Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015

Size: px
Start display at page:

Download "Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015"

Transcription

1 Causality Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen MLSS, Tübingen 21st July 2015

2 Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British Medical Journal, 1986

3 Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British Medical Journal, 1986

4 J. Mooij et al.: Distinguishing cause from effect using observational data: methods and benchmarks, submitted

5 Assume P(X 1,..., X 4 ) has been induced by X 1 = f 1 (X 3, N 1 ) X 2 = N 2 X 3 = f 3 (X 2, N 3 ) X 4 = f 4 (X 2, X 3, N 4 ) G 0 X 1 X 2 X 3 N i jointly independent G 0 has no cycles X 4 Functional causal model. Can the DAG be recovered from P(X 1,..., X 4 )?

6 Assume P(X 1,..., X 4 ) has been induced by X 1 = f 1 (X 3, N 1 ) X 2 = N 2 X 3 = f 3 (X 2, N 3 ) X 4 = f 4 (X 2, X 3, N 4 ) G 0 X 1 X 2 X 3 N i jointly independent G 0 has no cycles X 4 Functional causal model. Can the DAG be recovered from P(X 1,..., X 4 )? No. JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014 S. Shimizu, P. Hoyer, A. Hyvärinen, A. Kerminen: A linear non-gaussian acyclic model for causal discovery. JMLR, 2006 P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014

7 Assume P(X 1,..., X 4 ) has been induced by X 1 = f 1 (X 3 ) + N 1 X 2 = N 2 X 3 = f 3 (X 2 ) + N 3 G 0 X 1 X 4 = f 4 (X 2, X 3 ) + N 4 X 2 X 3 N i N (0, σi 2 ) jointly independent X 4 G 0 has no cycles Additive noise model with Gaussian noise. Can the DAG be recovered from P(X 1,..., X 4 )? Yes iff f i nonlinear. JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014 P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014 S. Shimizu, P. Hoyer, A. Hyvärinen, A. Kerminen: A linear non-gaussian acyclic model for causal discovery. JMLR, 2006

8 Consider a distribution generated by Y = f (X ) + N Y with N Y, X ind N X Y

9 Consider a distribution generated by Y = f (X ) + N Y with N Y, X ind N X Y Then, if f is nonlinear, there is no X = g(y ) + M X with M X, Y ind N X Y JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

10 Consider a distribution corresponding to Y = X 3 + N Y with N Y, X ind N X Y with X N (1, ) N Y N (0, )

11 Y X

12 Y X

13 Y X

14 Y gam(x ~ s(y))$residuals

15 Surprise (under some assumptions): 2 variables p variables JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

16 Surprise (under some assumptions): 2 variables p variables JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014 Let P(X 1,..., X p ) be induced by a... conditions identif. structural equation model: X i = f i (X PAi, N i ) - additive noise model: X i = f i (X PAi ) + N i nonlin. fct. causal additive model: X i = k PA f ik (X k ) + N i nonlin. fct. i linear Gaussian model: X i = k PA β ik X k + N i linear fct.. i (results hold for Gaussian noise)

17

18

19 GAUL GAUSS the LINEAR

20 Significant IGCI LiNGaM Additive Noise PNL 70 Accuracy (%) Not significant Decision rate (%) see also D. Lopez-Paz, K. Muandet, B. Schölkopf, I. Tolstikhin: Towards a Learning Theory of Cause-Effect Inference, ICML 2015 E. Sgouritsa, D. Janzing, P. Hennig, B. Schölkopf: Inf. of Cause and Effect with Unsupervised Inverse Regr., AISTATS 2015

21 Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014) p = 6170 genes n obs = 160 wild-types n int = 1479 gene deletions (targets known)

22 Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014) p = 6170 genes n obs = 160 wild-types n int = 1479 gene deletions (targets known) true hits: 0.1% of pairs

23 Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014) p = 6170 genes n obs = 160 wild-types n int = 1479 gene deletions (targets known) true hits: 0.1% of pairs Invariant prediction method: E = {obs, int}

