Recovering the Graph Structure of Restricted Structural Equation Models

Size: px
Start display at page:

Download "Recovering the Graph Structure of Restricted Structural Equation Models"

Transcription

1 Recovering the Graph Structure of Restricted Structural Equation Models Workshop on Statistics for Complex Networks, Eindhoven Jonas Peters 1 J. Mooij 3, D. Janzing 2, B. Schölkopf 2, P. Bühlmann 1 1 Seminar for Statistics, ETH Zürich, Switzerland 2 MPI for Intelligent Systems, Tübingen, Germany 3 Radboud University, Nijmegen, Netherlands 31st January 2013

2 How to win a Nobel Prize F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

3 How to win a Nobel Prize F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

4 How to win a Nobel Prize F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

5 What is the Problem? Given some data, what is the causal structure of the underlying mechanism?

6 What is the Problem? Given some data, what is the causal structure of the underlying mechanism? Understand the (physical) process in more detail.

7 What is the Problem? Given some data, what is the causal structure of the underlying mechanism? Understand the (physical) process in more detail. Intervene! Alain s talk (tomorrow)

8 What is the Problem? Given some data, what is the causal structure of the underlying mechanism? Understand the (physical) process in more detail. Intervene! Alain s talk (tomorrow) Use observational data!

9 What is the Problem? Theoretical: P(X 1,..., X 5 )? DAG G 0 X 4 X 5 X 2 X 3 X 1 Practical: iid observations from? estimated P(X 1,..., X 5 ) DAG G 0

10 Structural Equation Models (SEMs) The joint distribution P(X 1,..., X p ) satisfies a Structural Equation Model (SEM) with DAG G 0 if X i = f i (X PAi, N i ) 1 i p with X PAi being the parents of X i in G 0. The N i are required to be jointly independent.

11 Structural Equation Models (SEMs) P(X 1,..., X 4 ) could be generated by X 1 = f 1 (N 1 ) X 2 = f 2 (X 3, X 4, N 2 ) X 3 = f 3 (X 1, N 3 ) X 4 = f 4 (X 3, N 4 ) N i jointly independent G X 1 X 2 X 3 X 4 X 1 = f 1 (X 3, N 1 ) G 0 X 1 is generated by X 2 = f 2 (N 2 ) X 3 = f 3 (X 2, N 3 ) X 4 = f 4 (X 2, X 3, N 4 ) N i jointly independent X 2 X 3 X 4

12 Structural Equation Models (SEMs) P(X 1,..., X 4 ) could be generated by X 1 = g 1 (M 1 ) X 2 = g 2 (X 3, X 4, M 2 ) X 3 = g 3 (X 1, M 3 ) X 4 = g 4 (X 1, X 3, M 4 ) N i jointly independent G X 1 X 2 X 3 X 4 X 1 = f 1 (X 3, N 1 ) G 0 X 1 is generated by X 2 = f 2 (N 2 ) X 3 = f 3 (X 2, N 3 ) X 4 = f 4 (X 2, X 3, N 4 ) N i jointly independent X 2 X 3 X 4

13 SEMs are not identifiable Proposition Given a distribution P(X 1,..., X p ), we can find an SEM for each graph G, such that P is Markov with respect to G. Special case: two variables. JP: Restricted Structural Equation Models for Causal Inference, PhD Thesis 2012 (and others?)

14 The Idea We gain identifiability by restricting the function class (excluding combinations of functions, input and noise distributions).

15 Two Variables - Good I X 1 = N 1 X 2 = βx 1 + N 2 Then there is no linear SEM with same error variances in the backward direction. with N 1, N 2 iid N (0, σ 2 ). X 2 N 2 L 2 βx 1 X 1

16 Two Variables - Good II Consider a distribution corresponding to X 1 = N 1 X 2 = X N 2 X 1 X 2 with N 1 N 2 with N 1 U[0.1, 0.9] N 2 U[ 0.15, 0.15]

17 Two Variables - Good II

18 Two Variables - Good II Jonas Peters (ETH Zu rich) Recovering the Graph Structure of Restricted SEMs 31st January 2013

