Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

Size: px
Start display at page:

Download "Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)"

Transcription

1 Semi-Supervised Learning in Gigantic Image Collections Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

2 Gigantic Image Collections What does the world look like? High Object level Recognition image statistics for large-scale image search

3 Spectrum of Label Information Human annotations Noisy labels Unlabeled

4 Semi-Supervised Learning Data Supervised Semi-Supervised Classification function should be smooth with respect to data density

5 W i Semi-Supervised Learning using Graph Laplacian is n x n affinity matrix (n = # of points) W ij = exp( kx i x j k/2² 2 ) 2 [Zhu03,Zhou04] Graph Laplacian: L = I D 1/2 WD 1/2 D ii = j W ij

6 SSL using Graph Laplacian Want to find label function f that minimizes: f T Lf +(f y) T Λ(f y) Smoothness Agreement with labels y = labels If labeled,, otherwise Λ ii = λ Λ ii =0 Solution: n x n system (n = # points)

7 Eigenvectors of Laplacian Smooth vectors will be linear combinations of eigenvectors U with small eigenvalues: f = Uα U =[φ 1,...,φ k ] [Belkin & Niyogi 06, Schoelkopf & Smola 02, Zhu et al 03, 08]

8 Rewrite System Let f = Uα U = smallest k eigenvectors of L α = coeffs. k is user parameter (typically ~100) Optimal α is now solution to k x k system: (Σ + U T ΛU)α = U T Λy

9 Computational Bottleneck Consider a dataset of 80 million images Inverting L Inverting 80 million x 80 million matrix Finding eigenvectors of L Diagonalizing 80 million x 80 million matrix

10 Large Scale SSL - Related work Nystrom method: pick small set of landmark points Compute exact eigenvectors on these Interpolate solution to rest Data Landmarks [see Zhu 08 survey] Other approaches include: Mixture models (Zhu and Lafferty 05), Sparse Grids (Garcke and Griebel 05), Sparse Graphs (Tsang and Kwok 06)

11 Our Approach

12 Overview of Our Approach Compute approximate eigenvectors Density Data Landmarks Ours Nystrom Limit as n Linear in number of data-points Reduce n Polynomial in number of landmarks

13 Consider Limit as n Consider x to be drawn from 2D distribution p(x) Let L p (F) be a smoothness operator on p(x), for a function F(x) Smoothness operator penalizes functions that vary in areas of high density Analyze eigenfunctions of L p (F)

14 Eigenvectors & Eigenfunctions

15 Key Assumption: Separability of Input data p(x 1 ) Claim: If p is separable, then: p(x 2 ) Eigenfunctions of marginals are also eigenfunctions of the joint density, with same eigenvalue p(x 1,x 2 ) [Nadler et al. 06,Weiss et al. 08]

16 Numerical Approximations to Eigenfunctions in 1D 300,000 points drawn from distribution p(x) Consider p(x 1 ) p(x 1 ) p(x) Data Histogram h(x 1 )

17 Numerical Approximations to Eigenfunctions in 1D Solve for values of eigenfunction at set of discrete locations (histogram bin centers) and associated eigenvalues B x B system (B = # histogram bins, e.g. 50)

18 1D Approximate Eigenfunctions 1 st Eigenfunction of h(x 1 ) 2 nd Eigenfunction of h(x 1 ) 3 rd Eigenfunction of h(x 1 )

19 Separability over Dimension Build histogram over dimension 2: h(x 2 ) Now solve for eigenfunctions of h(x 2 ) 1 st Eigenfunction of h(x 2 ) 2 nd Eigenfunction of h(x 2 ) 3 rd Eigenfunction of h(x 2 )

20 From Eigenfunctions to Approximate Eigenvectors Take each data point Do 1-D interpolation in each eigenfunction Eigenfunction value 1 50 Histogram bin Very fast operation

21 Preprocessing Need to make data separable Rotate using PCA PCA Not separable Separable

22 Overall Algorithm 1. Rotate data to maximize separability (currently use PCA) 2. For each of the d input dimensions: Construct 1D histogram Solve numerically for eigenfunctions/values 3. Order eigenfunctions from all dimensions by increasing eigenvalue & take first k 4. Interpolate data into k eigenfunctions Yields approximate eigenvectors of Laplacian 5. Solve k x k least squares system to give label function

