Oslo Class 2 Tikhonov regularization and kernels

Size: px
Start display at page:

Download "Oslo Class 2 Tikhonov regularization and kernels"

Transcription

1 Oslo Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT May 3, 2017

2 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i, y i ) n (ρ, fixed, unknown). How can we design reliable algorithms?

3 This class Regularization by penalization Logistic regression Representer theorems and Kernels Support vector machines

4 Empirical Risk Minimization (ERM) min f H E(f) min Ê(f) f H proxy to E Ê(f) = 1 n L(f(x i ), y i )

5 From ERM to regularization ERM can be a bad idea if n is small and H is big Penalization min Ê(f) min f H f H Ê(f) + λ R(f) }{{} regularization λ regularization parameter

6 Examples of regularizers Let p f(x) = φ j (x)w j j=1 l 2 p R(f) = w 2 = w j 2, j=1 l 1 p R(f) = w 1 = w j, j=1 Differential operators R(f) = f(x) 2 dρ(x),... X

7 From statistics to optimization Problem Solve min Ê(w) + λ w 2 w Rp with Ê(w) = 1 n L(w x i, y i ).

8 Minimization min Ê(w) + λ w 2 w Strongly convex continuous coercive functional Computations depends on the considered loss function

9 Hinge loss & SVM loss square loss Hinge loss Logistic loss log (1 + e yf(x) ) Linear Non linear Solution by gradient descent

10 Logistic regression Ê λ (w) = 1 log(1 + e yiw x i ) + λ w 2. n }{{} smooth and strongly convex Êλ(w) = 1 n x i y i 1 + e yiw x i + 2λw

11 Gradient descent Let F : R d R differentiable, (strictly) convex and such that F (w) F (w ) L w w (e.g. sup w H(w) L) }{{} hessian Then w 0 = 0, w t+1 = w t 1 L F (w t), converges to the minimizer of F.

12 Gradient descent for LR 1 min w R p n log(1 + e yiw x i ) + λ w 2 Consider w t+1 = w t 1 L [ 1 n x i y i 1 + e yiw t xi + 2λw t ] Excercise: compute a good step-size!

13 Remarks Complexity: O(ndT ) n number of examples, d dimensionality, T number of steps What about non-linear functions?

14 Non-linear features d p f(x) = w i x i f(x) = w i φ i (x i ).

15 Non-linear features d p f(x) = w i x i f(x) = w i φ i (x i ). Model Φ(x) = (φ 1 (x),..., φ p (x)),

16 Gradient descent for LR Same up-to the change x Φ(x)... 1 min w R p n log(1 + e yiw Φ(x i) ) + λ w 2 Consider w t+1 = w t 1 L [ 1 n x i y i 1 + e yiw t Φ(xi) + 2λw t ]

17 Gradient descent for LR Same up-to the change x Φ(x)... 1 min w R p n log(1 + e yiw Φ(x i) ) + λ w 2 Consider w t+1 = w t 1 L [ 1 n x i y i 1 + e yiw t Φ(xi) + 2λw t ] Complexity is O(npT )

18 Representer theorem and Kernels Nonparametrics? d f(x) = w i x i f(x) = w i φ i (x i ).

19 Representer theorem and Kernels Nonparametrics? d f(x) = w i x i f(x) = w i φ i (x i ). An equivalent formulation for gradient descent provides a way in...

20 Representer theorem for GD & LR By induction c t+1 = c t 1 L [ 1 n e i y i 1 + e yift(xi) + 2λc t ] with e i the i-th element of the canonical basis and f t (x) = x x i (c t ) i Show as an excercise!

21 Representer theorems Idea Show that f(x) = w x = x i xc i, c i R. i.e. w = n x ic i.

22 Representer theorems Idea Show that i.e. w = n x ic i. f(x) = w x = x i xc i, c i R. Then: Replace inner product x x K(x, x ) = Φ(x) T Φ(x) Compute c = (c 1,..., c n ) R n rather than w R d.

23 From features to kernels f(x) = x i xc i f(x) = Φ(x i ) Φ(x)c i Kernels Φ(x) Φ(x ) K(x, x )

24 From features to kernels f(x) = x i xc i f(x) = Φ(x i ) Φ(x)c i Kernels Φ(x) Φ(x ) K(x, x ) f(x) = K(x i, x)c i

25 LR with kernels GD-LR becomes c t+1 = c t 1 L [ 1 n e i y i 1 + e yift(xi) + 2λc t ] where f t (x) = K(x, x i )(c t ) i What are (good) kernels?

