CS6220: DATA MINING TECHNIQUES

Size: px
Start display at page:

Download "CS6220: DATA MINING TECHNIQUES"

Transcription

1 CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014

2 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network Classification Decision Tree; Naïve Bayes; Logistic Regression SVM; knn HMM Label Propagation Clustering Frequent Pattern Mining K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means Apriori; FP-growth GSP; PrefixSpan Prediction Linear Regression Autoregression SCAN; Spectral Clustering Similarity Search Ranking DTW P-PageRank PageRank 2

3 Matrix Data: Classification: Part 2 Bayesian Learning Naïve Bayes Bayesian Belief Network Logistic Regression Summary 3

4 Bayesian Classification: Why? A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities Foundation: Based on Bayes Theorem. Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured 4

5 Basic Probability Review Have two dices h 1 and h 2 The probability of rolling an i given die h 1 is denoted P(i h 1 ). This is a conditional probability Pick a die at random with probability P(h j ), j=1 or 2. The probability for picking die h j and rolling an i with it is called joint probability and is P(i, h j )=P(h j )P(i h j ). If we know P(i h j ), then the so-called marginal probability P(i) can be computed as: P i = j P(i, h j ) For any X and Y, P(X,Y)=P(X Y)P(Y) 5

6 Bayes Theorem: Basics Bayes Theorem: P( h X) P( X h) P( h) P( X) Let X be a data sample ( evidence ) Let h be a hypothesis that X belongs to class C P(h) (prior probability): the initial probability E.g., X will buy computer, regardless of age, income, P(X h) (likelihood): the probability of observing the sample X, given that the hypothesis holds E.g., Given that X will buy computer, the prob. that X is , medium income P(X): marginal probability that sample data is observed P X = h P X h P(h) P(h X), (i.e., posterior probability): the probability that the hypothesis holds given the observed data sample X 6

7 Classification: Choosing Hypotheses Maximum Likelihood (maximize the likelihood): h ML arg max P( DX h) h H Maximum a posteriori (maximize the posterior): Useful observation: it does not depend on the denominator P(X) h MAP arg max P( h h H DX ) arg max P( DX h) P( h) h H 7

8 Classification by Maximum A Posteriori Let D be a training set of tuples and their associated class labels, and each tuple is represented by an p-d attribute vector X = (x 1, x 2,, x p ) Suppose there are m classes Y {C 1, C 2,, C m } Classification is to derive the maximum posteriori, i.e., the maximal P(Y=C j X) P( X Y C ) This can be derived from Bayes theorem P( Y C X) j j P( Y C ) j P( X) Since P(X) is constant for all classes, only needs to be maximized P( y, X) P( X y) P( y) 8

9 Example: Cancer Diagnosis A patient takes a lab test with two possible results (+ve, -ve), and the result comes back positive. It is known that the test returns a correct positive result in only 98% of the cases (true positive); a correct negative result in only 97% of the cases (true negative). Furthermore, only of the entire population has this disease. 1. What is the probability that this patient has cancer? 2. What is the probability that he does not have cancer? 3. What is the diagnosis? 9

10 Solution P(cancer) =.008 P( cancer) =.992 P(+ve cancer) =.98 P(-ve cancer) =.02 P(+ve cancer) =.03 P(-ve cancer) =.97 Using Bayes Formula: P(cancer +ve) = P(+ve cancer)xp(cancer) / P(+ve) = 0.98 x 0.008/ P(+ve) = / P(+ve) P( cancer +ve) = P(+ve cancer)xp( cancer) / P(+ve) = 0.03 x 0.992/P(+ve) =.0298 / P(+ve) So, the patient most likely does not have cancer. 10

11 Matrix Data: Classification: Part 2 Bayesian Learning Naïve Bayes Bayesian Belief Network Logistic Regression Summary 11