24 Real data: genetic perturbation experiments for yeast (Kemmeren et al., 2014) p = 6170 genes n obs = 160 wild-types n int = 1479 gene deletions (targets known) true hits: 0.1% of pairs Invariant prediction method: E = {obs, int} JP, P. Bühlmann, N. Meinshausen: Causal inference using inv. pred.: identification and conf. intervals, arxiv, D. Rothenhaeusler, C. Heinze et al.: backshift: Learning causal cyclic graphs from unknown shift interv., arxiv M. Rojas-Carulla et al.: A Causal Perspective on Domain Adaptation, arxiv

25 ACTIVITY GENE observational training data ACTIVITY GENE 5954 interventional training data (interv. on genes other than 5954 and 4710) ACTIVITY GENE 5954 most significant pair ACTIVITY GENE interventional test data point (intervention on gene 5954) ACTIVITY GENE 5954

26 ACTIVITY GENE observational training data interventional training data (interv. on genes other than 3729 and 3730) ACTIVITY GENE interventional test data point (intervention on gene 3729) ACTIVITY GENE ACTIVITY GENE ACTIVITY GENE nd most significant pair

27 ACTIVITY GENE observational training data ACTIVITY GENE 3672 interventional training data (interv. on genes other than 3672 and 1475) ACTIVITY GENE rd most significant pair ACTIVITY GENE interventional test data point (intervention on gene 3672) ACTIVITY GENE 3672

28 # STRONG INTERVENTION EFFECTS PERFECT INVARIANT HIDDEN INVARIANT PC RFCI REGRESSION (CV Lasso) GES and GIES RANDOM (99% prediction interval) # INTERVENTION PREDICTIONS

29

30 B. Watterson: It s a magical world, Andrews McMeel Publishing, 1996

Simplicity of Additive Noise Models

Simplicity of Additive Noise Models Simplicity of Additive Noise Models Jonas Peters ETH Zürich - Marie Curie (IEF) Workshop on Simplicity and Causal Discovery Carnegie Mellon University 7th June 2014 contains joint work with... ETH Zürich:

More information

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Peter Bühlmann joint work with Jonas Peters Nicolai Meinshausen ... and designing new perturbation

More information

Recovering the Graph Structure of Restricted Structural Equation Models

Recovering the Graph Structure of Restricted Structural Equation Models Recovering the Graph Structure of Restricted Structural Equation Models Workshop on Statistics for Complex Networks, Eindhoven Jonas Peters 1 J. Mooij 3, D. Janzing 2, B. Schölkopf 2, P. Bühlmann 1 1 Seminar

More information

Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables

Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables Jonas Peters ETH Zürich Tutorial NIPS 2013 Workshop on Causality 9th December 2013 F. H. Messerli: Chocolate Consumption,

More information

Inference of Cause and Effect with Unsupervised Inverse Regression

Inference of Cause and Effect with Unsupervised Inverse Regression Inference of Cause and Effect with Unsupervised Inverse Regression Eleni Sgouritsa Dominik Janzing Philipp Hennig Bernhard Schölkopf Max Planck Institute for Intelligent Systems, Tübingen, Germany {eleni.sgouritsa,

More information

Causal Inference on Discrete Data via Estimating Distance Correlations

Causal Inference on Discrete Data via Estimating Distance Correlations ARTICLE CommunicatedbyAapoHyvärinen Causal Inference on Discrete Data via Estimating Distance Correlations Furui Liu frliu@cse.cuhk.edu.hk Laiwan Chan lwchan@cse.euhk.edu.hk Department of Computer Science

More information

arxiv: v1 [stat.ml] 13 Mar 2018

arxiv: v1 [stat.ml] 13 Mar 2018 SAM: Structural Agnostic Model, Causal Discovery and Penalized Adversarial Learning arxiv:1803.04929v1 [stat.ml] 13 Mar 2018 Diviyan Kalainathan 1, Olivier Goudet 1, Isabelle Guyon 1, David Lopez-Paz 2,

More information

Discovery of Linear Acyclic Models Using Independent Component Analysis

Discovery of Linear Acyclic Models Using Independent Component Analysis Created by S.S. in Jan 2008 Discovery of Linear Acyclic Models Using Independent Component Analysis Shohei Shimizu, Patrik Hoyer, Aapo Hyvarinen and Antti Kerminen LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

Cause-Effect Inference by Comparing Regression Errors

Cause-Effect Inference by Comparing Regression Errors Cause-Effect Inference by Comparing Regression Errors Patrick Blöbaum Dominik Janzing Takashi Washio Osaka University MPI for Intelligent Systems Osaka University Japan Tübingen, Germany Japan Shohei Shimizu