23 Experiments on Toy Data

24 Nystrom Comparison With Nystrom, too few landmark points result in highly unstable eigenvectors

25 Nystrom Comparison Eigenfunctions fail when data has significant dependencies between dimensions

26 Experiments on Real Data

27 Experiments Images from 126 classes downloaded from Internet search engines, total 63,000 images Dump truck Emu Labels (correct/incorrect) provided by Alex Krizhevsky, Vinod Nair & Geoff Hinton, (CIFAR & U. Toronto)

28 Input Image Representation Pixels not a convenient representation Use Gist descriptor (Oliva & Torralba, 2001) L2 distance btw. Gist vectors rough substitute for human perceptual distance Apply oriented Gabor filters over different scales Average filter energy in each bin

29 Are Dimensions Independent? Joint histogram for pairs of dimensions from raw 384-dimensional Gist Joint histogram for pairs of dimensions after PCA to 64 dimensions PCA MI is mutual information score. 0 = Independent

30 Real 1-D Eigenfunctions of PCA d Gist descriptors Eigenfunction Input Dimension

31 Protocol Task is to re-rank images of each class (class/non-class) Use eigenfunctions computed on all 63,000 images Vary number of labeled examples Measure 15% recall

32 0.7 Total number of images Mean precision at 15% recall averaged over 16 classes Least squares 0.35 SVM 0.3 Chance 0.25 Inf Log 2 number of +ve training examples/class

33 0.7 Total number of images Mean precision at 15% recall averaged over 16 classes Nystrom Least squares 0.35 SVM 0.3 Chance 0.25 Inf Log 2 number of +ve training examples/class

34 0.7 Total number of images Mean precision at 15% recall averaged over 16 classes Eigenfunction Nystrom Least squares 0.35 SVM 0.3 Chance 0.25 Inf Log 2 number of +ve training examples/class

35 0.7 Total number of images Mean precision at 15% recall averaged over 16 classes Eigenfunction Nystrom Least squares 0.35 Eigenvector SVM 0.3 NN Chance 0.25 Inf Log 2 number of +ve training examples/class

36 80 Million Images

37 Running on 80 million images PCA to 32 dims, k=48 eigenfunctions For each class, labels propagating through 80 million images Precompute approximate eigenvectors (~20Gb) Label propagation is fast <0.1secs/keyword

38 Japanese Spaniel 3 positive 3 negative Labels from CIFAR set

39 Airbus, Ostrich, Auto

40 Summary Semi-supervised scheme that can scale to really large problems linear in # points Rather than sub-sampling the data, we take the limit of infinite unlabeled data Assumes input data distribution is separable Can propagate labels in graph with 80 million nodes in fractions of second Related paper in this NIPS by Nadler, Srebro & Zhou See spotlights on Wednesday

41

Spectral Hashing: Learning to Leverage 80 Million Images

Spectral Hashing: Learning to Leverage 80 Million Images Spectral Hashing: Learning to Leverage 80 Million Images Yair Weiss, Antonio Torralba, Rob Fergus Hebrew University, MIT, NYU Outline Motivation: Brute Force Computer Vision. Semantic Hashing. Spectral

More information

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Improved Local Coordinate Coding using Local Tangents

Improved Local Coordinate Coding using Local Tangents Improved Local Coordinate Coding using Local Tangents Kai Yu NEC Laboratories America, 10081 N. Wolfe Road, Cupertino, CA 95129 Tong Zhang Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Global vs. Multiscale Approaches

Global vs. Multiscale Approaches Harmonic Analysis on Graphs Global vs. Multiscale Approaches Weizmann Institute of Science, Rehovot, Israel July 2011 Joint work with Matan Gavish (WIS/Stanford), Ronald Coifman (Yale), ICML 10' Challenge:

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning classification classifiers need labeled data to train labeled data

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA LOCALITY PRESERVING HASHING Yi-Hsuan Tsai Ming-Hsuan Yang Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA ABSTRACT The spectral hashing algorithm relaxes

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

Semi-Supervised Learning by Multi-Manifold Separation

Semi-Supervised Learning by Multi-Manifold Separation Semi-Supervised Learning by Multi-Manifold Separation Xiaojin (Jerry) Zhu Department of Computer Sciences University of Wisconsin Madison Joint work with Andrew Goldberg, Zhiting Xu, Aarti Singh, and Rob

More information

How to learn from very few examples?

