Introduction to Multigrid Methods

Size: px
Start display at page:

Download "Introduction to Multigrid Methods"

Transcription

1 Introduction to Multigrid Methods Chapter 9: Multigrid Methodology and Applications Gustaf Söderlind Numerical Analysis, Lund University Textbooks: A Multigrid Tutorial, by William L Briggs. SIAM 1988 A First Course in the Numerical Analysis of Differential Equations, by Arieh Iserles. Cambridge 1996 Matrix-based multigrid: Theory and Applications, by Yair Shapira. Springer 2008 Multi-Grid Methods and Applications, by Wolfgang Hackbusch, 1985 c Gustaf Söderlind, Numerical Analysis, Mathematical Sciences, Lund University, Introduction to Multigrid Methods p.1/16

2 1. Geometric multigrid General (simplified) structure of Multigrid for A h u h = f h 1. Pre-smoothing u new h u h M(A h u h f h ) 2. Restrict r 2h R 2h h (A hu new h f h ) 3. Solve A 2h e 2h = r 2h 4. Prolong and correct v h u new h P h 2h e 2h 5. Post-smoothing u h v h M(A h v h f h ) If e h Im(P h 2h ), how does A h act on Im(P h 2h )? Introduction to Multigrid Methods p.2/16

3 Variational properties. The operator A 2h Error residual equation A h e h = r h (fine) Restricted to coarse grid Assume error approximation Error residual equation Galerkin condition Assume smoothing restriction Prolongation and restriction R 2h h A he h = R 2h h r h e h = P h 2h e 2h R 2h h A hp h 2h e 2h = R 2h h r h A 2h := R 2h h A hp h 2h R 2h h = I2h h F π P h 2h = 2(R2h h )T (coarse) Definition These are the variational properties and A 2h := 2R 2h h A h(r 2h h )T (The constant is 2 only in 1D) Introduction to Multigrid Methods p.3/16

4 Restriction operation in 2D Plain injection The stencil is applied on even/even grid points Introduction to Multigrid Methods p.4/16

5 Smoothing restriction in 2D 1/16 1/8 1/16 2 nd order lowpass filter 1/8 1/4 1/8 1/16 1/8 1/16 For this restriction, we have R = P T /4 and P = 4R T The stencil is applied on even/even grid points Introduction to Multigrid Methods p.5/16

6 Notes on restriction and prolongation In order to have the variational property, the smoothing restriction is necessary A smoothing restriction is generally beneficial to the properties of the multigrid method providing extra smoothing to that of the basic iterative scheme The variational property is advantageous in particular when FEM is used Introduction to Multigrid Methods p.6/16

7 Geometric multigrid in R d The process and its technical details are referred to as the geometric multigrid method The essential feature is that grid properties determine how to go from one grid to the next With a smoothing restriction (2 nd order LP filter) and the Galerkin condition one has P = 2 d R T A c = 2 d RA f R T for problems in d dimensions, i.e., with domain in R d Introduction to Multigrid Methods p.7/16

8 Geometric multigrid applications Applications in differential equations, integral equations, image processing These problems work with discretizations, meshing the computational geometry (domain) Embedded mesh hierarchy provide the multigrid sequence, with Galerkin + LP filter as the preferred choice, together with V- or W-cycle iteration Convergence properties are linked to the properties of the differential operator and its boundary conditions Introduction to Multigrid Methods p.8/16

9 Variational multigrid Special variant of geometric multigrid used with the finite element method Utilizes variational formulation (weak form) of the problem and the linearity of elements to achieve a simple structure P = R T A c = RA f P Often combined with domain decomposition Introduction to Multigrid Methods p.9/16

10 3. Multigrid in integral equations Multigrid can be used to solve Fredholm integral equations of the 1st kind (not well-conditioned) Deconvolution: given f, find u f(x) = In operator form 1 0 k(x y)u(y) dy = ( k u ) (x) Ku = f Discrete case: K Toeplitz Image processing, denoising, both gray scale and RGB Introduction to Multigrid Methods p.10/16

11 Deconvolution In the case of infinite intervals f(x) = k(x y)u(y) dy Solution in terms of Fourier transforms ˆf and ˆk u(x) = ˆf(ω) ˆk(ω) e2πiωx dω implies strong connections to Fourier transforms With multigrid hierarchical solution techniques available in all cases Introduction to Multigrid Methods p.11/16

12 Image processing. Denoising grayscales Sequence of nonlinear diffusion equations u [i] α u [i] 1 + u[i 1] x 2 + u [i 1] y 2 k i = z Continuous grayscale image with noise, to be discretized over grid consisting of all pixels. z contains grayscale data, sequence u [i] (x k,y l ) successively denoised Discretize in standard way, choose parameters α,k i to tune the denoising; α should be small to avoid introducing extra blur, but big enough to allow efficient denoising Introduction to Multigrid Methods p.12/16

13 Denoising RGB images Nonlinear diffusion in three channels R α (F(T(u)) R) = z R G α (F(T(u)) G) = z G B α (F(T(u)) B) = z B These are solved iteratively from u [0] (R [0], G [0], B [0] ) = z R [i] α (F(T(u [i 1] )) R [i] ) = z R G [i] α (F(T(u [i 1] )) G [i] ) = z G B [i] α (F(T(u [i 1] )) B [i] ) = z B Introduction to Multigrid Methods p.13/16

14 The Helmholtz equation The Helmholtz equation u βu = f is often called indefinite when β > 0 as it will approach a singular problem With Dirichlet data on the unit square, the eigenvalues are λ k,l [ β] = π 2 (k 2 + l 2 ) β so ellipticity is lost when β > 2π 2 MG methods often work less well for non-elliptic problems Introduction to Multigrid Methods p.14/16

