TUM 2016 Class 3 Large scale learning by regularization

Size: px
Start display at page:

Download "TUM 2016 Class 3 Large scale learning by regularization"

Transcription

1 TUM 2016 Class 3 Large scale learning by regularization Lorenzo Rosasco UNIGE-MIT-IIT July 25, 2016

2 Learning problem Solve min w E(w), E(w) = dρ(x, y)l(w x, y) given (x 1, y 1 ),..., (x n, y n ) Beyond linear models: non-linear features and kernels

3 Regularization by penalization Replace min w E(w) by min Ê(w) + λ w 2 w }{{} Ê λ (w) Ê(w) = 1 n n i=1 L(w x i, y i ) λ > 0 regularization parameter

4 Early stopping regularization Another example of regularization: Early stopping of an iterative procedure applied to noisy data.

5 Gradient descent for square loss w t+1 = w t γ ˆX ( ˆXw t ŷ) n (y i w x i ) 2 = ˆXw ŷ 2 i=1 no penalty 2 stepsize chosen a priori γ = ˆX ˆX

6 Early stopping at work 1.5 Fitting on the training set Iteration #1 1.5 Fitting on the Itera

7 Semi-convergence min w E(w) vs min Ê(w) w

8 Connection to Tikhonov w t+1 = w t γ ˆX ( ˆXw t ŷ) = (I γ ˆX ˆX)wt + γ ˆX ŷ by induction t 1 w t = γ (I γ ˆX j ˆX) ˆX ŷ j=0 }{{} Truncated power series

9 Neumann series t 1 γ (I γ ˆX j ˆX) j=0 a < 1 (1 a) 1 = a j = a 1 = (1 a) j j=0 j=0 A R d d, A < 1, invertible A 1 = (I A) j j=0

10 Stable matrix inversion Truncated Neumann Series ( ˆX ˆX) 1 = γ (I γ ˆX j ˆX) j=0 t 1 γ (I γ ˆX j ˆX) j=0 compare to ( ˆX ˆX) 1 ( ˆX ˆX + λni) 1

11 Early-stopping: extensions Early stopping regularization, so far analogous to min w 1 n n (w T x i y i ) 2 + λ w 2 i=1 Extensions Early stopping regularization analogous to min w 1 n n V (w T x i, y i ) + λ w 2 i=1 or... or both. min w 1 n n (w T x i y i ) 2 + λr(w) i=1

12 Early-stopping why? Regularization path Warm-restart Computational regularization

13 Beyond Tikhonov: TSVD ˆX ˆX = V ΣV, w M = ( ˆX ˆX) 1 M ˆX ŷ ( ˆX ˆX) 1 M Σ 1 M = V Σ 1 M V = diag(σ 1 1,..., σ M 1, 0..., 0) Also known as principal component regression (PCR)

14 Principal component analysis (PCA) Dimensionality reduction ˆX ˆX = V ΣV Eigenfunctions are directions, of maximum variance best reconstruction

15 TSVD and PCA T SV D P CA + ERM Regularization by projection

16 TSVD/PCR beyond linearity Non-linear function p f(x) = w i φ i (x) = Φ(x) w i=1 with w = ( Φ Φ) 1 M Φ ŷ Let Φ = (Φ(x 1 ),... Φ(x n )) R n p. Φ Φ = V ΣV, ( Φ Φ) 1 M = V Σ 1 M V Σ = diag(σ 1,..., σ p ), Σ 1 M = diag(σ 1 1,..., σ 1 M, 0,... )

17 TSVD/PCR with kernels n f(x) = K(x, x i )c i, i=1 1 c = ( K) M ŷ K ij = K(x i, x j ), K = UΣU, Σ = (σ 1,..., σ n ), K 1 M = UΣ 1 M U, Σ 1 M = (σ 1 1,..., σ 1, 0,... ), M

18 Complexity of nonparametric learning time: O(n 3 ) or O(n 2 T ) or O(n 2 M) space: O(n 2 )

19 Going big... Bottleneck of non-linear learning with kernel methods Memory K is O(n 2 )

20 An intuition PCR/spectral filtering : first compute then discard. Since we know we need only part of the information in the data: Can we compute less?