How to learn from very few examples? How to learn from very few examples? Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Outline Introduction Part A

More information

Spectral Hashing. Antonio Torralba 1 1 CSAIL, MIT, 32 Vassar St., Cambridge, MA Abstract

Spectral Hashing. Antonio Torralba 1 1 CSAIL, MIT, 32 Vassar St., Cambridge, MA Abstract Spectral Hashing Yair Weiss,3 3 School of Computer Science, Hebrew University, 9904, Jerusalem, Israel yweiss@cs.huji.ac.il Antonio Torralba CSAIL, MIT, 32 Vassar St., Cambridge, MA 0239 torralba@csail.mit.edu

More information

Linear Spectral Hashing

Linear Spectral Hashing Linear Spectral Hashing Zalán Bodó and Lehel Csató Babeş Bolyai University - Faculty of Mathematics and Computer Science Kogălniceanu 1., 484 Cluj-Napoca - Romania Abstract. assigns binary hash keys to

More information

Cluster Kernels for Semi-Supervised Learning

Cluster Kernels for Semi-Supervised Learning Cluster Kernels for Semi-Supervised Learning Olivier Chapelle, Jason Weston, Bernhard Scholkopf Max Planck Institute for Biological Cybernetics, 72076 Tiibingen, Germany {first. last} @tuebingen.mpg.de

More information

Tensor Methods for Feature Learning

Tensor Methods for Feature Learning Tensor Methods for Feature Learning Anima Anandkumar U.C. Irvine Feature Learning For Efficient Classification Find good transformations of input for improved classification Figures used attributed to

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton October 30, 2017

More information

Semi-Supervised Learning with Graphs

Semi-Supervised Learning with Graphs Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu LTI SCS CMU Thesis Committee John Lafferty (co-chair) Ronald Rosenfeld (co-chair) Zoubin Ghahramani Tommi Jaakkola 1 Semi-supervised Learning classifiers

More information

Semi-Supervised Learning of Speech Sounds

Semi-Supervised Learning of Speech Sounds Aren Jansen Partha Niyogi Department of Computer Science Interspeech 2007 Objectives 1 Present a manifold learning algorithm based on locality preserving projections for semi-supervised phone classification

More information

Unlabeled Data: Now It Helps, Now It Doesn t

Unlabeled Data: Now It Helps, Now It Doesn t institution-logo-filena A. Singh, R. D. Nowak, and X. Zhu. In NIPS, 2008. 1 Courant Institute, NYU April 21, 2015 Outline institution-logo-filena 1 Conflicting Views in Semi-supervised Learning The Cluster

More information

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Learning on Graphs and Manifolds CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Outline Manifold learning is a relatively new area of machine learning (2000-now). Main idea Model the underlying geometry of

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

Predicting Graph Labels using Perceptron. Shuang Song

Predicting Graph Labels using Perceptron. Shuang Song Predicting Graph Labels using Perceptron Shuang Song shs037@eng.ucsd.edu Online learning over graphs M. Herbster, M. Pontil, and L. Wainer, Proc. 22nd Int. Conf. Machine Learning (ICML'05), 2005 Prediction

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

One-class Label Propagation Using Local Cone Based Similarity

One-class Label Propagation Using Local Cone Based Similarity One-class Label Propagation Using Local Based Similarity Takumi Kobayashi and Nobuyuki Otsu Abstract In this paper, we propose a novel method of label propagation for one-class learning. For binary (positive/negative)

More information

Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels

Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels Qiaojun Wang, Kai Zhang 2, Guofei Jiang 2, and Ivan Marsic

More information

Multiscale Wavelets on Trees, Graphs and High Dimensional Data

Multiscale Wavelets on Trees, Graphs and High Dimensional Data Multiscale Wavelets on Trees, Graphs and High Dimensional Data ICML 2010, Haifa Matan Gavish (Weizmann/Stanford) Boaz Nadler (Weizmann) Ronald Coifman (Yale) Boaz Nadler Ronald Coifman Motto... the relationships