19 Two Variables - Good II Consider a distribution corresponding to X 1 = N 1 X 2 = f (X 1 ) + N 2 X 1 X 2 with N 1 N 2 For most combinations (f, P(N 1 ), P(N 2 )) there is no X 1 = g(x 2 ) + M 1 X 2 = M 2 X 1 X 2 with M 1 M 2 More or less one exception: (linear, Gaussian, Gaussian) with different error variances. P. Hoyer, D. Janzing, J. Mooij, JP and B. Schölkopf: Nonlinear causal discovery with additive noise models, NIPS 2008

20 Two Variables Is the case of two variables easy or hard? Easy: Visualization. 2 is a very small number. Hard: It extends to the multivariate case. There are no (cond.) independences that could be exploited.

21 Restricted Structural Equation Models Assumption Assume that P(X 1,..., X p ) follows a (specific type of) restricted SEMs with graph G 0 and assume causal minimality. Theorem Then, the true causal DAG can be recovered from the joint distribution.

22 Restricted Structural Equation Models Linear Gaussian Models with same Error Variance X i = β j X j + N i 1 i p j PA i iid with N i N (0, σ 2 ). Assume β j 0 ( causal minimality). Theorem One can identify G 0 from P(X 1,..., X p ). JP, P. Bühlmann: Identifiability of Gaussian Structural Equation Models with Same Error Variances, ArXiv e-print 2012

23 Restricted Structural Equation Models Non-Linear Additive Noise Models X i = f i (X PAi ) + N i 1 i p Theorem with N i iid and graph G 0. Assume causal minimality. Exclude a few combinations of f i, P(N i ) and P(X PAi ). Then one can identify G 0 from P(X 1,..., X p ). P. Hoyer, D. Janzing, J. Mooij, JP and B. Schölkopf: Nonlinear causal discovery with additive noise models, NIPS 2008 JP, J. M. Mooij, D. Janzing and B. Schölkopf: Identifiability of Causal Graphs using Functional Models, UAI 2011 Very similar for discrete variables JP, D. Janzing and B. Schölkopf: Causal inference on discrete data using additive noise models, IEEE TPAMI 2011

24 Practical Method

25 Practical Method There are DAGs with 13 nodes. How can we find the correct SEM without enumerating all DAGs?

26 Practical Method There are DAGs with 13 nodes. How can we find the correct SEM without enumerating all DAGs? Gaussian SEM with same error variance: BIC with greedy search ( ˆβ, ˆσ 2) ( = argmin l(β, σ 2 ; X (1),..., X (n) ) + log(n) ) β 0 β B,σ 2 R + 2 JP and P. Bühlmann: Identifiability of Gaussian SEMs with same error variances, ArXiv e-print 2012

27 Practical Method There are DAGs with 13 nodes. How can we find the correct SEM without enumerating all DAGs? Gaussian SEM with same error variance: BIC with greedy search ( ˆβ, ˆσ 2) ( = argmin l(β, σ 2 ; X (1),..., X (n) ) + log(n) ) β 0 β B,σ 2 R + 2 JP and P. Bühlmann: Identifiability of Gaussian SEMs with same error variances, ArXiv e-print 2012 Nonlinear SEM: Iterated procedure. Always identify the sink node. (Improvements possible!?) J. Mooij, D. Janzing, JP and B. Schölkopf: Regression by dep. minim. and its appl. to causal inference, ICML 2009

28 Experiment Linear SEMs with same Error Variance a Structural Hamming Distance (to DAG) GDS_SEV GES PC BEST_SCORE a Structural Hamming Distance (to CPDAG) GDS_SEV GES PC BEST_SCORE

29 Experiment Linear SEMs with same Error Variance Table: BIC scores of GES and GDS with SEV on microarray data (smaller is better). Prostate Lymphoma DSM Leukemia Brain NCI Colon GES GDS w/ SEV

30 Experiment How to win a Nobel Prize? No (not enough) data for chocolate

31 Experiment How to win a Nobel Prize? No (not enough) data for chocolate... but we have data for coffee!

32 Experiment How to win a Nobel Prize? # Nobel Laureates / 10 mio coffee consumption per capita (kg) Correlation: 0.698, p-value: <

33 Model class too small? Causally insufficient? Experiment How to win a Nobel Prize? # Nobel Laureates / 10 mio coffee consumption per capita (kg) Correlation: 0.698, p-value: < Nobel Prize Coffee: Dependent residuals (p-value of ). Coffee Nobel Prize: Dependent residuals (p-value of < ).