21 Approaches to large scale (Random) features - find Φ : X R M, with M n s.t. K(x, x ) Φ(x) Φ(x ) Subsampling (Nyström) - replace n f(x) = K(x, x i )c i by M f(x) = K(x, x i )c i i=1 i=1 x i subsampled from training set, M

22 Random features: Gaussian kernel It holds (using Fourier transform), K(x, x ) = e x x 2γ = dωe ω2 c } {{ } dp(ω) e iωt x e iωt x. Consider, K(x, x ) = 1 M e iωt j x e iωt j x m j=1 }{{} Φ(x) Φ(x ) with ω 1,..., ω M i.i.d. samples w.r.t. to p.

23 Random features: Gaussian kernel (cont.) Then, with, e x x 2γ Φ(x) Φ(x ) Φ(x) = (e iωt 1 x,..., e iωt M x ). Alternatively consider Φ(x) = (cos(ω 1 x + b 1 ),..., cos(ω M x + b M ))

24 Other examples of random features translation invariant kernels K(x, x ) = H(x x ), Φ(x) j = e iω j x, infinite neural nets kernels ω j π = F(H) Φ(x) j = ωj x + b j +, (ω j, b j ) π = U[S d+1 ] infinite dot product kernels homogeneous additive kernels group invariant kernels... Note: Connections with hashing and sketching techniques.

25 Learning with random features Let with coefficients solving f(x) = w Φ(x) 1 min Φ n w ŷ 2 + λ w 2, w R M n n Φ n n by M matrix with rows Φ(x i ).

26 Complexity of learning with random features 1 min Φ n w ŷ w R M n 2 n + λ w 2 ( Φ Φ n n + λni) w = }{{} Φ n ŷ M M Computations Time: O(n 3 ) O(nM 2 ) Space: O(n 2 ) O(nM)

27 RF as data independent subsampling Consider, f(x) = or more generally, d cos(ωj x + b j )w j j=1 f(x) = with w j optimized d q(x, ω j )w j. j=1 ω j randomized independently of data What about data dependent sampling?

28 Nÿstrom methods n M f(x) = K(x, x i )c i f(x) = K(x, x i )c i i=1 i=1 x i centers subsampled from training set M Note: keep all data! (just use fewer to parameterize functions)

29 Nÿstrom ridge regression min Kn,M c ŷ 2 + λc KM,M c c R M n ( K n,m ) i,j = K( x i, x j ) ( K M,M ) i,j = K( x i, x j )

30 Complexity of Nÿstrom ridge regression 1 min c R M n K M,n c ŷ 2 + λc KM,M c n (Kn,M K n,m + λnk M,M ) c = Kn,M ŷ }{{} M M Computations Time: O(n 3 ) O(nM 2 ) Space: O(n 2 ) O(nM)

31 Subsampling and regularization Random features Nÿstrom M f(x) = q(x, ω i )w i i=1 M f(x) = K(x, x i )c i i= Validation Error

32 Subsampling as stochastic regularization The subsampling level M can be seen as a regularization parameter! Validation Error M controls: statistics, space and time complexity!

33 An incrementation approach Algorithm 1. Pick a center + compute solution 2. Pick another center + rank one update 3. Pick another center...

34 Computational regularization Computational regularization idea: use computations to regularize Iterative and subsampling regularization can be seen as instances.

35 Approaches to large scale non-linear learning Consider, f(x) = with Q feature or kernel and w j optimized, ω j randomized. d Q(x, ω j )w j. j=1

36 Shallow nets Consider, d f(x) = Q(x, ω j )w j. j=1 Neural nets w j optimized ω j randomizedoptimized This is a one layer neural net!

37 From shallow to deep nets Shallow nets Q activation function. f(x) = w Φ W (x), Φ W (x) = Q(W x) Deep nets f(x) = w Φ(x), Φ = ΦWL Φ W1 Φ Wj = Q(W j x)

38 Deep nets f(x) = w Φ(x), Φ = ΦWL Φ W1 Φ Wj = Q(W j x) Neural nets w j, W j optimized, learning data representation (?)