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization

Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization Andrew B. Goldberg, Xiaojin Jerry Zhu Computer Sciences Department University of Wisconsin-Madison

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Unsupervised dimensionality reduction

Unsupervised dimensionality reduction Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30 Outline 1 PCA 2 Kernel PCA 3 Multidimensional

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton February 10, 2015 MVA 2014/2015 Previous

More information

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points Semi-supervised approach which attempts

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Semi-Supervised Learning through Principal Directions Estimation

Semi-Supervised Learning through Principal Directions Estimation Semi-Supervised Learning through Principal Directions Estimation Olivier Chapelle, Bernhard Schölkopf, Jason Weston Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany {first.last}@tuebingen.mpg.de

More information

Relevance Aggregation Projections for Image Retrieval

Relevance Aggregation Projections for Image Retrieval Relevance Aggregation Projections for Image Retrieval CIVR 2008 Wei Liu Wei Jiang Shih-Fu Chang wliu@ee.columbia.edu Syllabus Motivations and Formulation Our Approach: Relevance Aggregation Projections

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Semi-Supervised Learning with the Graph Laplacian: The Limit of Infinite Unlabelled Data

Semi-Supervised Learning with the Graph Laplacian: The Limit of Infinite Unlabelled Data Semi-Supervised Learning with the Graph Laplacian: The Limit of Infinite Unlabelled Data Boaz Nadler Dept. of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot, Israel 76 boaz.nadler@weizmann.ac.il

More information

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Yan-Ming Zhang and Xu-Yao Zhang National Laboratory

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

TUM 2016 Class 3 Large scale learning by regularization

TUM 2016 Class 3 Large scale learning by regularization TUM 2016 Class 3 Large scale learning by regularization Lorenzo Rosasco UNIGE-MIT-IIT July 25, 2016 Learning problem Solve min w E(w), E(w) = dρ(x, y)l(w x, y) given (x 1, y 1 ),..., (x n, y n ) Beyond

More information

IFT LAPLACIAN APPLICATIONS. Mikhail Bessmeltsev

IFT LAPLACIAN APPLICATIONS.   Mikhail Bessmeltsev IFT 6112 09 LAPLACIAN APPLICATIONS http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Rough Intuition http://pngimg.com/upload/hammer_png3886.png You can learn a lot about

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

An Iterated Graph Laplacian Approach for Ranking on Manifolds

An Iterated Graph Laplacian Approach for Ranking on Manifolds An Iterated Graph Laplacian Approach for Ranking on Manifolds Xueyuan Zhou Department of Computer Science University of Chicago Chicago, IL zhouxy@cs.uchicago.edu Mikhail Belkin Department of Computer

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Supplementary Material Zheyun Feng Rong Jin Anil Jain Department of Computer Science and Engineering, Michigan State University,

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Learning with Consistency between Inductive Functions and Kernels

Learning with Consistency between Inductive Functions and Kernels Learning with Consistency between Inductive Functions and Kernels Haixuan Yang Irwin King Michael R. Lyu Department of Computer Science & Engineering The Chinese University of Hong Kong Shatin, N.T., Hong

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Efficient Iterative Semi-Supervised Classification on Manifold

Efficient Iterative Semi-Supervised Classification on Manifold Efficient Iterative Semi-Supervised Classification on Manifold Mehrdad Farajtabar, Hamid R. Rabiee, Amirreza Shaban, Ali Soltani-Farani Digital Media Lab, AICTC Research Center, Department of Computer

More information

Global Scene Representations. Tilke Judd

Global Scene Representations. Tilke Judd Global Scene Representations Tilke Judd Papers Oliva and Torralba [2001] Fei Fei and Perona [2005] Labzebnik, Schmid and Ponce [2006] Commonalities Goal: Recognize natural scene categories Extract features

More information

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Université du Littoral- Calais July 11, 16 First..... to the

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization Maximum Margin Matrix Factorization Nati Srebro Toyota Technological Institute Chicago Joint work with Noga Alon Tel-Aviv Yonatan Amit Hebrew U Alex d Aspremont Princeton Michael Fink Hebrew U Tommi Jaakkola