12 Naïve Bayes Classifier Let D be a training set of tuples and their associated class labels, and each tuple is represented by an p-d attribute vector X = (x 1, x 2,, x p ) Suppose there are m classes Y {C 1, C 2,, C m } Goal: Find Y max P Y X = P(Y, X)/P(X) P X Y P(Y) A simplified assumption: attributes are conditionally independent given the class (class conditional independency): p P( X C j) P( x k 1 k C j) P( x 1 C j) P( x 2 C j)... P( x p C j) 12

13 Estimate Parameters by MLE Given a dataset D = {(X i, Y i )}, the goal is to Find the best estimators P(C j ) and P(X k = x k C j ), for every j = 1,, m and k = 1,, p that maximizes the likelihood of observing D: L = = i i ( P X i, Y i = Estimators of Parameters: k P X ik Y i )P(Y i ) i P X i Y i P(Y i ) P C j = C j,d / D ( C j,d = # of tuples of C j in D) (why?) P X k = x k C j : X k can be either discrete or numerical 13

14 Discrete and Continuous Attributes If X k is discrete, with V possible values P(x k C j ) is the # of tuples in C j having value x k for X k divided by C j, D If X k is continuous, with observations of real values P(x k C j ) is usually computed based on Gaussian distribution with a mean μ and standard deviation σ Estimate (μ, σ 2 ) according to the observed X in the category of C j Sample mean and sample variance P(x k C j ) is then P( X k xk C j) g( xk, C i, C ) i Gaussian density function 14

15 Naïve Bayes Classifier: Training Dataset Class: C1:buys_computer = yes C2:buys_computer = no Data to be classified: X = (age <=30, Income = medium, Student = yes Credit_rating = Fair) age income studentcredit_rating_comp <=30 high no fair no <=30 high no excellent no high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes medium no excellent yes high yes fair yes >40 medium no excellent no 15

16 Naïve Bayes Classifier: An Example age income studentcredit_rating_comp <=30 high no fair no <=30 high no excellent no high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes medium no excellent yes high yes fair yes >40 medium no excellent no P(C i ): P(buys_computer = yes ) = 9/14 = P(buys_computer = no ) = 5/14= Compute P(X C i ) for each class P(age = <=30 buys_computer = yes ) = 2/9 = P(age = <= 30 buys_computer = no ) = 3/5 = 0.6 P(income = medium buys_computer = yes ) = 4/9 = P(income = medium buys_computer = no ) = 2/5 = 0.4 P(student = yes buys_computer = yes) = 6/9 = P(student = yes buys_computer = no ) = 1/5 = 0.2 P(credit_rating = fair buys_computer = yes ) = 6/9 = P(credit_rating = fair buys_computer = no ) = 2/5 = 0.4 X = (age <= 30, income = medium, student = yes, credit_rating = fair) P(X C i ) : P(X buys_computer = yes ) = x x x = P(X buys_computer = no ) = 0.6 x 0.4 x 0.2 x 0.4 = P(X C i )*P(C i ) : P(X buys_computer = yes ) * P(buys_computer = yes ) = P(X buys_computer = no ) * P(buys_computer = no ) = Therefore, X belongs to class ( buys_computer = yes ) 16

17 Avoiding the Zero-Probability Problem Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero p P( X C j) P( xk C j) k 1 Use Laplacian correction (or Laplacian smoothing) Adding 1 to each case P x k = v C j = n jk,v+1 C j,d +V where n jk,v is # of tuples in C j having value x k = v, V is the total number of values that can be taken Ex. Suppose a training dataset with 1000 tuples, for category buys_computer = yes, income=low (0), income= medium (990), and income = high (10) Prob(income = low buys_computer = yes ) = 1/1003 Prob(income = medium buys_computer = yes ) = 991/1003 Prob(income = high buys_computer = yes ) = 11/1003 The corrected prob. estimates are close to their uncorrected counterparts 17