26 Examples of kernels Linear K(x, x ) = x x Polynomial K(x, x ) = (1 + x x) p, with p N Gaussian K(x, x ) = e γ x x 2, with γ > 0

27 Examples of kernels Linear K(x, x ) = x x Polynomial K(x, x ) = (1 + x x) p, with p N Gaussian K(x, x ) = e γ x x 2, with γ > 0 f(x) = c i K(x i, x)

28 Kernel engineering Kernels for Strings, Graphs, Histograms, Sets,...

29 What is a kernel? K(x, x ) A similarity measure An inner product A positive definite function

30 Positive definite function K : X X R is positive definite, when for any n N, x 1,..., x n X, let K n such that K n R n n, (K n ) ij = K(x i, x j ), then K n is positive semidefinite, (eigenvalues 0)

31 PD functions, RKHS and Gaussian processes Each PD Kernel defines: a function space called Reproducing kernel Hilbert space (RKHS)... H = span {K(, x) x X}. a Gaussian process with covariance function K.

32 Nonparametrics and kernels Number of parameters automatically determined by number of points f(x) = K(x i, x)c i Compare to p f(x) = φ j (x)w j j=1

33 Hinge loss loss square loss Hinge loss Logistic loss yf(x) + Linear Non linear Solution by sub-gradient method

34 Support vector machine (SVM) Ê λ (w) = 1 1 y i w x i + + λ w 2 n }{{} strongly-convex but non-smooth!

35 Subgradient

36 Subgradient Let F : R p R convex. Subgradient F (w 0 ) set of vectors v R p such that, for every w R p F (w) F (w 0 ) (w w 0 ) v In one dimension F (w 0 ) = [F (w 0 ), F +(w 0 )].

37 Subgradient method Let F : R p R strictly convex, with bounded subdifferential, and γ t = 1/ t then, w t+1 = w t γ t v t with v t F (w t ) converges to the minimizer of F.

38 Subgradient method for SVM 1 min w R p n 1 y i w x i + + λ w 2 Consider left derivative w t+1 = w t 1 t ( 1 n ) S i (w t ) + 2λw t S i (w) = { y i x i if y i w x i 1, 0 otherwise

39 Remarks Traditional solution is solving a quadratic program (QP)...

40 Remarks Traditional solution is solving a quadratic program (QP) but it doesn t scale (and is more complicated!).

41 Remarks Traditional solution is solving a quadratic program (QP) but it doesn t scale (and is more complicated!). Easy extension to stochastic gradient.

42 Remarks Traditional solution is solving a quadratic program (QP) but it doesn t scale (and is more complicated!). Easy extension to stochastic gradient. Can be seen as a robust, regularized perceptron.

43 Non linear Subgradient SVM Same up-to the change x Φ(x), w t+1 = w t 1 t ( 1 n ) S i (w t ) + 2λw t S i (w) = { y i x i if y i w Φ(x i ) 1 0 otherwise

44 Representer theorem for SVM By induction (exercise) c t+1 = c t 1 t ( 1 n ) S i (c t ) + 2λc t with and S i (c t ) = f t (x) = x x i (c t ) i { y i e i if y i f t (x i ) < 1 0 otherwise where e i the i-th element of the canonical basis.

45 Kernel SVM by subgradient Given a kernel K, c t+1 = c t 1 t ( 1 n ) S i (c t ) + 2λc t with and f t (x) = S i (c t ) = K(x, x i )(c t ) i { y i e i if y i f t (x i ) < 1 0 otherwise where e i the i-th element of the canonical basis.