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Distinguishing between cause and effect

Distinguishing between cause and effect JMLR Workshop and Conference Proceedings 6:147 156 NIPS 28 workshop on causality Distinguishing between cause and effect Joris Mooij Max Planck Institute for Biological Cybernetics, 7276 Tübingen, Germany

More information

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Journal of Machine Learning Research 17 (2016) 1-102 Submitted 12/14; Revised 12/15; Published 4/16 Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Joris M. Mooij Institute

More information

Foundations of Causal Inference

Foundations of Causal Inference Foundations of Causal Inference Causal inference is usually concerned with exploring causal relations among random variables X 1,..., X n after observing sufficiently many samples drawn from the joint

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Causal Inference via Kernel Deviance Measures

Causal Inference via Kernel Deviance Measures Causal Inference via Kernel Deviance Measures Jovana Mitrovic Department of Statistics University of Oxford Dino Sejdinovic Department of Statistics University of Oxford Yee Whye Teh Department of Statistics

More information

Probabilistic latent variable models for distinguishing between cause and effect

Probabilistic latent variable models for distinguishing between cause and effect Probabilistic latent variable models for distinguishing between cause and effect Joris M. Mooij joris.mooij@tuebingen.mpg.de Oliver Stegle oliver.stegle@tuebingen.mpg.de Dominik Janzing dominik.janzing@tuebingen.mpg.de

More information

arxiv: v1 [cs.lg] 26 May 2017

arxiv: v1 [cs.lg] 26 May 2017 Learning Causal tructures Using Regression Invariance ariv:1705.09644v1 [cs.lg] 26 May 2017 AmirEmad Ghassami, aber alehkaleybar, Negar Kiyavash, Kun Zhang Department of ECE, University of Illinois at

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

Nonlinear causal discovery with additive noise models

Nonlinear causal discovery with additive noise models Nonlinear causal discovery with additive noise models Patrik O. Hoyer University of Helsinki Finland Dominik Janzing MPI for Biological Cybernetics Tübingen, Germany Joris Mooij MPI for Biological Cybernetics

More information

Joint estimation of linear non-gaussian acyclic models

Joint estimation of linear non-gaussian acyclic models Joint estimation of linear non-gaussian acyclic models Shohei Shimizu The Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan Abstract A linear

More information

arxiv: v1 [cs.lg] 3 Jan 2017

arxiv: v1 [cs.lg] 3 Jan 2017 Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, New-Delhi, India January 4, 2017 arxiv:1701.00597v1

More information

Predicting the effect of interventions using invariance principles for nonlinear models

Predicting the effect of interventions using invariance principles for nonlinear models Predicting the effect of interventions using invariance principles for nonlinear models Christina Heinze-Deml Seminar for Statistics, ETH Zürich heinzedeml@stat.math.ethz.ch Jonas Peters University of

More information

CAUSAL DISCOVERY USING PROXY VARIABLES

CAUSAL DISCOVERY USING PROXY VARIABLES CAUSAL DISCOVERY USING PROXY VARIABLES Mateo Rojas-Carulla Facebook AI Research, Paris University of Cambridge Max Plank Institute for Intelligent Systems, Tübingen mateo.rojas-carulla@tuebingen.mpg.de

More information

Bayesian Discovery of Linear Acyclic Causal Models

Bayesian Discovery of Linear Acyclic Causal Models Bayesian Discovery of Linear Acyclic Causal Models Patrik O. Hoyer Helsinki Institute for Information Technology & Department of Computer Science University of Helsinki Finland Antti Hyttinen Helsinki

More information

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Makoto Yamada and Masashi Sugiyama Department of Computer Science, Tokyo Institute of Technology

More information

Advances in Cyclic Structural Causal Models

Advances in Cyclic Structural Causal Models Advances in Cyclic Structural Causal Models Joris Mooij j.m.mooij@uva.nl June 1st, 2018 Joris Mooij (UvA) Rotterdam 2018 2018-06-01 1 / 41 Part I Introduction to Causality Joris Mooij (UvA) Rotterdam 2018

