# CIS 520: Machine Learning Oct 09, Kernel Methods

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed in the lecture (and vice versa Outline Non-linear models via basis functions Closer look at the SVM dual: kernel functions, kernel SVM RKHSs and Representer Theorem Kernel logistic regression Kernel ridge regression Non-linear Models via Basis Functions Let X = R d We have seen methods for learning linear models of the form h(x = sign(w x + b for binary classification (such as logistic regression and SVMs and f(x = w x + b for regression (such as linear least squares regression and SVR What if we want to learn a non-linear model? What would be a simple way to achieve this using the methods we have seen so far? One way to achieve this is to map instances x R d to some new feature vectors φ(x R n via some non-linear feature mapping φ : R d R n, and then to learn a linear model in this transformed space For example, if one maps instances x R d to n = ( + 2d + ( d 2 -dimensional feature vectors x x d x x 2 φ(x =, x d x d x 2 then learning a linear model in the transformed space is equivalent to learning a quadratic model in the original instance space In general, one can choose any basis functions φ, φ n : X R, and learn a linear x 2 d

2 2 Kernel Methods model over these: w φ(x + b, where w R n (in fact, one can do this for X R d as well For example, in least squares regression applied to a training sample S = ((x, y,, (x m, y m (R d R m, one would simply replace the matrix X R m d with the design matrix Φ R m n, where Φ ij = φ j (x i What is a potential difficulty in doing this? If n is large (eg as would be the case if the feature mapping φ corresponded to a high-degree polynomial, then the above approach can be computationally expensive In this lecture we look at a technique that allows one to implement the above idea efficiently for many algorithms We start by taking a closer look at the SVM dual which we derived in the last lecture 2 Closer Look at the SVM Dual: Kernel Functions, Kernel SVM Recall the form of the dual we derived for the (soft-margin linear SVM: max α 2 α i α j y i y j (x i x j + α i ( j= subject to α i y i = 0 (2 0 α i C, i =,, m (3 If we implement this on feature vectors φ(x i R n in place of x i R d, we get the following optimization problem: max α 2 ( α i α j y i y j φ(xi φ(x j + α i (4 j= subject to α i y i = 0 (5 0 α i C, i =,, m (6 This involves computing dot products between vectors φ(x i, φ(x j in R n Similarly, using the learned model to make predictions on a new test point x R d also involves computing dot products between vectors in R n : ( h(x = sign α i y i φ(x i φ(x + b i SV For example, as we saw above, one can learn a quadratic classifier in X = R 2 by learning a linear classifier in φ(r 2 R 6, where (( x x φ = x 2 x 2 x x 2 ; x 2 x 2 2 clearly, a straightforward approach to learning an SVM classifier in this space (and applying it to a new test point will involve computing dot products in R 6 (more generally, when learning a degree-q polynomial in R d, such a straightforward approach will involve computing dot products in R n for n = O(d q

3 Kernel Methods 3 Now, consider replacing dot products φ(x φ(x in the above example with K(x, x, where x, x R 2, K(x, x = (x x + 2 It can be verified (exercise! that K(x, x = φ K (x φ K (x, where (( x φ K = x 2 2x 2x2 2x x 2 Thus, using K(x, x above instead of φ(x φ(x implicitly computes dot products in R 6, with computation of dot products required only in R 2! In fact, one can use any symmetric, positive semi-definite kernel function K : X X R (also called a Mercer kernel function in the SVM algorithm directly, even if the feature space implemented by the kernel function cannot be described explicitly Any such kernel function yields a convex dual problem; if K is positive definite, then K also corresponds to inner products in some inner product space V (ie K(x, x = φ(x, φ(x for some φ : X V For Euclidean instance spaces X = R d, examples of commonly used kernel functions include the polynomial kernel K(x, x = (x x + q,which results in learning a degree-q polynomial threshold classifier, and the Gaussian kernel, also known as the radial basis function (RBF kernel, K(x, x = exp ( x x 2 2 2σ (where 2 σ > 0 is a parameter of the kernel, which effectivey implements dot products in an infinite-dimensional inner product space; in both cases, evaluating the kernel K(x, x at any two points x, x requires only O(d computation time Kernel functions can also be used for non-vectorial data (X = R d ; for example, kernel functions are often used to implicitly embed instance spaces containing strings, trees etc into an inner product space, and to implicitly learn a linear classifier in this space Intuitively, it is helpful to think of kernel functions as capturing some sort of similarity between pairs of instances in X To summarize, given a training sample S = ((x, y,, (x m, y m (X {±} m, in order to learn a kernel SVM classifier using a kernel function K : X X R, one simply solves the kernel SVM dual given by x 2 x 2 2 max α 2 α i α j y i y j K(x i, x j + α i (7 j= subject to α i y i = 0 (8 0 α i C, i =,, m, (9 and then predicts the label of a new instance x X according to ( h(x = sign i SV α i y i K(x i, x + b, where b = SV i SV ( y i j SV α j y j K(x i, x j