46 Complexity Without representer Logistic: O(ndT ) SVM: O(ndT ) With representer Logistic: O(n 2 (d + T )) SVM: O(n 2 (d + T )) n number of example, d dimensionality, T number of steps

47 But why are these called support vector machines???

48 Optimality condition for SVM Smooth Convex F (w ) = 0 Non-smooth Convex 0 F (w)

49 Optimality condition for SVM Smooth Convex F (w ) = 0 Non-smooth Convex 0 F (w) 0 F (w ) 0 1 y i w x i + + λ2w w 1 2λ 1 y iw x i +

50 Optimality condition for SVM (cont.) The optimality condition can be rewritten as 0 = 1 n ( y i x i c i ) + 2λw w = where c i = c i (w) [V ( y i w x i ), V + ( y i w x i )]. x i ( y ic i 2λn ). A direct computation gives c i = 1 if yf(x i ) < 1 0 c i 1 if yf(x i ) = 1 c i = 0 if yf(x i ) > 1

51 Support vectors c i = 1 if yf(x i ) < 1 0 c i 1 if yf(x i ) = 1 c i = 0 if yf(x i ) > 1

52 Are loss functions all the same? min Ê(w) + λ w 2 w each loss has a different target function and different computations The choice of the loss is problem dependent

53 This class Learning and regularization: logistic regression and SVM Optimization with first order methods Linear and non-linear parametric models Non-parametric models and kernels

54 Next class Beyond penalization Regularization by projection early-stopping

RegML 2018 Class 2 Tikhonov regularization and kernels

RegML 2018 Class 2 Tikhonov regularization and kernels RegML 2018 Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT June 17, 2018 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i,

More information

Oslo Class 4 Early Stopping and Spectral Regularization

Oslo Class 4 Early Stopping and Spectral Regularization RegML2017@SIMULA Oslo Class 4 Early Stopping and Spectral Regularization Lorenzo Rosasco UNIGE-MIT-IIT June 28, 2016 Learning problem Solve min w E(w), E(w) = dρ(x, y)l(w x, y) given (x 1, y 1 ),..., (x

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

TUM 2016 Class 3 Large scale learning by regularization

TUM 2016 Class 3 Large scale learning by regularization TUM 2016 Class 3 Large scale learning by regularization Lorenzo Rosasco UNIGE-MIT-IIT July 25, 2016 Learning problem Solve min w E(w), E(w) = dρ(x, y)l(w x, y) given (x 1, y 1 ),..., (x n, y n ) Beyond

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal In this class we continue our journey in the world of RKHS. We discuss the Mercer theorem which gives

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Linear Support Vector Machine Kernelized SVM Kernels 2 From ERM to RLM Empirical Risk Minimization in the binary

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

TUM 2016 Class 1 Statistical learning theory

TUM 2016 Class 1 Statistical learning theory TUM 2016 Class 1 Statistical learning theory Lorenzo Rosasco UNIGE-MIT-IIT July 25, 2016 Machine learning applications Texts Images Data: (x 1, y 1 ),..., (x n, y n ) Note: x i s huge dimensional! All

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee The Learning Problem and Regularization 9.520 Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces 9.520: Statistical Learning Theory and Applications February 10th, 2010 Reproducing Kernel Hilbert Spaces Lecturer: Lorenzo Rosasco Scribe: Greg Durrett 1 Introduction In the previous two lectures, we

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University Lecture 18: Kernels Risk and Loss Support Vector Regression Aykut Erdem December 2016 Hacettepe University Administrative We will have a make-up lecture on next Saturday December 24, 2016 Presentations

More information

Kernelized Perceptron Support Vector Machines

Kernelized Perceptron Support Vector Machines Kernelized Perceptron Support Vector Machines Emily Fox University of Washington February 13, 2017 What is the perceptron optimizing? 1 The perceptron algorithm [Rosenblatt 58, 62] Classification setting:

More information

The Representor Theorem, Kernels, and Hilbert Spaces

The Representor Theorem, Kernels, and Hilbert Spaces The Representor Theorem, Kernels, and Hilbert Spaces We will now work with infinite dimensional feature vectors and parameter vectors. The space l is defined to be the set of sequences f 1, f, f 3,...

More information

About this class. Maximizing the Margin. Maximum margin classifiers. Picture of large and small margin hyperplanes

About this class. Maximizing the Margin. Maximum margin classifiers. Picture of large and small margin hyperplanes About this class Maximum margin classifiers SVMs: geometric derivation of the primal problem Statement of the dual problem The kernel trick SVMs as the solution to a regularization problem Maximizing the

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Introductory Machine Learning Notes 1. Lorenzo Rosasco

Introductory Machine Learning Notes 1. Lorenzo Rosasco Introductory Machine Learning Notes 1 Lorenzo Rosasco DIBRIS, Universita degli Studi di Genova LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia lrosasco@mit.edu October 10,