More information

Learning of Causal Relations

Learning of Causal Relations Learning of Causal Relations John A. Quinn 1 and Joris Mooij 2 and Tom Heskes 2 and Michael Biehl 3 1 Faculty of Computing & IT, Makerere University P.O. Box 7062, Kampala, Uganda 2 Institute for Computing

More information

Predicting causal effects in large-scale systems from observational data

Predicting causal effects in large-scale systems from observational data nature methods Predicting causal effects in large-scale systems from observational data Marloes H Maathuis 1, Diego Colombo 1, Markus Kalisch 1 & Peter Bühlmann 1,2 Supplementary figures and text: Supplementary

More information

Effectiveness of classification approach in recovering pairwise causal relations from data.

Effectiveness of classification approach in recovering pairwise causal relations from data. Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2018 Effectiveness of classification approach in recovering pairwise causal relations from data. Kristima Guha

More information

Using background knowledge for the estimation of total causal e ects

Using background knowledge for the estimation of total causal e ects Using background knowledge for the estimation of total causal e ects Interpreting and using CPDAGs with background knowledge Emilija Perkovi, ETH Zurich Joint work with Markus Kalisch and Marloes Maathuis

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 25) Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Biwei Huang Kun Zhang,2

More information

39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model

39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model 39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model KUN ZHANG, Max-Planck Institute for Intelligent Systems, 776 Tübingen, Germany ZHIKUN WANG,

More information

A review of some recent advances in causal inference

A review of some recent advances in causal inference A review of some recent advances in causal inference Marloes H. Maathuis and Preetam Nandy arxiv:1506.07669v1 [stat.me] 25 Jun 2015 Contents 1 Introduction 1 1.1 Causal versus non-causal research questions.................

More information

arxiv: v2 [stat.ml] 16 Oct 2017

arxiv: v2 [stat.ml] 16 Oct 2017 Causal Inference on Multivariate and Mixed-Type Data Alexander Marx Jilles Vreeken arxiv:702.06385v2 [stat.ml] 6 Oct 207 Abstract Given data over the joint distribution of two random variables X and Y,

More information

Estimation of linear non-gaussian acyclic models for latent factors

Estimation of linear non-gaussian acyclic models for latent factors Estimation of linear non-gaussian acyclic models for latent factors Shohei Shimizu a Patrik O. Hoyer b Aapo Hyvärinen b,c a The Institute of Scientific and Industrial Research, Osaka University Mihogaoka

More information

High-dimensional learning of linear causal networks via inverse covariance estimation

High-dimensional learning of linear causal networks via inverse covariance estimation High-dimensional learning of linear causal networks via inverse covariance estimation Po-Ling Loh Department of Statistics, University of California, Berkeley, CA 94720, USA Peter Bühlmann Seminar für

More information

Invariance and causality for robust predictions

Invariance and causality for robust predictions Invariance and causality for robust predictions Peter Bühlmann Seminar für Statistik, ETH Zürich joint work with Jonas Peters Univ. Copenhagen Nicolai Meinshausen ETH Zürich Dominik Rothenhäusler ETH Zürich

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Causal Structure Learning and Inference: A Selective Review

Causal Structure Learning and Inference: A Selective Review Vol. 11, No. 1, pp. 3-21, 2014 ICAQM 2014 Causal Structure Learning and Inference: A Selective Review Markus Kalisch * and Peter Bühlmann Seminar for Statistics, ETH Zürich, CH-8092 Zürich, Switzerland

More information

Causal Inference on Multivariate and Mixed-Type Data

Causal Inference on Multivariate and Mixed-Type Data Causal Inference on Multivariate and Mixed-Type Data Alexander Marx and Jilles Vreeken Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany {amarx,jilles}@mpi-inf.mpg.de Abstract.