39 This class early stopping projection regularization subsampling & regularization

40 Next class a practical experience

41 Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in learning theory. Journal of complexity, 23(1):52 72, Raffaello Camoriano, Tomás Angles, Alessandro Rudi, and Lorenzo Rosasco. Nytro: When subsampling meets early stopping. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pages , L Lo Gerfo, Lorenzo Rosasco, Francesca Odone, Ernesto De Vito, and Alessandro Verri. Spectral algorithms for supervised learning. Neural Computation, 20(7): , Junhong Lin, Lorenzo Rosasco, and Ding-Xuan Zhou. Iterative regularization for learning with convex loss functions. Journal of Machine Learning Research, 17(77):1 38, Sofia Mosci, Lorenzo Rosasco, and Alessandro Verri. Dimensionality reduction and generalization. In Proceedings of the 24th international conference on Machine learning, pages ACM, 2007.

42 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in neural information processing systems, pages , Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. In Advances in Neural Information Processing Systems, pages , Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Generalization properties of learning with random features. arxiv preprint arxiv: , Alex J Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for machine learning

Oslo Class 4 Early Stopping and Spectral Regularization

Oslo Class 4 Early Stopping and Spectral Regularization RegML2017@SIMULA Oslo Class 4 Early Stopping and Spectral Regularization Lorenzo Rosasco UNIGE-MIT-IIT June 28, 2016 Learning problem Solve min w E(w), E(w) = dρ(x, y)l(w x, y) given (x 1, y 1 ),..., (x

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

RegML 2018 Class 2 Tikhonov regularization and kernels

RegML 2018 Class 2 Tikhonov regularization and kernels RegML 2018 Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT June 17, 2018 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i,

More information

Oslo Class 2 Tikhonov regularization and kernels

Oslo Class 2 Tikhonov regularization and kernels RegML2017@SIMULA Oslo Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT May 3, 2017 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

Optimal kernel methods for large scale learning

Optimal kernel methods for large scale learning Optimal kernel methods for large scale learning Alessandro Rudi INRIA - École Normale Supérieure, Paris joint work with Luigi Carratino, Lorenzo Rosasco 6 Mar 2018 École Polytechnique Learning problem

More information

Kernel Learning via Random Fourier Representations

Kernel Learning via Random Fourier Representations Kernel Learning via Random Fourier Representations L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Module 5: Machine Learning L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Kernel Learning via Random

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Approximate Kernel PCA with Random Features

Approximate Kernel PCA with Random Features Approximate Kernel PCA with Random Features (Computational vs. Statistical Tradeoff) Bharath K. Sriperumbudur Department of Statistics, Pennsylvania State University Journées de Statistique Paris May 28,

More information

Approximate Kernel Methods

Approximate Kernel Methods Lecture 3 Approximate Kernel Methods Bharath K. Sriperumbudur Department of Statistics, Pennsylvania State University Machine Learning Summer School Tübingen, 207 Outline Motivating example Ridge regression

More information

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes

Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Statistical Optimality of Stochastic Gradient Descent through Multiple Passes Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Loucas Pillaud-Vivien

More information

MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

TUM 2016 Class 1 Statistical learning theory

TUM 2016 Class 1 Statistical learning theory TUM 2016 Class 1 Statistical learning theory Lorenzo Rosasco UNIGE-MIT-IIT July 25, 2016 Machine learning applications Texts Images Data: (x 1, y 1 ),..., (x n, y n ) Note: x i s huge dimensional! All

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

2 Tikhonov Regularization and ERM

2 Tikhonov Regularization and ERM Introduction Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse problems give rise to regularized learning algorithms. These algorithms are kernel methods

More information

Oslo Class 7 Structured sparsity

Oslo Class 7 Structured sparsity RegML2017@SIMULA Oslo Class 7 Structured sparsity Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Exploiting structure Building blocks of a function can be more structured than single variables Sparsity Variables

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

An inverse problem perspective on machine learning

An inverse problem perspective on machine learning An inverse problem perspective on machine learning Lorenzo Rosasco University of Genova Massachusetts Institute of Technology Istituto Italiano di Tecnologia lcsl.mit.edu Feb 9th, 2018 Inverse Problems

More information

Learning sets and subspaces: a spectral approach

Learning sets and subspaces: a spectral approach Learning sets and subspaces: a spectral approach Alessandro Rudi DIBRIS, Università di Genova Optimization and dynamical processes in Statistical learning and inverse problems Sept 8-12, 2014 A world of