4 4 Kernel Methods 3 RKHSs and Representer Theorem Let K : X X R be a symmetric positive definite kernel function Let { FK 0 r } = f : X R f(x = α i K(x i, x for some r Z +, α i R, x i X For f, g FK 0 with f(x = r α ik(x i, x and g(x = s j= β jk(x j, x, define r s f, g K = α i β j K(x i, x j (0 j= f K = f, f K ( Let F K be the completion of FK 0 under the metric induced by the above norm Then reproducing kernel Hibert space (RKHS associated with K 2 Note that the SVM classifier learned using kernel K is of the form where f(x = i SV α iy i K(x i, x, ie where f F K h(x = sign(f(x + b, In fact, consider the following optimization problem: ( yi (f(x i + b f F K,b R m + + λ f 2 K F K is called the It turns out that the above SVM solution (with C = 2λm is a solution to this problem, ie the kernel SVM solution imizes the RKHS-norm regularized hinge loss over all functions over the form f(x + b for f F K, b R More generally, we have the following result: Theorem (Representer Theorem Let K : X X R be a positive definite kernel function Let Y R Let S = ((x, y,, (x m, y m (X Y m Let L : R m Y m R Let Ω : R + R + be a monotonically increasing function Then for λ > 0, there is a solution to the optimization problem of the form ( (f(x L + b,, f(x m + b, (y,, y m f F K,b R f(x = α i K(x i, x for some α,, α m R If Ω is strictly increasing, then all solutions have this form + λ Ω( f 2 K The above result tells us that even if F K is an infinite-dimensional space, any optimization problem resulting from imizing a loss over a finite training sample regularized by some increasing function of the RKHSnorm is effectively a finite-dimensional optimization problem, and moreover, the solution to this problem can be written as a kernel expansion over the training points In particular, imizing any other loss over F K (regularized by the RKHS-norm will also yield a solution of this form! Exercise Show that linear functions f : R d R of the form f(x = w x form an RKHS with linear kernel K : R d R d R given by K(x, x = x x and with f 2 K = w 2 2 The metric induced by the norm K is given by d K (f, g = f g K The completion of FK 0 is simply F K plus any limit points of Cauchy sequences in FK 0 under this metric 2 The name reproducing kernel Hilbert space comes from the following reproducing property: For any x X, define K x : X R as K x(x = K(x, x ; then for any f F K, we have f, K x = f(x