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Tensor Product Kernels: Characteristic Property, Universality

Tensor Product Kernels: Characteristic Property, Universality Tensor Product Kernels: Characteristic Property, Universality Zolta n Szabo CMAP, E cole Polytechnique Joint work with: Bharath K. Sriperumbudur Hangzhou International Conference on Frontiers of Data Science

More information

Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination

Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf Department of philosophy,

More information

Accurate Causal Inference on Discrete Data

Accurate Causal Inference on Discrete Data Accurate Causal Inference on Discrete Data Kailash Budhathoki and Jilles Vreeken Max Planck Institute for Informatics and Saarland University Saarland Informatics Campus, Saarbrücken, Germany {kbudhath,jilles}@mpi-inf.mpg.de

More information

Identifiability of Gaussian structural equation models with equal error variances

Identifiability of Gaussian structural equation models with equal error variances Biometrika (2014), 101,1,pp. 219 228 doi: 10.1093/biomet/ast043 Printed in Great Britain Advance Access publication 8 November 2013 Identifiability of Gaussian structural equation models with equal error

More information

Analysis of Cause-Effect Inference via Regression Errors

Analysis of Cause-Effect Inference via Regression Errors arxiv:82.6698v [cs.ai] 9 Feb 28 Analysis of Cause-Effect Inference via Regression Errors Patrick Blöbaum, Dominik Janzing 2, Takashi Washio, Shohei Shimizu,3, and Bernhard Schölkopf 2 Osaka University,

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

arxiv: v1 [stat.ml] 26 May 2016

arxiv: v1 [stat.ml] 26 May 2016 Discovering Causal Signals in Images David Lopez-Paz Facebook AI Research dlp@fb.com Robert Nishihara UC Berkeley rkn@eecs.berkeley.edu Soumith Chintala Facebook AI Research soumith@fb.com arxiv:605.0879v

More information

arxiv: v1 [cs.ai] 16 Sep 2015

arxiv: v1 [cs.ai] 16 Sep 2015 Causal Model Analysis using Collider v-structure with Negative Percentage Mapping arxiv:1509.090v1 [cs.ai 16 Sep 015 Pramod Kumar Parida Electrical & Electronics Engineering Science University of Johannesburg

More information

Identifying confounders using additive noise models

Identifying confounders using additive noise models Identifying confounders using additive noise models Domini Janzing MPI for Biol. Cybernetics Spemannstr. 38 7276 Tübingen Germany Jonas Peters MPI for Biol. Cybernetics Spemannstr. 38 7276 Tübingen Germany

More information

Pairwise measures of causal direction in linear non-gaussian acy

Pairwise measures of causal direction in linear non-gaussian acy Pairwise measures of causal direction in linear non-gaussian acyclic models Dept of Mathematics and Statistics & Dept of Computer Science University of Helsinki, Finland Abstract Estimating causal direction

More information

arxiv: v1 [cs.ai] 22 Apr 2015

arxiv: v1 [cs.ai] 22 Apr 2015 Distinguishing Cause from Effect Based on Exogeneity [Extended Abstract] Kun Zhang MPI for Intelligent Systems 7276 Tübingen, Germany & Info. Sci. Inst., USC 4676 Admiralty Way, CA 9292 kzhang@tuebingen.mpg.de

More information

Causal Modeling with Generative Neural Networks

Causal Modeling with Generative Neural Networks Causal Modeling with Generative Neural Networks Michele Sebag TAO, CNRS INRIA LRI Université Paris-Sud Joint work: D. Kalainathan, O. Goudet, I. Guyon, M. Hajaiej, A. Decelle, C. Furtlehner https://arxiv.org/abs/1709.05321

More information

Causality. Jonas Peters. Lecture Notes Version: September 5, Spring Semester 2015, ETH Zurich

Causality. Jonas Peters. Lecture Notes Version: September 5, Spring Semester 2015, ETH Zurich Causality Lecture Notes Version: September 5, 2015 Spring Semester 2015, ETH Zurich Jonas Peters 2 Contents 1 Introduction 7 1.1 Motivation..................................... 7 1.2 Some bits of probability

More information

Bivariate Causal Discovery and its Applications to Gene Expression and Imaging Data Analysis

Bivariate Causal Discovery and its Applications to Gene Expression and Imaging Data Analysis Bivariate Causal Discovery and its Applications to Gene Expression and Imaging Data Analysis Rong Jiao 1, Nan Lin 1, Zixin Hu 2, David A Bennett 3, Li Jin 2 and Momiao Xiong 2,1* 1 Department of Biostatistics

More information

arxiv: v1 [cs.lg] 22 Feb 2017

arxiv: v1 [cs.lg] 22 Feb 2017 Causal Inference by Stochastic Complexity KAILASH BUDHATHOKI, Max Planck Institute for Informatics and Saarland University, Germany JILLES VREEKEN, Max Planck Institute for Informatics and Saarland University,