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

LABELED data is expensive to obtain in terms of both. Laplacian Embedded Regression for Scalable Manifold Regularization

LABELED data is expensive to obtain in terms of both. Laplacian Embedded Regression for Scalable Manifold Regularization Laplacian Embedded Regression for Scalable Manifold Regularization Lin Chen, Ivor W. Tsang, Dong Xu Abstract Semi-supervised Learning (SSL), as a powerful tool to learn from a limited number of labeled

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Graph-Based Semi-Supervised Learning

Graph-Based Semi-Supervised Learning Graph-Based Semi-Supervised Learning Olivier Delalleau, Yoshua Bengio and Nicolas Le Roux Université de Montréal CIAR Workshop - April 26th, 2005 Graph-Based Semi-Supervised Learning Yoshua Bengio, Olivier

More information

L5 Support Vector Classification

L5 Support Vector Classification L5 Support Vector Classification Support Vector Machine Problem definition Geometrical picture Optimization problem Optimization Problem Hard margin Convexity Dual problem Soft margin problem Alexander

More information

Semi-Supervised Learning in Reproducing Kernel Hilbert Spaces Using Local Invariances

Semi-Supervised Learning in Reproducing Kernel Hilbert Spaces Using Local Invariances Semi-Supervised Learning in Reproducing Kernel Hilbert Spaces Using Local Invariances Wee Sun Lee,2, Xinhua Zhang,2, and Yee Whye Teh Department of Computer Science, National University of Singapore. 2

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

1 Graph Kernels by Spectral Transforms

1 Graph Kernels by Spectral Transforms Graph Kernels by Spectral Transforms Xiaojin Zhu Jaz Kandola John Lafferty Zoubin Ghahramani Many graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Justin Solomon MIT, Spring 2017 http://pngimg.com/upload/hammer_png3886.png You can learn a lot about a shape by hitting it (lightly) with a hammer! What can you learn about its shape from vibration frequencies

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis Liang Sun lsun27@asu.edu Shuiwang Ji shuiwang.ji@asu.edu Jieping Ye jieping.ye@asu.edu Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287 USA Abstract Canonical Correlation

More information

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih Unsupervised Learning of Hierarchical Models Marc'Aurelio Ranzato Geoff Hinton in collaboration with Josh Susskind and Vlad Mnih Advanced Machine Learning, 9 March 2011 Example: facial expression recognition

More information

Kernels A Machine Learning Overview

Kernels A Machine Learning Overview Kernels A Machine Learning Overview S.V.N. Vishy Vishwanathan vishy@axiom.anu.edu.au National ICT of Australia and Australian National University Thanks to Alex Smola, Stéphane Canu, Mike Jordan and Peter

More information

Manifold Learning: Theory and Applications to HRI

Manifold Learning: Theory and Applications to HRI Manifold Learning: Theory and Applications to HRI Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr August 19, 2008 1 / 46 Greek Philosopher

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

Discrete vs. Continuous: Two Sides of Machine Learning

Discrete vs. Continuous: Two Sides of Machine Learning Discrete vs. Continuous: Two Sides of Machine Learning Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Oct. 18,

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Semi-supervised Learning using Sparse Eigenfunction Bases

Semi-supervised Learning using Sparse Eigenfunction Bases Semi-supervised Learning using Sparse Eigenfunction Bases Kaushik Sinha Dept. of Computer Science and Engineering Ohio State University Columbus, OH 43210 sinhak@cse.ohio-state.edu Mikhail Belkin Dept.

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Journal of Machine Learning Research 8 (2007) 489-57 Submitted 7/06; Revised 3/07; Published 7/07 On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Rie Johnson IBM T.J.

More information

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church.

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Exercise 5.C.1 Suppose T L(V ) is diagonalizable. Prove that V = null T range T. Proof. Let v 1,...,

More information

Data Mining. Linear & nonlinear classifiers. Hamid Beigy. Sharif University of Technology. Fall 1396

Data Mining. Linear & nonlinear classifiers. Hamid Beigy. Sharif University of Technology. Fall 1396 Data Mining Linear & nonlinear classifiers Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1396 1 / 31 Table of contents 1 Introduction

More information