5 Kernel Methods 5 4 Kernel Logistic Regression Given a training sample S (X {±} m and kernel function K : X X R, the kernel logistic regression classifier is given by the solution to the following optimization problem: f F K,b R m ln ( + e yi(f(xi+b + λ f 2 K Since we know from the Representer Theorem that the solution has the form f(x = m α ik(x i, x, we can write the above as an optimization problem over α, b: α R m,b R m ln ( + e yi( m j= αjk(xj,xi+b + λ j= α i α j K(x i, x j This is of a similar form as in standard logistic regression, with m basis functions φ j (x = K(x j, x for j [m] (and w α! In particular, define K R m m as K ij = K(x i, x j (this is often called the gram matrix, and let k i denote the i-th column of this matrix Then we can write the above as simply α R m,b R m ln ( + e yi(α k i+b + λα Kα, which is similar to the form for standard linear logistic regression (with feature vectors k i except for the regularizer being α Kα rather than α 2 2 and can be solved similarly as before, using similar numerical optimization methods We note that unlike SVMs, here in general, the solution has α i 0 i [m] A variant of logistic regression called the import vector machine (IVM adopts a greedy approach to find a subset IV [m] such that the function f (x + b = i IV α i K(x i, x + b gives good performance Compared to SVMs, IVMs can provide more natural class probability estimates, as well as more natural extensions to multiclass classification 5 Kernel Ridge Regression Given a training sample S (X R m and kernel function K : X X R, consider first a kernel ridge regression formulation for learning a function f F K : f F K m ( yi f(x i 2 + λ f 2 K Again, since we know from the Representer Theorem that the solution has the form f(x = m α ik(x i, x, we can write the above as an optimization problem over α: α R m m ( 2 y i α j K(x j, x i + λ α i α j K(x i, x j, j= j= or in matrix notation, α R m m ( yi α 2 k i + λα Kα

6 6 Kernel Methods Again, this is of the same form as standard linear ridge regression, with feature vectors k i and with regularizer α Kα rather than α 2 2 If K is positive definite, in which case the gram matrix K is invertible, then setting the gradient of the objective above wrt α to zero can be seen to yield α = ( K + λmi m y, where as before I m is the m m identity matrix and y = (y,, y m R m Exercise Show that if X = R d and one wants to explicitly include a bias term b in the linear ridge regression solution which is not included in the regularization, then defining x ( [ ] w Id 0 X =, w =, L =, b 0 0 x m one gets the solution w = ( X X + λml X y How would you extend this to learning a function of the form f(x + b for f F K, b R in the kernel ridge regression setting?

### Support Vector Machines

Wien, June, 2010 Paul Hofmarcher, Stefan Theussl, WU Wien Hofmarcher/Theussl SVM 1/21 Linear Separable Separating Hyperplanes Non-Linear Separable Soft-Margin Hyperplanes Hofmarcher/Theussl SVM 2/21 (SVM)

### Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

### Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

### Kernel Methods. Outline

Kernel Methods Quang Nguyen University of Pittsburgh CS 3750, Fall 2011 Outline Motivation Examples Kernels Definitions Kernel trick Basic properties Mercer condition Constructing feature space Hilbert

### Lecture 10: A brief introduction to Support Vector Machine

Lecture 10: A brief introduction to Support Vector Machine Advanced Applied Multivariate Analysis STAT 2221, Fall 2013 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department

### 5.6 Nonparametric Logistic Regression

5.6 onparametric Logistic Regression Dmitri Dranishnikov University of Florida Statistical Learning onparametric Logistic Regression onparametric? Doesnt mean that there are no parameters. Just means that

### Perceptron Revisited: Linear Separators. Support Vector Machines

Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

### Support Vector Machines and Kernel Methods

2018 CS420 Machine Learning, Lecture 3 Hangout from Prof. Andrew Ng. http://cs229.stanford.edu/notes/cs229-notes3.pdf Support Vector Machines and Kernel Methods Weinan Zhang Shanghai Jiao Tong University

### Kernel Methods. Machine Learning A W VO

Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

### Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

### LMS Algorithm Summary

LMS Algorithm Summary Step size tradeoff Other Iterative Algorithms LMS algorithm with variable step size: w(k+1) = w(k) + µ(k)e(k)x(k) When step size µ(k) = µ/k algorithm converges almost surely to optimal

### Deviations from linear separability. Kernel methods. Basis expansion for quadratic boundaries. Adding new features Systematic deviation

Deviations from linear separability Kernel methods CSE 250B Noise Find a separator that minimizes a convex loss function related to the number of mistakes. e.g. SVM, logistic regression. Systematic deviation

### SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

### Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods Geoff Gordon ggordon@cs.cmu.edu July 10, 2003 Overview Why do people care about SVMs? Classification problems SVMs often produce good results over a wide range

### Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

### Least Squares Regression

E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

### Kernel Methods. Barnabás Póczos

Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

### Kernel Methods in Machine Learning

Kernel Methods in Machine Learning Autumn 2015 Lecture 1: Introduction Juho Rousu ICS-E4030 Kernel Methods in Machine Learning 9. September, 2015 uho Rousu (ICS-E4030 Kernel Methods in Machine Learning)

### 9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

### Learning From Data Lecture 25 The Kernel Trick

Learning From Data Lecture 25 The Kernel Trick Learning with only inner products The Kernel M. Magdon-Ismail CSCI 400/600 recap: Large Margin is Better Controling Overfitting Non-Separable Data 0.08 random

### Support Vector Machines

EE 17/7AT: Optimization Models in Engineering Section 11/1 - April 014 Support Vector Machines Lecturer: Arturo Fernandez Scribe: Arturo Fernandez 1 Support Vector Machines Revisited 1.1 Strictly) Separable

### Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

### Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

### Introduction to Machine Learning

1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

### Learning with kernels and SVM

Learning with kernels and SVM Šámalova chata, 23. května, 2006 Petra Kudová Outline Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion Learning from data find

### NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

### Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

### Consistency of Nearest Neighbor Methods

E0 370 Statistical Learning Theory Lecture 16 Oct 25, 2011 Consistency of Nearest Neighbor Methods Lecturer: Shivani Agarwal Scribe: Arun Rajkumar 1 Introduction In this lecture we return to the study

### Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

### Reproducing Kernel Hilbert Spaces

9.520: Statistical Learning Theory and Applications February 10th, 2010 Reproducing Kernel Hilbert Spaces Lecturer: Lorenzo Rosasco Scribe: Greg Durrett 1 Introduction In the previous two lectures, we

### Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

### Support Vector and Kernel Methods

SIGIR 2003 Tutorial Support Vector and Kernel Methods Thorsten Joachims Cornell University Computer Science Department tj@cs.cornell.edu http://www.joachims.org 0 Linear Classifiers Rules of the Form:

### Statistical Pattern Recognition

Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

### Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

### Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

### UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

### LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES Supervised Learning Linear vs non linear classifiers In K-NN we saw an example of a non-linear classifier: the decision boundary

### Support Vector Machines

Support Vector Machines Tobias Pohlen Selected Topics in Human Language Technology and Pattern Recognition February 10, 2014 Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6

### ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

### Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

### Linear Classification and SVM. Dr. Xin Zhang

Linear Classification and SVM Dr. Xin Zhang Email: eexinzhang@scut.edu.cn What is linear classification? Classification is intrinsically non-linear It puts non-identical things in the same class, so a

### Support Vector Machines. Maximizing the Margin

Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

### The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

### UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

### Lecture Support Vector Machine (SVM) Classifiers

Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

### CS , Fall 2011 Assignment 2 Solutions

CS 94-0, Fall 20 Assignment 2 Solutions (8 pts) In this question we briefly review the expressiveness of kernels (a) Construct a support vector machine that computes the XOR function Use values of + and

### Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

### 1. Kernel ridge regression In contrast to ordinary least squares which has a cost function. m (θ T x (i) y (i) ) 2, J(θ) = 1 2.

CS229 Problem Set #2 Solutions 1 CS 229, Public Course Problem Set #2 Solutions: Theory Kernels, SVMs, and 1. Kernel ridge regression In contrast to ordinary least squares which has a cost function J(θ)

### Function Spaces. 1 Hilbert Spaces

Function Spaces A function space is a set of functions F that has some structure. Often a nonparametric regression function or classifier is chosen to lie in some function space, where the assume structure

### CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Linear Classification Given labeled data: (xi, feature vector yi) label i=1,..,n where y is 1 or 1, find a hyperplane to separate from Linear Classification