More information

Hilbert Space Methods in Learning

Hilbert Space Methods in Learning Hilbert Space Methods in Learning guest lecturer: Risi Kondor 6772 Advanced Machine Learning and Perception (Jebara), Columbia University, October 15, 2003. 1 1. A general formulation of the learning problem

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 04: Features and Kernels Lorenzo Rosasco Linear functions Let H lin be the space of linear functions f(x) = w x. f w is one

More information

Introductory Machine Learning Notes 1

Introductory Machine Learning Notes 1 Introductory Machine Learning Notes 1 Lorenzo Rosasco DIBRIS, Universita degli Studi di Genova LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia lrosasco@mit.edu December

More information

Support Vector Machines

Support Vector Machines Two SVM tutorials linked in class website (please, read both): High-level presentation with applications (Hearst 1998) Detailed tutorial (Burges 1998) Support Vector Machines Machine Learning 10701/15781

More information

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina

Indirect Rule Learning: Support Vector Machines. Donglin Zeng, Department of Biostatistics, University of North Carolina Indirect Rule Learning: Support Vector Machines Indirect learning: loss optimization It doesn t estimate the prediction rule f (x) directly, since most loss functions do not have explicit optimizers. Indirection

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

(Kernels +) Support Vector Machines

(Kernels +) Support Vector Machines (Kernels +) Support Vector Machines Machine Learning Torsten Möller Reading Chapter 5 of Machine Learning An Algorithmic Perspective by Marsland Chapter 6+7 of Pattern Recognition and Machine Learning

More information

Functional Gradient Descent

Functional Gradient Descent Statistical Techniques in Robotics (16-831, F12) Lecture #21 (Nov 14, 2012) Functional Gradient Descent Lecturer: Drew Bagnell Scribe: Daniel Carlton Smith 1 1 Goal of Functional Gradient Descent We have

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Bits of Machine Learning Part 1: Supervised Learning

Bits of Machine Learning Part 1: Supervised Learning Bits of Machine Learning Part 1: Supervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Online Gradient Descent Learning Algorithms

Online Gradient Descent Learning Algorithms DISI, Genova, December 2006 Online Gradient Descent Learning Algorithms Yiming Ying (joint work with Massimiliano Pontil) Department of Computer Science, University College London Introduction Outline

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Matrix Notation Mark Schmidt University of British Columbia Winter 2017 Admin Auditting/registration forms: Submit them at end of class, pick them up end of next class. I need

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

Support Vector Machines

Support Vector Machines EE 17/7AT: Optimization Models in Engineering Section 11/1 - April 014 Support Vector Machines Lecturer: Arturo Fernandez Scribe: Arturo Fernandez 1 Support Vector Machines Revisited 1.1 Strictly) Separable

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Classification, Discriminative learning Structured output, structured input, discriminative function, joint input-output features, Likelihood Maximization, Logistic regression, binary

More information

2 Tikhonov Regularization and ERM

2 Tikhonov Regularization and ERM Introduction Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse problems give rise to regularized learning algorithms. These algorithms are kernel methods

More information

Kernel Methods. Outline

Kernel Methods. Outline Kernel Methods Quang Nguyen University of Pittsburgh CS 3750, Fall 2011 Outline Motivation Examples Kernels Definitions Kernel trick Basic properties Mercer condition Constructing feature space Hilbert

More information

9.520 Problem Set 2. Due April 25, 2011

9.520 Problem Set 2. Due April 25, 2011 9.50 Problem Set Due April 5, 011 Note: there are five problems in total in this set. Problem 1 In classification problems where the data are unbalanced (there are many more examples of one class than

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) Diffeomorphic Warping Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) What Manifold Learning Isn t Common features of Manifold Learning Algorithms: 1-1 charting Dense sampling Geometric Assumptions

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels

MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels 1/12 MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels Dominique Guillot Departments of Mathematical Sciences University of Delaware March 14, 2016 Separating sets:

More information

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Loucas Pillaud-Vivien

More information

Introductory Machine Learning Notes 1. Lorenzo Rosasco

Introductory Machine Learning Notes 1. Lorenzo Rosasco Introductory Machine Learning Notes Lorenzo Rosasco lrosasco@mit.edu April 4, 204 These are the notes for the course master level course Intelligent Systems and Machine Learning (ISML)- Module II for the