More information

Inferring deterministic causal relations

Inferring deterministic causal relations Inferring deterministic causal relations Povilas Daniušis 1,2, Dominik Janzing 1, Joris Mooij 1, Jakob Zscheischler 1, Bastian Steudel 3, Kun Zhang 1, Bernhard Schölkopf 1 1 Max Planck Institute for Biological

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Detecting the Direction of Causal Time Series

Detecting the Direction of Causal Time Series Jonas Peters jonas.peters@tuebingen.mpg.de Dominik Janzing dominik.janzing@tuebingen.mpg.de Arthur Gretton arthur.gretton@tuebingen.mpg.de Bernhard Schölkopf bernhard.schoelkopf@tuebingen.mpg.de Max-Planck-Institute

More information

arxiv: v2 [cs.lg] 9 Mar 2017

arxiv: v2 [cs.lg] 9 Mar 2017 Journal of Machine Learning Research? (????)??-?? Submitted?/??; Published?/?? Joint Causal Inference from Observational and Experimental Datasets arxiv:1611.10351v2 [cs.lg] 9 Mar 2017 Sara Magliacane

More information

Telling cause from effect based on high-dimensional observations

Telling cause from effect based on high-dimensional observations Telling cause from effect based on high-dimensional observations Dominik Janzing dominik.janzing@tuebingen.mpg.de Max Planck Institute for Biological Cybernetics, Tübingen, Germany Patrik O. Hoyer patrik.hoyer@helsinki.fi

More information

Causation and Prediction (2007) Neural Connectomics (2014) Pot-luck challenge (2008) Causality challenges Isabelle Guyon

Causation and Prediction (2007) Neural Connectomics (2014) Pot-luck challenge (2008) Causality challenges Isabelle Guyon Isabelle Guyon Causation and Prediction (2007) Fast Cause-Effect causation coefficient Pairs (2013) (2014) Pot-luck challenge (2008) Neural Connectomics (2014) Causality challenges Isabelle Guyon Initial

More information

Integrating expert s knowledge in constraint learning algorithm with time-dependent exposures

Integrating expert s knowledge in constraint learning algorithm with time-dependent exposures Integrating expert s knowledge in constraint learning algorithm with time-dependent exposures V. Asvatourian, S. Michiels, E. Lanoy Biostatistics and Epidemiology unit, Gustave-Roussy, Villejuif, France

More information

Telling Cause from Effect using MDL-based Local and Global Regression

Telling Cause from Effect using MDL-based Local and Global Regression Telling Cause from Effect using MDL-based Local and Global Regression Alexander Marx and Jilles Vreeken Max Planck Institute for Informatics and Saarland University Saarland Informatics Campus, Saarbrücken,

More information

From Ordinary Differential Equations to Structural Causal Models: the deterministic case

From Ordinary Differential Equations to Structural Causal Models: the deterministic case From Ordinary Differential Equations to Structural Causal Models: the deterministic case Joris M. Mooij Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands Dominik

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 4/8/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

High-dimensional causal inference, graphical modeling and structural equation models

High-dimensional causal inference, graphical modeling and structural equation models High-dimensional causal inference, graphical modeling and structural equation models Peter Bühlmann Seminar für Statistik, ETH Zürich cannot do confirmatory causal inference without randomized intervention

More information

Introduction to the foundations of causal discovery

Introduction to the foundations of causal discovery Int J Data Sci Anal (2017) 3:81 91 DOI 10.1007/s41060-016-0038-6 REGULAR PAPER Introduction to the foundations of causal discovery Frederick Eberhardt 1 Received: 31 October 2016 / Accepted: 6 December

More information

Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs

Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs J. R. Statist. Soc. B (2015) Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs Alain Hauser, University of Bern, and Swiss

More information

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions Causal Discovery in the Presence of Measurement Error: Identifiability Conditions Kun Zhang,MingmingGong?,JosephRamsey,KayhanBatmanghelich?, Peter Spirtes, Clark Glymour Department of philosophy, Carnegie