18 *Smoothing and Prior on Attribute Distribution Discrete distribution: X k C j ~ θ P X k = v C j, θ = θ v Put prior to θ In discrete case, the prior can be chosen as symmetric Dirichlet distribution: θ~dir α, i. e., P θ v θ v α 1 posterior distribution: P θ X 1k,, X nk, C j P X 1k,, X nk C j, θ P θ, another Dirichlet distribution, with new parameter (α + c 1,, α + c v,, α + c V ) c v is the number of observations taking value v Inference: P X k = v X 1k,, X nk, C j = P(X k = v θ)p θ X 1k,, X nk, C j dθ = c v + α c v + Vα Equivalent to adding α to each observation value v 18

19 *Notes on Parameter Learning Why the probability of P X k C j estimated in this way? Fall06/reading/NB.pdf is 19

20 Naïve Bayes Classifier: Comments Advantages Easy to implement Good results obtained in most of the cases Disadvantages Assumption: class conditional independence, therefore loss of accuracy Practically, dependencies exist among variables E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc. Dependencies among these cannot be modeled by Naïve Bayes Classifier How to deal with these dependencies? Bayesian Belief Networks 20

21 Matrix Data: Classification: Part 2 Bayesian Learning Naïve Bayes Bayesian Belief Network Logistic Regression Summary 21

22 Bayesian Belief Networks (BNs) Bayesian belief network (also known as Bayesian network, probabilistic network): allows class conditional independencies between subsets of variables Two components: (1) A directed acyclic graph (called a structure) and (2) a set of conditional probability tables (CPTs) A (directed acyclic) graphical model of causal influence relationships Represents dependency among the variables Gives a specification of joint probability distribution Nodes: random variables X Z Y P Links: dependency X and Y are the parents of Z, and Y is the parent of P No dependency between Z and P conditional on Y Has no cycles 22 22

23 A Bayesian Network and Some of Its CPTs Fire (F) Tampering (T) CPT: Conditional Probability Tables F F S S Smoke (S) Alarm (A) F, T F, T F, T F, T A A Leaving (L) Report (R) Derivation of the probability of a particular combination of values of X, from CPT (joint probability): CPT shows the conditional probability for each possible combination of its parents P( x 1,..., x n ) n P( xi i 1 Parents ( xi)) 23

24 Inference in Bayesian Networks Infer the probability of values of some variable given the observations of other variables E.g., P(Fire = True Report = True, Smoke = True)? Computation Exact computation by enumeration In general, the problem is NP hard *Approximation algorithms are needed 24

25 Inference by enumeration To compute posterior marginal P(X i E=e) Add all of the terms (atomic event probabilities) from the full joint distribution If E are the evidence (observed) variables and Y are the other (unobserved) variables, then: P(X e) = α P(X, E) = α P(X, E, Y) Each P(X, E, Y) term can be computed using the chain rule Computationally expensive! 25

26 Example: Enumeration a b c d P (d e) = Σ ABC P(a, b, c, d, e) = Σ ABC P(a) P(b a) P(c a) P(d b,c) P(e c) With simple iteration to compute this expression, there s going to be a lot of repetition (e.g., P(e c) has to be recomputed every time we iterate over C=true) *A solution: variable elimination e 26

27 *How Are Bayesian Networks Constructed? Subjective construction: Identification of (direct) causal structure People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known E.g., S F A T, path S A is blocked once we know F A Synthesis from other specifications E.g., from a formal system design: block diagrams & info flow Learning from data E.g., from medical records or student admission record Learn parameters give its structure or learn both structure and parms Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set 27

28 *Learning Bayesian Networks: Several Scenarios Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries (Easiest case!) Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function Weights are initialized to random probability values At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking Weights are updated at each iteration & converge to local optimum Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose D. Heckerman. A Tutorial on Learning with Bayesian Networks. In Learning in Graphical Models, M. Jordan, ed. MIT Press,

29 Matrix Data: Classification: Part 2 Bayesian Learning Naïve Bayes Bayesian Belief Network Logistic Regression Summary 29