### COMS 4771 Regression. Nakul Verma

COMS 4771 Regression Nakul Verma Last time Support Vector Machines Maximum Margin formulation Constrained Optimization Lagrange Duality Theory Convex Optimization SVM dual and Interpretation How get the

### The Kernel Trick. Carlos C. Rodríguez October 25, Why don t we do it in higher dimensions?

The Kernel Trick Carlos C. Rodríguez http://omega.albany.edu:8008/ October 25, 2004 Why don t we do it in higher dimensions? If SVMs were able to handle only linearly separable data, their usefulness would

### Linear Regression (continued)

Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

### Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

### COMP 652: Machine Learning. Lecture 12. COMP Lecture 12 1 / 37

COMP 652: Machine Learning Lecture 12 COMP 652 Lecture 12 1 / 37 Today Perceptrons Definition Perceptron learning rule Convergence (Linear) support vector machines Margin & max margin classifier Formulation

### Statistical Classification. Minsoo Kim Pomona College Advisor: Jo Hardin

Statistical Classification Minsoo Kim Pomona College Advisor: Jo Hardin April 2, 2010 2 Contents 1 Introduction 5 2 Basic Discriminants 7 2.1 Linear Discriminant Analysis for Two Populations...................

### Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

### LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

LINEAR CLASSIFIERS Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification, the input

### Kernels for Multi task Learning

Kernels for Multi task Learning Charles A Micchelli Department of Mathematics and Statistics State University of New York, The University at Albany 1400 Washington Avenue, Albany, NY, 12222, USA Massimiliano

### Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

### Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

### CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

Kernel Conjugate Gradient Nathan Ratliff Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 ndr@andrew.cmu.edu J. Andrew Bagnell Robotics Institute Carnegie Mellon University Pittsburgh,

### Kernels MIT Course Notes

Kernels MIT 15.097 Course Notes Cynthia Rudin Credits: Bartlett, Schölkopf and Smola, Cristianini and Shawe-Taylor The kernel trick that I m going to show you applies much more broadly than SVM, but we

### Lecture 10: Support Vector Machines

Lecture 0: Support Vector Machines Lecture : Support Vector Machines Haim Sompolinsky, MCB 3, Monday, March 2, 205 Haim Sompolinsky, MCB 3, Wednesday, March, 207 The Optimal Separating Plane Suppose we

### Support Vector Machines and Kernel Algorithms

Support Vector Machines and Kernel Algorithms Bernhard Schölkopf Max-Planck-Institut für biologische Kybernetik 72076 Tübingen, Germany Bernhard.Schoelkopf@tuebingen.mpg.de Alex Smola RSISE, Australian

### Nearest Neighbors Methods for Support Vector Machines

Nearest Neighbors Methods for Support Vector Machines A. J. Quiroz, Dpto. de Matemáticas. Universidad de Los Andes joint work with María González-Lima, Universidad Simón Boĺıvar and Sergio A. Camelo, Universidad

### AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague

AdaBoost Lecturer: Jan Šochman Authors: Jan Šochman, Jiří Matas Center for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz Motivation Presentation 2/17 AdaBoost with trees

### Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Support Vector Machines CAP 5610: Machine Learning Instructor: Guo-Jun QI 1 Linear Classifier Naive Bayes Assume each attribute is drawn from Gaussian distribution with the same variance Generative model:

### SUPPORT VECTOR MACHINE FOR THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE

SUPPORT VECTOR MACHINE FOR THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE M. Lázaro 1, I. Santamaría 2, F. Pérez-Cruz 1, A. Artés-Rodríguez 1 1 Departamento de Teoría de la Señal y Comunicaciones

### Machine Learning, Midterm Exam

10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

### below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing

Kernel PCA Pattern Reconstruction via Approximate Pre-Images Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch, & Klaus-Robert Muller GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany fbs,

### Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

### Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

### Kernel Methods in Medical Imaging

This is page 1 Printer: Opaque this Kernel Methods in Medical Imaging G. Charpiat, M. Hofmann, B. Schölkopf ABSTRACT We introduce machine learning techniques, more specifically kernel methods, and show