More information

arxiv: v1 [cs.lg] 11 Dec 2014

arxiv: v1 [cs.lg] 11 Dec 2014 Distinguishing cause from effect using observational data: methods and benchmarks Distinguishing cause from effect using observational data: methods and benchmarks Joris M. Mooij Institute for Informatics,

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

Robust Inverse Covariance Estimation under Noisy Measurements

Robust Inverse Covariance Estimation under Noisy Measurements .. Robust Inverse Covariance Estimation under Noisy Measurements Jun-Kun Wang, Shou-De Lin Intel-NTU, National Taiwan University ICML 2014 1 / 30 . Table of contents Introduction.1 Introduction.2 Related

More information

Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY

Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY Modeling and Estimation from High Dimensional Data TAKASHI WASHIO THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH OSAKA UNIVERSITY Department of Reasoning for Intelligence, Division of Information

More information

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Patrick Forré Informatics Institute University of Amsterdam The Netherlands p.d.forre@uva.nl

More information

Causal Inference in Time Series via Supervised Learning

Causal Inference in Time Series via Supervised Learning Causal Inference in Time Series via Supervised Learning Yoichi Chikahara and Akinori Fujino NTT Communication Science Laboratories, Kyoto 619-0237, Japan chikahara.yoichi@lab.ntt.co.jp, fujino.akinori@lab.ntt.co.jp

More information

arxiv: v1 [math.st] 13 Mar 2013

arxiv: v1 [math.st] 13 Mar 2013 Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs arxiv:1303.316v1 [math.st] 13 Mar 013 Alain Hauser and Peter Bühlmann {hauser,

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

Causal Bandits with Propagating Inference

Causal Bandits with Propagating Inference Akihiro Yabe 1 Daisuke Hatano 2 Hanna Sumita 3 Shinji Ito 1 Naonori Kakimura 4 akuro Fukunaga 2 Ken-ichi Kawarabayashi 5 Abstract Bandit is a framework for designing sequential experiments, where a learner

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Causal Inference: Discussion

Causal Inference: Discussion Causal Inference: Discussion Mladen Kolar The University of Chicago Booth School of Business Sept 23, 2016 Types of machine learning problems Based on the information available: Supervised learning Reinforcement

More information

Bayesian networks as causal models. Peter Antal

Bayesian networks as causal models. Peter Antal Bayesian networks as causal models Peter Antal antal@mit.bme.hu A.I. 3/20/2018 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 11/25/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Probabilistic Causal Models

Probabilistic Causal Models Probabilistic Causal Models A Short Introduction Robin J. Evans www.stat.washington.edu/ rje42 ACMS Seminar, University of Washington 24th February 2011 1/26 Acknowledgements This work is joint with Thomas

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

arxiv: v1 [stat.ml] 9 Nov 2015

arxiv: v1 [stat.ml] 9 Nov 2015 Learning Instrumental Variables with Non-Gaussianity Assumptions: Theoretical Limitations and Practical Algorithms arxiv:1511.02722v1 [stat.ml] 9 Nov 2015 Ricardo Silva Department of Statistical Science

More information

Interpreting and using CPDAGs with background knowledge

Interpreting and using CPDAGs with background knowledge Interpreting and using CPDAGs with background knowledge Emilija Perković Seminar for Statistics ETH Zurich, Switzerland perkovic@stat.math.ethz.ch Markus Kalisch Seminar for Statistics ETH Zurich, Switzerland

More information

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Robert E. Tillman Carnegie Mellon University Pittsburgh, PA rtillman@cmu.edu

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Multi-Dimensional Causal Discovery

Multi-Dimensional Causal Discovery Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Multi-Dimensional Causal Discovery Ulrich Schaechtle and Kostas Stathis Dept. of Computer Science, Royal Holloway,

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to Bayesian Networks Lecture 9: Optimal Structure Learning Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University of Science and Technology

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

arxiv: v2 [stat.ml] 22 Feb 2017

arxiv: v2 [stat.ml] 22 Feb 2017 Jonas Mueller David N. Reshef George Du Tommi Jaakkola MIT Computer Science and Artificial Intelligence Laboratory arxiv:1606.05027v2 [stat.ml] 22 Feb 2017 Abstract Our goal is to identify beneficial interventions

More information

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 1 Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 2 The Numbers 20 50 5024 9205 8388 500 3 fmri and Mechanism From indirect signals

More information