30 Linear Regression VS. Logistic Regression Linear Regression Y: continuous value, + Y = x T β = β 0 + x 1 β 1 + x 2 β x p β p Y x, β~n(x T β, σ 2 ) Logistic Regression Y: discrete value from m classes p Y = C j (0,1) and j p Y = C j = 1 30

31 Logistic Function Logistic Function: f x = 1 1+e x 31

32 Modeling Probabilities of Two Classes P Y = 1 X, β = 1 1+exp{ X T β} = exp{xt β} 1+exp{X T β} P Y = 0 X, β = exp{ XT β} = 1 1+exp{ X T β} 1+exp{X T β} β = β 0 β 1 β p In other words Y X, β~bernoulli( 1 ) 1+exp{ X T β} 32

33 Parameter Estimation MLE estimation Given a dataset D, with n data points For a single data object with attributes x i, class label y i Let p x i ; β = p i = P Y = 1 x i, β, the prob. of i in class 1 The probability of observing y i would be If y i = 1, then p i If y i = 0, then 1 p i Combing the two cases: p i y i L = i p i y i 1 pi 1 y i = i exp X T β 1+exp X T β y i 1 1 pi 1 y i 1+exp X T β 1 y i 33

34 Optimization Equivalent to maximize log likelihood L = i y i x T i β log 1 + exp x T i β Newton-Raphson update where derivatives at evaluated at β old 34

35 First Derivative p(x i ; β) j = 0, 1,, p 35

36 Second Derivative It is a (p+1) by (p+1) matrix, Hessian Matrix, with jth row and nth column as 36

37 What about Multiclass Classification? It is easy to handle under logistic regression, say M classes P Y = j X = 1,, M 1 P Y = M X = 1+ m=1 exp{x T β j } M 1 exp{x T β m }, for j = 1 M 1 exp{x T β m } 1+ m=1 37

38 Bayesian Learning Bayes theorem Summary Naïve Bayes, class conditional independence Bayesian Belief Network, DAG, conditional probability table Logistic Regression Logistic function, two-class logistic regression, MLE estimation, Newton-Raphson update, multiclass classification under logistic regression 38

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Naïve Bayesian. From Han Kamber Pei

Naïve Bayesian. From Han Kamber Pei Naïve Bayesian From Han Kamber Pei Bayesian Theorem: Basics Let X be a data sample ( evidence ): class label is unknown Let H be a hypothesis that X belongs to class C Classification is to determine H

More information

Chapter 6 Classification and Prediction (2)

Chapter 6 Classification and Prediction (2) Chapter 6 Classification and Prediction (2) Outline Classification and Prediction Decision Tree Naïve Bayes Classifier Support Vector Machines (SVM) K-nearest Neighbors Accuracy and Error Measures Feature

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu November 3, 2015 Methods to Learn Matrix Data Text Data Set Data Sequence Data Time Series Graph

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Data Mining Part 4. Prediction

Data Mining Part 4. Prediction Data Mining Part 4. Prediction 4.3. Fall 2009 Instructor: Dr. Masoud Yaghini Outline Introduction Bayes Theorem Naïve References Introduction Bayesian classifiers A statistical classifiers Introduction

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Generative Model (Naïve Bayes, LDA)

Generative Model (Naïve Bayes, LDA) Generative Model (Naïve Bayes, LDA) IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University Materials from Prof. Jia Li, sta3s3cal learning book (Has3e et al.), and machine learning

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classification n Uncertainty & robability n Baye's rule n Choosing Hypotheses- Maximum a posteriori n Maximum Likelihood - Baye's concept learning n Maximum Likelihood of real valued function n Bayes

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Stephen Scott.