More information

Regularization Algorithms for Learning

Regularization Algorithms for Learning DISI, UNIGE Texas, 10/19/07 plan motivation setting elastic net regularization - iterative thresholding algorithms - error estimates and parameter choice applications motivations starting point of many

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

ONLINE LEARNING WITH KERNELS: OVERCOMING THE GROWING SUM PROBLEM. Abhishek Singh, Narendra Ahuja and Pierre Moulin

ONLINE LEARNING WITH KERNELS: OVERCOMING THE GROWING SUM PROBLEM. Abhishek Singh, Narendra Ahuja and Pierre Moulin 22 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23 26, 22, SANTANDER, SPAIN ONLINE LEARNING WITH KERNELS: OVERCOMING THE GROWING SUM PROBLEM Abhishek Singh, Narendra Ahuja

More information

Spectral Filtering for MultiOutput Learning

Spectral Filtering for MultiOutput Learning Spectral Filtering for MultiOutput Learning Lorenzo Rosasco Center for Biological and Computational Learning, MIT Universita di Genova, Italy Plan Learning with kernels Multioutput kernel and regularization

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods

Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods Junhong Lin Volkan Cevher Abstract We study generalization properties of distributed algorithms in the setting of nonparametric

More information

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing Kernel PCA Pattern Reconstruction via Approximate Pre-Images Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch, & Klaus-Robert Muller GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany fbs,

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Early Stopping for Computational Learning

Early Stopping for Computational Learning Early Stopping for Computational Learning Lorenzo Rosasco Universita di Genova, Massachusetts Institute of Technology Istituto Italiano di Tecnologia CBMM Sestri Levante, September, 2014 joint work with

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Introductory Machine Learning Notes 1

Introductory Machine Learning Notes 1 Introductory Machine Learning Notes 1 Lorenzo Rosasco DIBRIS, Universita degli Studi di Genova LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia lrosasco@mit.edu December

More information

FALKON: An Optimal Large Scale Kernel Method

FALKON: An Optimal Large Scale Kernel Method FALKON: An Optimal Large Scale Kernel Method Alessandro Rudi INRIA Sierra Project-team, École Normale Supérieure, Paris Luigi Carratino University of Genoa Genova, Italy Lorenzo Rosasco University of Genoa,

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Mathematical Methods for Data Analysis

Mathematical Methods for Data Analysis Mathematical Methods for Data Analysis Massimiliano Pontil Istituto Italiano di Tecnologia and Department of Computer Science University College London Massimiliano Pontil Mathematical Methods for Data

More information

Bits of Machine Learning Part 1: Supervised Learning

Bits of Machine Learning Part 1: Supervised Learning Bits of Machine Learning Part 1: Supervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

Efficient Complex Output Prediction

Efficient Complex Output Prediction Efficient Complex Output Prediction Florence d Alché-Buc Joint work with Romain Brault, Alex Lambert, Maxime Sangnier October 12, 2017 LTCI, Télécom ParisTech, Institut-Mines Télécom, Université Paris-Saclay

More information

Spectral Algorithms for Supervised Learning

Spectral Algorithms for Supervised Learning LETTER Communicated by David Hardoon Spectral Algorithms for Supervised Learning L. Lo Gerfo logerfo@disi.unige.it L. Rosasco rosasco@disi.unige.it F. Odone odone@disi.unige.it Dipartimento di Informatica

More information

Towards Deep Kernel Machines

Towards Deep Kernel Machines Towards Deep Kernel Machines Julien Mairal Inria, Grenoble Prague, April, 2017 Julien Mairal Towards deep kernel machines 1/51 Part I: Scientific Context Julien Mairal Towards deep kernel machines 2/51

More information

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Semi-Supervised Learning in Gigantic Image Collections Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Gigantic Image Collections What does the world look like? High

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Support Vector Machines Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

Convergence rates of spectral methods for statistical inverse learning problems

Convergence rates of spectral methods for statistical inverse learning problems Convergence rates of spectral methods for statistical inverse learning problems G. Blanchard Universtität Potsdam UCL/Gatsby unit, 04/11/2015 Joint work with N. Mücke (U. Potsdam); N. Krämer (U. München)