34 Experiment Nonlinear SEMs with two continuous variables

35 Experiment Nonlinear SEMs with three continuous variables Random variables: X 1 : Altitude X 2 : Temperature X 3 : Hours of sunshine Altitude Sunshine Temperature

36 Experiment Nonlinear SEMs with three continuous variables Altitude, Duration of Sunshine, Temperature (349 samples) linear SEM 1 p value mutual independence test enumerated DAGs DAG 20: Alt Sun Temp

37 Experiment Nonlinear SEMs with three continuous variables Altitude, Duration of Sunshine, Temperature (349 samples) nonlinear SEM 0.01 p value mutual independence test Sun DAG 20: Alt Temp enumerated DAGs

38 Conclusions Restricted SEMs exploit different assumptions than traditional methods.... can identify the true DAG.... work well in practice for graphs with a small number of nodes. interesting tool for causal inference... that should be applied to large-scale data sets. Thank you!

Simplicity of Additive Noise Models

Simplicity of Additive Noise Models Simplicity of Additive Noise Models Jonas Peters ETH Zürich - Marie Curie (IEF) Workshop on Simplicity and Causal Discovery Carnegie Mellon University 7th June 2014 contains joint work with... ETH Zürich:

More information

Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables

Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables Jonas Peters ETH Zürich Tutorial NIPS 2013 Workshop on Causality 9th December 2013 F. H. Messerli: Chocolate Consumption,

More information

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015 Causality Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen MLSS, Tübingen 21st July 2015 Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British

More information

Identifiability of Gaussian structural equation models with equal error variances

Identifiability of Gaussian structural equation models with equal error variances Biometrika (2014), 101,1,pp. 219 228 doi: 10.1093/biomet/ast043 Printed in Great Britain Advance Access publication 8 November 2013 Identifiability of Gaussian structural equation models with equal error

More information

Foundations of Causal Inference

Foundations of Causal Inference Foundations of Causal Inference Causal inference is usually concerned with exploring causal relations among random variables X 1,..., X n after observing sufficiently many samples drawn from the joint

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Learning of Causal Relations

Learning of Causal Relations Learning of Causal Relations John A. Quinn 1 and Joris Mooij 2 and Tom Heskes 2 and Michael Biehl 3 1 Faculty of Computing & IT, Makerere University P.O. Box 7062, Kampala, Uganda 2 Institute for Computing

More information

Using background knowledge for the estimation of total causal e ects

Using background knowledge for the estimation of total causal e ects Using background knowledge for the estimation of total causal e ects Interpreting and using CPDAGs with background knowledge Emilija Perkovi, ETH Zurich Joint work with Markus Kalisch and Marloes Maathuis

More information

Predicting the effect of interventions using invariance principles for nonlinear models

Predicting the effect of interventions using invariance principles for nonlinear models Predicting the effect of interventions using invariance principles for nonlinear models Christina Heinze-Deml Seminar for Statistics, ETH Zürich heinzedeml@stat.math.ethz.ch Jonas Peters University of

More information

Nonlinear causal discovery with additive noise models

Nonlinear causal discovery with additive noise models Nonlinear causal discovery with additive noise models Patrik O. Hoyer University of Helsinki Finland Dominik Janzing MPI for Biological Cybernetics Tübingen, Germany Joris Mooij MPI for Biological Cybernetics

More information

Advances in Cyclic Structural Causal Models

Advances in Cyclic Structural Causal Models Advances in Cyclic Structural Causal Models Joris Mooij j.m.mooij@uva.nl June 1st, 2018 Joris Mooij (UvA) Rotterdam 2018 2018-06-01 1 / 41 Part I Introduction to Causality Joris Mooij (UvA) Rotterdam 2018