### Lecture 11. Kernel Methods

Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

### Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

### The Intrinsic Recurrent Support Vector Machine

he Intrinsic Recurrent Support Vector Machine Daniel Schneegaß 1,2, Anton Maximilian Schaefer 1,3, and homas Martinetz 2 1- Siemens AG, Corporate echnology, Learning Systems, Otto-Hahn-Ring 6, D-81739

### Back to the future: Radial Basis Function networks revisited

Back to the future: Radial Basis Function networks revisited Qichao Que, Mikhail Belkin Department of Computer Science and Engineering Ohio State University Columbus, OH 4310 que, mbelkin@cse.ohio-state.edu

### 15-388/688 - Practical Data Science: Nonlinear modeling, cross-validation, regularization, and evaluation

15-388/688 - Practical Data Science: Nonlinear modeling, cross-validation, regularization, and evaluation J. Zico Kolter Carnegie Mellon University Fall 2016 1 Outline Example: return to peak demand prediction

### Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

Diffeomorphic Warping Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) What Manifold Learning Isn t Common features of Manifold Learning Algorithms: 1-1 charting Dense sampling Geometric Assumptions

### Gaussian Processes (10/16/13)

STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

### MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

(Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

### TDT 4173 Machine Learning and Case Based Reasoning. Helge Langseth og Agnar Aamodt. NTNU IDI Seksjon for intelligente systemer

TDT 4173 Machine Learning and Case Based Reasoning Lecture 6 Support Vector Machines. Ensemble Methods Helge Langseth og Agnar Aamodt NTNU IDI Seksjon for intelligente systemer Outline 1 Wrap-up from last

### Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas

GENDER DETERMINATION USING A SUPPORT VECTOR MACHINE VARIANT Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas Artificial Intelligence and Information Analysis Lab/Department of Informatics, Aristotle

### 9.520: Class 20. Bayesian Interpretations. Tomaso Poggio and Sayan Mukherjee

9.520: Class 20 Bayesian Interpretations Tomaso Poggio and Sayan Mukherjee Plan Bayesian interpretation of Regularization Bayesian interpretation of the regularizer Bayesian interpretation of quadratic

### Kernel methods and the exponential family

Kernel methods and the exponential family Stéphane Canu 1 and Alex J. Smola 2 1- PSI - FRE CNRS 2645 INSA de Rouen, France St Etienne du Rouvray, France Stephane.Canu@insa-rouen.fr 2- Statistical Machine

### Lecture 4. 1 Learning Non-Linear Classifiers. 2 The Kernel Trick. CS-621 Theory Gems September 27, 2012

CS-62 Theory Gems September 27, 22 Lecture 4 Lecturer: Aleksander Mądry Scribes: Alhussein Fawzi Learning Non-Linear Classifiers In the previous lectures, we have focused on finding linear classifiers,

### Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

### Robust Kernel-Based Regression

Robust Kernel-Based Regression Budi Santosa Department of Industrial Engineering Sepuluh Nopember Institute of Technology Kampus ITS Surabaya Surabaya 60111,Indonesia Theodore B. Trafalis School of Industrial

### Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

### CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles Lecture 3: Regression I slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 48 In a nutshell

### Support Vector Machines. Machine Learning Series Jerry Jeychandra Blohm Lab

Support Vector Machines Machine Learning Series Jerry Jeychandra Bloh Lab Outline Main goal: To understand how support vector achines (SVMs) perfor optial classification for labelled data sets, also a

### 1 Review of Winnow Algorithm

COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 17 Scribe: Xingyuan Fang, Ethan April 9th, 2013 1 Review of Winnow Algorithm We have studied Winnow algorithm in Algorithm 1. Algorithm

### StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory S.V. N. (vishy) Vishwanathan Purdue University and Microsoft vishy@purdue.edu October 9, 2012 S.V. N. Vishwanathan (Purdue,

### MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

### DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

### Support vector machines Lecture 4

Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The