Vivak Patel Static Parameter Estimation using Kalman Filtering and Proximal Operators Viva Patel Department of Statistics, University of Chicago December 2, 2015 Acnowledge Mihai Anitescu Senior Computational Mathematician

More information

Modern Optimization Techniques

Modern Optimization Techniques Modern Optimization Techniques 2. Unconstrained Optimization / 2.2. Stochastic Gradient Descent Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Asymptotic and finite-sample properties of estimators based on stochastic gradients

Asymptotic and finite-sample properties of estimators based on stochastic gradients Asymptotic and finite-sample properties of estimators based on stochastic gradients Panagiotis (Panos) Toulis panos.toulis@chicagobooth.edu Econometrics and Statistics University of Chicago, Booth School

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Stochastic Optimization Part I: Convex analysis and online stochastic optimization

Stochastic Optimization Part I: Convex analysis and online stochastic optimization Stochastic Optimization Part I: Convex analysis and online stochastic optimization Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions International Journal of Control Vol. 00, No. 00, January 2007, 1 10 Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions I-JENG WANG and JAMES C.

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Constrained Stochastic Gradient Descent for Large-scale Least Squares Problem

Constrained Stochastic Gradient Descent for Large-scale Least Squares Problem Constrained Stochastic Gradient Descent for Large-scale Least Squares Problem ABSRAC Yang Mu University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA, US 015 yangmu@cs.umb.edu ianyi Zhou University

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Multiple kernel learning for multiple sources

Multiple kernel learning for multiple sources Multiple kernel learning for multiple sources Francis Bach INRIA - Ecole Normale Supérieure NIPS Workshop - December 2008 Talk outline Multiple sources in computer vision Multiple kernel learning (MKL)

More information

arxiv: v1 [math.oc] 7 Dec 2018

arxiv: v1 [math.oc] 7 Dec 2018 arxiv:1812.02878v1 [math.oc] 7 Dec 2018 Solving Non-Convex Non-Concave Min-Max Games Under Polyak- Lojasiewicz Condition Maziar Sanjabi, Meisam Razaviyayn, Jason D. Lee University of Southern California

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

Stochastic gradient descent on Riemannian manifolds

Stochastic gradient descent on Riemannian manifolds Stochastic gradient descent on Riemannian manifolds Silvère Bonnabel 1 Robotics lab - Mathématiques et systèmes Mines ParisTech Gipsa-lab, Grenoble June 20th, 2013 1 silvere.bonnabel@mines-paristech Introduction

More information

More Optimization. Optimization Methods. Methods

More Optimization. Optimization Methods. Methods More More Optimization Optimization Methods Methods Yann YannLeCun LeCun Courant CourantInstitute Institute http://yann.lecun.com http://yann.lecun.com (almost) (almost) everything everything you've you've

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

Oslo Class 2 Tikhonov regularization and kernels

Oslo Class 2 Tikhonov regularization and kernels RegML2017@SIMULA Oslo Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT May 3, 2017 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

Linear and logistic regression

Linear and logistic regression Linear and logistic regression Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Linear and logistic regression 1/22 Outline 1 Linear regression 2 Logistic regression 3 Fisher discriminant analysis

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Julien Mairal Inria, LEAR Team, Grenoble Journées MAS, Toulouse Julien Mairal Incremental and Stochastic

More information

Stochastic Quasi-Newton Methods

Stochastic Quasi-Newton Methods Stochastic Quasi-Newton Methods Donald Goldfarb Department of IEOR Columbia University UCLA Distinguished Lecture Series May 17-19, 2016 1 / 35 Outline Stochastic Approximation Stochastic Gradient Descent

More information

Accelerating Stochastic Gradient Descent for Least Squares Regression

Accelerating Stochastic Gradient Descent for Least Squares Regression Proceedings of Machine Learning Research vol 75: 6, 8 3st Annual Conference on Learning Theory Accelerating Stochastic Gradient Descent for Least Squares Regression Prateek Jain Praneeth Netrapalli Microsoft

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning

Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning Francesco Orabona Yahoo! Labs New York, USA francesco@orabona.com Abstract Stochastic gradient descent algorithms

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Large Scale Machine Learning with Stochastic Gradient Descent

Large Scale Machine Learning with Stochastic Gradient Descent Large Scale Machine Learning with Stochastic Gradient Descent Léon Bottou leon@bottou.org Microsoft (since June) Summary i. Learning with Stochastic Gradient Descent. ii. The Tradeoffs of Large Scale Learning.

More information

A Parallel SGD method with Strong Convergence

A Parallel SGD method with Strong Convergence A Parallel SGD method with Strong Convergence Dhruv Mahajan Microsoft Research India dhrumaha@microsoft.com S. Sundararajan Microsoft Research India ssrajan@microsoft.com S. Sathiya Keerthi Microsoft Corporation,

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Estimators based on non-convex programs: Statistical and computational guarantees

Estimators based on non-convex programs: Statistical and computational guarantees Estimators based on non-convex programs: Statistical and computational guarantees Martin Wainwright UC Berkeley Statistics and EECS Based on joint work with: Po-Ling Loh (UC Berkeley) Martin Wainwright

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Unless granted by the instructor in advance, you must turn

More information

Randomized Smoothing Techniques in Optimization

Randomized Smoothing Techniques in Optimization Randomized Smoothing Techniques in Optimization John Duchi Based on joint work with Peter Bartlett, Michael Jordan, Martin Wainwright, Andre Wibisono Stanford University Information Systems Laboratory

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Early Stopping for Computational Learning

Early Stopping for Computational Learning Early Stopping for Computational Learning Lorenzo Rosasco Universita di Genova, Massachusetts Institute of Technology Istituto Italiano di Tecnologia CBMM Sestri Levante, September, 2014 joint work with

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 17: Stochastic Optimization Part II: Realizable vs Agnostic Rates Part III: Nearest Neighbor Classification Stochastic

More information

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Alexander Rakhlin University of Pennsylvania Ohad Shamir Microsoft Research New England Karthik Sridharan University of Pennsylvania

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

RegML 2018 Class 2 Tikhonov regularization and kernels

RegML 2018 Class 2 Tikhonov regularization and kernels RegML 2018 Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT June 17, 2018 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i,

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Lecture 2 February 25th

Lecture 2 February 25th Statistical machine learning and convex optimization 06 Lecture February 5th Lecturer: Francis Bach Scribe: Guillaume Maillard, Nicolas Brosse This lecture deals with classical methods for convex optimization.

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

Fast Stochastic Optimization Algorithms for ML

Fast Stochastic Optimization Algorithms for ML Fast Stochastic Optimization Algorithms for ML Aaditya Ramdas April 20, 205 This lecture is about efficient algorithms for minimizing finite sums min w R d n i= f i (w) or min w R d n f i (w) + λ 2 w 2

More information

Sequential and reinforcement learning: Stochastic Optimization I

Sequential and reinforcement learning: Stochastic Optimization I 1 Sequential and reinforcement learning: Stochastic Optimization I Sequential and reinforcement learning: Stochastic Optimization I Summary This session describes the important and nowadays framework of

More information

A talk on Oracle inequalities and regularization. by Sara van de Geer

A talk on Oracle inequalities and regularization. by Sara van de Geer A talk on Oracle inequalities and regularization by Sara van de Geer Workshop Regularization in Statistics Banff International Regularization Station September 6-11, 2003 Aim: to compare l 1 and other

More information

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C.

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Spall John Wiley and Sons, Inc., 2003 Preface... xiii 1. Stochastic Search

More information