More information

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Makoto Yamada and Masashi Sugiyama Department of Computer Science, Tokyo Institute of Technology

More information

arxiv: v3 [stat.me] 10 Mar 2016

arxiv: v3 [stat.me] 10 Mar 2016 Submitted to the Annals of Statistics ESTIMATING THE EFFECT OF JOINT INTERVENTIONS FROM OBSERVATIONAL DATA IN SPARSE HIGH-DIMENSIONAL SETTINGS arxiv:1407.2451v3 [stat.me] 10 Mar 2016 By Preetam Nandy,,

More information

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Journal of Machine Learning Research 17 (2016) 1-102 Submitted 12/14; Revised 12/15; Published 4/16 Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Joris M. Mooij Institute

More information

Interpreting and using CPDAGs with background knowledge

Interpreting and using CPDAGs with background knowledge Interpreting and using CPDAGs with background knowledge Emilija Perković Seminar for Statistics ETH Zurich, Switzerland perkovic@stat.math.ethz.ch Markus Kalisch Seminar for Statistics ETH Zurich, Switzerland

More information

Learning With Bayesian Networks. Markus Kalisch ETH Zürich

Learning With Bayesian Networks. Markus Kalisch ETH Zürich Learning With Bayesian Networks Markus Kalisch ETH Zürich Inference in BNs - Review P(Burglary JohnCalls=TRUE, MaryCalls=TRUE) Exact Inference: P(b j,m) = c Sum e Sum a P(b)P(e)P(a b,e)p(j a)p(m a) Deal

More information

Inference of Cause and Effect with Unsupervised Inverse Regression

Inference of Cause and Effect with Unsupervised Inverse Regression Inference of Cause and Effect with Unsupervised Inverse Regression Eleni Sgouritsa Dominik Janzing Philipp Hennig Bernhard Schölkopf Max Planck Institute for Intelligent Systems, Tübingen, Germany {eleni.sgouritsa,

More information

Distinguishing between cause and effect

Distinguishing between cause and effect JMLR Workshop and Conference Proceedings 6:147 156 NIPS 28 workshop on causality Distinguishing between cause and effect Joris Mooij Max Planck Institute for Biological Cybernetics, 7276 Tübingen, Germany

More information

arxiv: v2 [cs.lg] 9 Mar 2017

arxiv: v2 [cs.lg] 9 Mar 2017 Journal of Machine Learning Research? (????)??-?? Submitted?/??; Published?/?? Joint Causal Inference from Observational and Experimental Datasets arxiv:1611.10351v2 [cs.lg] 9 Mar 2017 Sara Magliacane

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Causality. Jonas Peters. Lecture Notes Version: September 5, Spring Semester 2015, ETH Zurich

Causality. Jonas Peters. Lecture Notes Version: September 5, Spring Semester 2015, ETH Zurich Causality Lecture Notes Version: September 5, 2015 Spring Semester 2015, ETH Zurich Jonas Peters 2 Contents 1 Introduction 7 1.1 Motivation..................................... 7 1.2 Some bits of probability

More information

A review of some recent advances in causal inference

A review of some recent advances in causal inference A review of some recent advances in causal inference Marloes H. Maathuis and Preetam Nandy arxiv:1506.07669v1 [stat.me] 25 Jun 2015 Contents 1 Introduction 1 1.1 Causal versus non-causal research questions.................