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Introductory Machine Learning Notes 1. Lorenzo Rosasco

Introductory Machine Learning Notes 1. Lorenzo Rosasco Introductory Machine Learning Notes Lorenzo Rosasco lrosasco@mit.edu April 4, 204 These are the notes for the course master level course Intelligent Systems and Machine Learning (ISML)- Module II for the

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Introductory Machine Learning Notes 1. Lorenzo Rosasco

Introductory Machine Learning Notes 1. Lorenzo Rosasco Introductory Machine Learning Notes 1 Lorenzo Rosasco DIBRIS, Universita degli Studi di Genova LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia lrosasco@mit.edu October 10,

More information

Iterative Convex Regularization

Iterative Convex Regularization Iterative Convex Regularization Lorenzo Rosasco Universita di Genova Universita di Genova Istituto Italiano di Tecnologia Massachusetts Institute of Technology Optimization and Statistical Learning Workshop,

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2018 Last Time: PCA with Orthogonal/Sequential Basis When k = 1, PCA has a scaling problem. When k > 1, have scaling, rotation,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) Diffeomorphic Warping Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) What Manifold Learning Isn t Common features of Manifold Learning Algorithms: 1-1 charting Dense sampling Geometric Assumptions

More information

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning Short Course Robust Optimization and 3. Optimization in Supervised EECS and IEOR Departments UC Berkeley Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012 Outline Overview of Supervised models and variants

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

Statistically and Computationally Efficient Variance Estimator for Kernel Ridge Regression

Statistically and Computationally Efficient Variance Estimator for Kernel Ridge Regression Statistically and Computationally Efficient Variance Estimator for Kernel Ridge Regression Meimei Liu Department of Statistical Science Duke University Durham, IN - 27708 Email: meimei.liu@duke.edu Jean

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms

Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms Junhong Lin Volkan Cevher Laboratory for Information and Inference Systems École Polytechnique Fédérale

More information

Random Projections. Lopez Paz & Duvenaud. November 7, 2013

Random Projections. Lopez Paz & Duvenaud. November 7, 2013 Random Projections Lopez Paz & Duvenaud November 7, 2013 Random Outline The Johnson-Lindenstrauss Lemma (1984) Random Kitchen Sinks (Rahimi and Recht, NIPS 2008) Fastfood (Le et al., ICML 2013) Why random

More information

COMS 4771 Regression. Nakul Verma

COMS 4771 Regression. Nakul Verma COMS 4771 Regression Nakul Verma Last time Support Vector Machines Maximum Margin formulation Constrained Optimization Lagrange Duality Theory Convex Optimization SVM dual and Interpretation How get the

More information

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 27 Introduction Fredholm first kind integral equation of convolution type in one space dimension: g(x) = 1 k(x x )f(x

More information

Sketched Ridge Regression:

Sketched Ridge Regression: Sketched Ridge Regression: Optimization and Statistical Perspectives Shusen Wang UC Berkeley Alex Gittens RPI Michael Mahoney UC Berkeley Overview Ridge Regression min w f w = 1 n Xw y + γ w Over-determined:

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces 9.520: Statistical Learning Theory and Applications February 10th, 2010 Reproducing Kernel Hilbert Spaces Lecturer: Lorenzo Rosasco Scribe: Greg Durrett 1 Introduction In the previous two lectures, we

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Online Gradient Descent Learning Algorithms

Online Gradient Descent Learning Algorithms DISI, Genova, December 2006 Online Gradient Descent Learning Algorithms Yiming Ying (joint work with Massimiliano Pontil) Department of Computer Science, University College London Introduction Outline

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 04: Features and Kernels Lorenzo Rosasco Linear functions Let H lin be the space of linear functions f(x) = w x. f w is one

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

Parameter Norm Penalties. Sargur N. Srihari

Parameter Norm Penalties. Sargur N. Srihari Parameter Norm Penalties Sargur N. srihari@cedar.buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

Learning with kernels and SVM

Learning with kernels and SVM Learning with kernels and SVM Šámalova chata, 23. května, 2006 Petra Kudová Outline Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion Learning from data find

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information