Stephen Scott. 1 / 28 ian ian Optimal (Adapted from Ethem Alpaydin and Tom Mitchell) Naïve Nets sscott@cse.unl.edu 2 / 28 ian Optimal Naïve Nets Might have reasons (domain information) to favor some hypotheses/predictions

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Probabilistic Classification

Probabilistic Classification Bayesian Networks Probabilistic Classification Goal: Gather Labeled Training Data Build/Learn a Probability Model Use the model to infer class labels for unlabeled data points Example: Spam Filtering...

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu March 16, 2016 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Bayesian Classification. Bayesian Classification: Why?

Bayesian Classification. Bayesian Classification: Why? Bayesian Classification http://css.engineering.uiowa.edu/~comp/ Bayesian Classification: Why? Probabilistic learning: Computation of explicit probabilities for hypothesis, among the most practical approaches

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

BAYESIAN CLASSIFICATION

BAYESIAN CLASSIFICATION BAYESIAN CLASSIFICATION CSE 634 DATA MINING PROF. ANITA WASILEWSKA TEAM 7 References Bayes Theorem : https://www.investopedia.com/terms/b/bayes-theorem.asp Bayes Classfication: https://www.tutorialspoint.com/data_mining/dm_bayesian_classification.html

More information

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas ian ian ian Might have reasons (domain information) to favor some hypotheses/predictions over others a priori ian methods work with probabilities, and have two main roles: Naïve Nets (Adapted from Ethem

More information

Introduction to Bayesian Learning

Introduction to Bayesian Learning Course Information Introduction Introduction to Bayesian Learning Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Apprendimento Automatico: Fondamenti - A.A. 2016/2017 Outline

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4375 --- Fall 2018 Bayesian a Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell 1 Uncertainty Most real-world problems deal with

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Introduction to Machine Learning

Introduction to Machine Learning Uncertainty Introduction to Machine Learning CS4375 --- Fall 2018 a Bayesian Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell Most real-world problems deal with

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2 Representation Stefano Ermon, Aditya Grover Stanford University Lecture 2 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 2 1 / 32 Learning a generative model We are given a training

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesian decision theory Nuno Vasconcelos ECE Department, UCSD Notation the notation in DHS is quite sloppy e.g. show that ( error = ( error z ( z dz really not clear what this means we will use the following

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Logistic Regression. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Logistic Regression. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Logistic Regression Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Please start HW 1 early! Questions are welcome! Two principles for estimating parameters Maximum Likelihood

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Vector Data: Clustering: Part II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 3, 2017 Methods to Learn: Last Lecture Classification Clustering Vector Data Text Data Recommender

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information

CSE 473: Artificial Intelligence Autumn Topics

CSE 473: Artificial Intelligence Autumn Topics CSE 473: Artificial Intelligence Autumn 2014 Bayesian Networks Learning II Dan Weld Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 473 Topics

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Graphical Models Adrian Weller MLSALT4 Lecture Feb 26, 2016 With thanks to David Sontag (NYU) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 13 24 march 2017 Reasoning with Bayesian Networks Naïve Bayesian Systems...2 Example

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Naïve Bayes Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative HW 1 out today. Please start early! Office hours Chen: Wed 4pm-5pm Shih-Yang: Fri 3pm-4pm Location: Whittemore 266

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Some Probability and Statistics

Some Probability and Statistics Some Probability and Statistics David M. Blei COS424 Princeton University February 13, 2012 Card problem There are three cards Red/Red Red/Black Black/Black I go through the following process. Close my

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lecture 4 Learning Bayesian belief networks Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administration Midterm: Monday, March 7, 2003 In class Closed book Material covered by Wednesday, March

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture?

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture? Bayes Rule CS789: Machine Learning and Neural Network Bayesian learning P (Y X) = P (X Y )P (Y ) P (X) Jakramate Bootkrajang Department of Computer Science Chiang Mai University P (Y ): prior belief, prior

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science Probabilistic Reasoning Kee-Eung Kim KAIST Computer Science Outline #1 Acting under uncertainty Probabilities Inference with Probabilities Independence and Bayes Rule Bayesian networks Inference in Bayesian

More information