More information

Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands

Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands Outline Statistical causal discovery The logic of causal inference A Bayesian approach... Applications

More information

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges 1 PRELIMINARIES Two vertices X i and X j are adjacent if there is an edge between them. A path

More information

Identifying confounders using additive noise models

Identifying confounders using additive noise models Identifying confounders using additive noise models Domini Janzing MPI for Biol. Cybernetics Spemannstr. 38 7276 Tübingen Germany Jonas Peters MPI for Biol. Cybernetics Spemannstr. 38 7276 Tübingen Germany

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Bayesian Discovery of Linear Acyclic Causal Models

Bayesian Discovery of Linear Acyclic Causal Models Bayesian Discovery of Linear Acyclic Causal Models Patrik O. Hoyer Helsinki Institute for Information Technology & Department of Computer Science University of Helsinki Finland Antti Hyttinen Helsinki

More information

arxiv: v6 [math.st] 3 Feb 2018

arxiv: v6 [math.st] 3 Feb 2018 Submitted to the Annals of Statistics HIGH-DIMENSIONAL CONSISTENCY IN SCORE-BASED AND HYBRID STRUCTURE LEARNING arxiv:1507.02608v6 [math.st] 3 Feb 2018 By Preetam Nandy,, Alain Hauser and Marloes H. Maathuis,

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

arxiv: v1 [cs.lg] 26 May 2017

arxiv: v1 [cs.lg] 26 May 2017 Learning Causal tructures Using Regression Invariance ariv:1705.09644v1 [cs.lg] 26 May 2017 AmirEmad Ghassami, aber alehkaleybar, Negar Kiyavash, Kun Zhang Department of ECE, University of Illinois at

More information

Towards an extension of the PC algorithm to local context-specific independencies detection

Towards an extension of the PC algorithm to local context-specific independencies detection Towards an extension of the PC algorithm to local context-specific independencies detection Feb-09-2016 Outline Background: Bayesian Networks The PC algorithm Context-specific independence: from DAGs to

More information

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Peter Bühlmann joint work with Jonas Peters Nicolai Meinshausen ... and designing new perturbation

More information

Bayesian Network Structure Learning and Inference Methods for Handwriting

Bayesian Network Structure Learning and Inference Methods for Handwriting Bayesian Network Structure Learning and Inference Methods for Handwriting Mukta Puri, Sargur N. Srihari and Yi Tang CEDAR, University at Buffalo, The State University of New York, Buffalo, New York, USA

More information

Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs

Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs J. R. Statist. Soc. B (2015) Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs Alain Hauser, University of Bern, and Swiss

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

arxiv:cs/ v2 [cs.it] 1 Oct 2006

arxiv:cs/ v2 [cs.it] 1 Oct 2006 A General Computation Rule for Lossy Summaries/Messages with Examples from Equalization Junli Hu, Hans-Andrea Loeliger, Justin Dauwels, and Frank Kschischang arxiv:cs/060707v [cs.it] 1 Oct 006 Abstract

More information

arxiv: v1 [math.st] 13 Mar 2013

arxiv: v1 [math.st] 13 Mar 2013 Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs arxiv:1303.316v1 [math.st] 13 Mar 013 Alain Hauser and Peter Bühlmann {hauser,

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information

arxiv: v1 [cs.lg] 3 Jan 2017

arxiv: v1 [cs.lg] 3 Jan 2017 Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, New-Delhi, India January 4, 2017 arxiv:1701.00597v1

More information

Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features

Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features Eun Yong Kang Department

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Causal Inference on Discrete Data via Estimating Distance Correlations

Causal Inference on Discrete Data via Estimating Distance Correlations ARTICLE CommunicatedbyAapoHyvärinen Causal Inference on Discrete Data via Estimating Distance Correlations Furui Liu frliu@cse.cuhk.edu.hk Laiwan Chan lwchan@cse.euhk.edu.hk Department of Computer Science

More information

Causal Structure Learning and Inference: A Selective Review

Causal Structure Learning and Inference: A Selective Review Vol. 11, No. 1, pp. 3-21, 2014 ICAQM 2014 Causal Structure Learning and Inference: A Selective Review Markus Kalisch * and Peter Bühlmann Seminar for Statistics, ETH Zürich, CH-8092 Zürich, Switzerland

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

An Efficient Bayesian Network Structure Learning Algorithm in the Presence of Deterministic Relations

An Efficient Bayesian Network Structure Learning Algorithm in the Presence of Deterministic Relations An Efficient Bayesian Network Structure Learning Algorithm in the Presence of Deterministic Relations Ahmed Mabrouk 1 and Christophe Gonzales 2 and Karine Jabet-Chevalier 1 and Eric Chojnaki 1 Abstract.