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Deviations from linear separability. Kernel methods. Basis expansion for quadratic boundaries. Adding new features Systematic deviation

Deviations from linear separability. Kernel methods. Basis expansion for quadratic boundaries. Adding new features Systematic deviation Deviations from linear separability Kernel methods CSE 250B Noise Find a separator that minimizes a convex loss function related to the number of mistakes. e.g. SVM, logistic regression. Systematic deviation

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

Representer theorem and kernel examples

Representer theorem and kernel examples CS81B/Stat41B Spring 008) Statistical Learning Theory Lecture: 8 Representer theorem and kernel examples Lecturer: Peter Bartlett Scribe: Howard Lei 1 Representer Theorem Recall that the SVM optimization

More information

Kernel methods CSE 250B

Kernel methods CSE 250B Kernel methods CSE 250B Deviations from linear separability Noise Find a separator that minimizes a convex loss function related to the number of mistakes. e.g. SVM, logistic regression. Deviations from

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 4: Curse of Dimensionality, High Dimensional Feature Spaces, Linear Classifiers, Linear Regression, Python, and Jupyter Notebooks Peter Belhumeur Computer Science

More information

Binary Classification / Perceptron

Binary Classification / Perceptron Binary Classification / Perceptron Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Supervised Learning Input: x 1, y 1,, (x n, y n ) x i is the i th data

More information

LMS Algorithm Summary

LMS Algorithm Summary LMS Algorithm Summary Step size tradeoff Other Iterative Algorithms LMS algorithm with variable step size: w(k+1) = w(k) + µ(k)e(k)x(k) When step size µ(k) = µ/k algorithm converges almost surely to optimal

More information

l 1 and l 2 Regularization

l 1 and l 2 Regularization David Rosenberg New York University February 5, 2015 David Rosenberg (New York University) DS-GA 1003 February 5, 2015 1 / 32 Tikhonov and Ivanov Regularization Hypothesis Spaces We ve spoken vaguely about

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

Machine Learning A Geometric Approach

Machine Learning A Geometric Approach Machine Learning A Geometric Approach CIML book Chap 7.7 Linear Classification: Support Vector Machines (SVM) Professor Liang Huang some slides from Alex Smola (CMU) Linear Separator Ham Spam From Perceptron

More information

Class 2 & 3 Overfitting & Regularization

Class 2 & 3 Overfitting & Regularization Class 2 & 3 Overfitting & Regularization Carlo Ciliberto Department of Computer Science, UCL October 18, 2017 Last Class The goal of Statistical Learning Theory is to find a good estimator f n : X Y, approximating

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods Support Vector Machines and Kernel Methods Geoff Gordon ggordon@cs.cmu.edu July 10, 2003 Overview Why do people care about SVMs? Classification problems SVMs often produce good results over a wide range

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Midterm. Introduction to Machine Learning. CS 189 Spring You have 1 hour 20 minutes for the exam.

Midterm. Introduction to Machine Learning. CS 189 Spring You have 1 hour 20 minutes for the exam. CS 189 Spring 2013 Introduction to Machine Learning Midterm You have 1 hour 20 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. Please use non-programmable calculators

More information

Lecture 4 February 2

Lecture 4 February 2 4-1 EECS 281B / STAT 241B: Advanced Topics in Statistical Learning Spring 29 Lecture 4 February 2 Lecturer: Martin Wainwright Scribe: Luqman Hodgkinson Note: These lecture notes are still rough, and have

More information

Support Vector Machine

Support Vector Machine Andrea Passerini passerini@disi.unitn.it Machine Learning Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods 2018 CS420 Machine Learning, Lecture 3 Hangout from Prof. Andrew Ng. http://cs229.stanford.edu/notes/cs229-notes3.pdf Support Vector Machines and Kernel Methods Weinan Zhang Shanghai Jiao Tong University

More information

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up!

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up! Feature Mapping Consider the following mapping φ for an example x = {x 1,...,x D } φ : x {x1,x 2 2,...,x 2 D,,x 2 1 x 2,x 1 x 2,...,x 1 x D,...,x D 1 x D } It s an example of a quadratic mapping Each new

More information

Oslo Class 7 Structured sparsity

Oslo Class 7 Structured sparsity RegML2017@SIMULA Oslo Class 7 Structured sparsity Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Exploiting structure Building blocks of a function can be more structured than single variables Sparsity Variables

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information