More information

From Ordinary Differential Equations to Structural Causal Models: the deterministic case

From Ordinary Differential Equations to Structural Causal Models: the deterministic case From Ordinary Differential Equations to Structural Causal Models: the deterministic case Joris M. Mooij Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands Dominik

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

High-dimensional learning of linear causal networks via inverse covariance estimation

High-dimensional learning of linear causal networks via inverse covariance estimation High-dimensional learning of linear causal networks via inverse covariance estimation Po-Ling Loh Department of Statistics, University of California, Berkeley, CA 94720, USA Peter Bühlmann Seminar für

More information

ESTIMATING HIGH-DIMENSIONAL INTERVENTION EFFECTS FROM OBSERVATIONAL DATA

ESTIMATING HIGH-DIMENSIONAL INTERVENTION EFFECTS FROM OBSERVATIONAL DATA The Annals of Statistics 2009, Vol. 37, No. 6A, 3133 3164 DOI: 10.1214/09-AOS685 Institute of Mathematical Statistics, 2009 ESTIMATING HIGH-DIMENSIONAL INTERVENTION EFFECTS FROM OBSERVATIONAL DATA BY MARLOES

More information

Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling

Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling 1 Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling arxiv:1605.06838v3 [stat.ml] 4 Apr 2017 Ridho Rahmadi, Perry Groot, Marieke HC van Rijn, Jan AJG

More information

Causal Inference on Multivariate and Mixed-Type Data

Causal Inference on Multivariate and Mixed-Type Data Causal Inference on Multivariate and Mixed-Type Data Alexander Marx and Jilles Vreeken Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany {amarx,jilles}@mpi-inf.mpg.de Abstract.

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

Causal Models with Hidden Variables

Causal Models with Hidden Variables Causal Models with Hidden Variables Robin J. Evans www.stats.ox.ac.uk/ evans Department of Statistics, University of Oxford Quantum Networks, Oxford August 2017 1 / 44 Correlation does not imply causation

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Inferring deterministic causal relations

Inferring deterministic causal relations Inferring deterministic causal relations Povilas Daniušis 1,2, Dominik Janzing 1, Joris Mooij 1, Jakob Zscheischler 1, Bastian Steudel 3, Kun Zhang 1, Bernhard Schölkopf 1 1 Max Planck Institute for Biological

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to Bayesian Networks Lecture 9: Optimal Structure Learning Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University of Science and Technology

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 25) Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Biwei Huang Kun Zhang,2

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

arxiv: v2 [stat.ml] 16 Oct 2017

arxiv: v2 [stat.ml] 16 Oct 2017 Causal Inference on Multivariate and Mixed-Type Data Alexander Marx Jilles Vreeken arxiv:702.06385v2 [stat.ml] 6 Oct 207 Abstract Given data over the joint distribution of two random variables X and Y,

More information

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE Dhanya Sridhar Lise Getoor U.C. Santa Cruz KDD Workshop on Causal Discovery August 14 th, 2016 1 Outline Motivation Problem Formulation Our Approach Preliminary

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results Kun Zhang,MingmingGong?, Joseph Ramsey,KayhanBatmanghelich?, Peter Spirtes,ClarkGlymour Department

More information

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Patrick Forré Informatics Institute University of Amsterdam The Netherlands p.d.forre@uva.nl

More information

Probabilistic latent variable models for distinguishing between cause and effect

Probabilistic latent variable models for distinguishing between cause and effect Probabilistic latent variable models for distinguishing between cause and effect Joris M. Mooij joris.mooij@tuebingen.mpg.de Oliver Stegle oliver.stegle@tuebingen.mpg.de Dominik Janzing dominik.janzing@tuebingen.mpg.de

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Effectiveness of classification approach in recovering pairwise causal relations from data.

Effectiveness of classification approach in recovering pairwise causal relations from data. Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2018 Effectiveness of classification approach in recovering pairwise causal relations from data. Kristima Guha

More information

Learning Quadratic Variance Function (QVF) DAG Models via OverDispersion Scoring (ODS)

Learning Quadratic Variance Function (QVF) DAG Models via OverDispersion Scoring (ODS) Journal of Machine Learning Research 18 2018 1-44 Submitted 4/17; Revised 12/17; Published 4/18 Learning Quadratic Variance Function QVF DAG Models via OverDispersion Scoring ODS Gunwoong Park Department

More information

Causal Modeling with Generative Neural Networks

Causal Modeling with Generative Neural Networks Causal Modeling with Generative Neural Networks Michele Sebag TAO, CNRS INRIA LRI Université Paris-Sud Joint work: D. Kalainathan, O. Goudet, I. Guyon, M. Hajaiej, A. Decelle, C. Furtlehner https://arxiv.org/abs/1709.05321

More information

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions Causal Discovery in the Presence of Measurement Error: Identifiability Conditions Kun Zhang,MingmingGong?,JosephRamsey,KayhanBatmanghelich?, Peter Spirtes, Clark Glymour Department of philosophy, Carnegie

More information

Discovery of Linear Acyclic Models Using Independent Component Analysis

Discovery of Linear Acyclic Models Using Independent Component Analysis Created by S.S. in Jan 2008 Discovery of Linear Acyclic Models Using Independent Component Analysis Shohei Shimizu, Patrik Hoyer, Aapo Hyvarinen and Antti Kerminen LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/

More information

Robust Inverse Covariance Estimation under Noisy Measurements

Robust Inverse Covariance Estimation under Noisy Measurements .. Robust Inverse Covariance Estimation under Noisy Measurements Jun-Kun Wang, Shou-De Lin Intel-NTU, National Taiwan University ICML 2014 1 / 30 . Table of contents Introduction.1 Introduction.2 Related

More information

Bootstrap & Confidence/Prediction intervals

Bootstrap & Confidence/Prediction intervals Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9 Framework Consider a model with

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Summary of Class Advanced Topics Dhruv Batra Virginia Tech HW1 Grades Mean: 28.5/38 ~= 74.9%

More information

Learning Causality. Sargur N. Srihari. University at Buffalo, The State University of New York USA

Learning Causality. Sargur N. Srihari. University at Buffalo, The State University of New York USA Learning Causality Sargur N. Srihari University at Buffalo, The State University of New York USA 1 Plan of Discussion Bayesian Networks Causal Models Learning Causal Models 2 BN and Complexity of Prob

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination

Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination Kun Zhang, Biwei Huang, Jiji Zhang, Clark Glymour, Bernhard Schölkopf Department of philosophy,

More information

QUANTIFYING CAUSAL INFLUENCES

QUANTIFYING CAUSAL INFLUENCES Submitted to the Annals of Statistics arxiv: arxiv:/1203.6502 QUANTIFYING CAUSAL INFLUENCES By Dominik Janzing, David Balduzzi, Moritz Grosse-Wentrup, and Bernhard Schölkopf Max Planck Institute for Intelligent

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Probabilistic Causal Models

Probabilistic Causal Models Probabilistic Causal Models A Short Introduction Robin J. Evans www.stat.washington.edu/ rje42 ACMS Seminar, University of Washington 24th February 2011 1/26 Acknowledgements This work is joint with Thomas

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Marginal integration for nonparametric causal inference

Marginal integration for nonparametric causal inference Electronic Journal of Statistics Vol. 9 (2015) 3155 3194 ISSN: 1935-7524 DOI: 10.1214/15-EJS1075 Marginal integration for nonparametric causal inference Jan Ernest and Peter Bühlmann Seminar für Statistik

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Scoring Bayesian networks of mixed variables

Scoring Bayesian networks of mixed variables https://doi.org/10.1007/s41060-017-0085-7 REGULAR PAPER Scoring Bayesian networks of mixed variables Bryan Andrews 1 Joseph Ramsey 2 Gregory F. Cooper 1 Received: 26 May 2017 / Accepted: 9 December 2017

More information