15 Anisotropic elliptic equations Directional imbalance εu xx u yy = f With Dirichlet data on the unit square, the eigenvalues are λ k,l = π 2 (εk 2 + l 2 ) Easily compensated in the discrete equation by choosing ε x y, but only when the direction is aligned with the coordinate axes. If anistotropy is oblique, reformulate as D u = F Introduction to Multigrid Methods p.15/16

16 Large eigenvalue problems Associated with elliptic boundary value problems are eigenvalue problems Ax = λx, where A is the same matrix as in the differential equation Technically a hierarchy of grids could be used, but as convergence is less associated with grid properties than with eigenvalue separation, and iterative methods are always needed, the eigenvalue problems are solved using a special iterative method directly Lanczos method Introduction to Multigrid Methods p.16/16

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Introduction to Multigrid Methods Sampling Theory and Elements of Multigrid

Introduction to Multigrid Methods Sampling Theory and Elements of Multigrid Introduction to Multigrid Methods Sampling Theory and Elements of Multigrid Gustaf Söderlind Numerical Analysis, Lund University Contents V3.15 What is a multigrid method? Sampling theory Digital filters

More information

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential Title: Multigrid Methods Name: Luke Olson 1 Affil./Addr.: Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 email: lukeo@illinois.edu url: http://www.cs.uiuc.edu/homes/lukeo/

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS

A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS Proceedings of ALGORITMY 2005 pp. 222 229 A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS ELENA BRAVERMAN, MOSHE ISRAELI, AND ALEXANDER SHERMAN Abstract. Based on a fast subtractional

More information

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations Finite Element Multigrid Framework for Mimetic Finite ifference iscretizations Xiaozhe Hu Tufts University Polytopal Element Methods in Mathematics and Engineering, October 26-28, 2015 Joint work with:

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

arxiv: v1 [math.na] 6 Nov 2017

arxiv: v1 [math.na] 6 Nov 2017 Efficient boundary corrected Strang splitting Lukas Einkemmer Martina Moccaldi Alexander Ostermann arxiv:1711.02193v1 [math.na] 6 Nov 2017 Version of November 6, 2017 Abstract Strang splitting is a well

More information

Volterra integral equations solved in Fredholm form using Walsh functions

Volterra integral equations solved in Fredholm form using Walsh functions ANZIAM J. 45 (E) ppc269 C282, 24 C269 Volterra integral equations solved in Fredholm form using Walsh functions W. F. Blyth R. L. May P. Widyaningsih (Received 8 August 23; revised 6 Jan 24) Abstract Recently

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

The Removal of Critical Slowing Down. Lattice College of William and Mary

The Removal of Critical Slowing Down. Lattice College of William and Mary The Removal of Critical Slowing Down Lattice 2008 College of William and Mary Michael Clark Boston University James Brannick, Rich Brower, Tom Manteuffel, Steve McCormick, James Osborn, Claudio Rebbi 1

More information

Geometric Multigrid Methods for the Helmholtz equations

Geometric Multigrid Methods for the Helmholtz equations Geometric Multigrid Methods for the Helmholtz equations Ira Livshits Ball State University RICAM, Linz, 4, 6 November 20 Ira Livshits (BSU) - November 20, Linz / 83 Multigrid Methods Aim: To understand

More information

A multilevel algorithm for inverse problems with elliptic PDE constraints

A multilevel algorithm for inverse problems with elliptic PDE constraints A multilevel algorithm for inverse problems with elliptic PDE constraints George Biros and Günay Doǧan School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 E-mail:

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 8 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).

More information

6. Multigrid & Krylov Methods. June 1, 2010

6. Multigrid & Krylov Methods. June 1, 2010 June 1, 2010 Scientific Computing II, Tobias Weinzierl page 1 of 27 Outline of This Session A recapitulation of iterative schemes Lots of advertisement Multigrid Ingredients Multigrid Analysis Scientific

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

NONLINEAR DIFFUSION PDES

NONLINEAR DIFFUSION PDES NONLINEAR DIFFUSION PDES Erkut Erdem Hacettepe University March 5 th, 0 CONTENTS Perona-Malik Type Nonlinear Diffusion Edge Enhancing Diffusion 5 References 7 PERONA-MALIK TYPE NONLINEAR DIFFUSION The

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc Linear Diffusion Derivation of Heat equation Consider a 2D hot plate with Initial temperature profile I 0 (x, y) Uniform (isotropic) conduction coefficient c Unit thickness (along z) Problem: What is temperature

More information

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior Boundary conditions In a domain Ω one has to add boundary conditions to the heat (or diffusion) equation: 1. u(x, t) = φ for x Ω. Temperature given at the boundary. Also density given at the boundary.

More information

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS LONG CHEN In this chapter we discuss iterative methods for solving the finite element discretization of semi-linear elliptic equations of the form: find

More information

Bootstrap AMG. Kailai Xu. July 12, Stanford University

Bootstrap AMG. Kailai Xu. July 12, Stanford University Bootstrap AMG Kailai Xu Stanford University July 12, 2017 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction.

More information

hypre MG for LQFT Chris Schroeder LLNL - Physics Division

hypre MG for LQFT Chris Schroeder LLNL - Physics Division hypre MG for LQFT Chris Schroeder LLNL - Physics Division This work performed under the auspices of the U.S. Department of Energy by under Contract DE-??? Contributors hypre Team! Rob Falgout (project

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Spectral analysis of complex shifted-laplace preconditioners for the Helmholtz equation

Spectral analysis of complex shifted-laplace preconditioners for the Helmholtz equation Spectral analysis of complex shifted-laplace preconditioners for the Helmholtz equation C. Vuik, Y.A. Erlangga, M.B. van Gijzen, and C.W. Oosterlee Delft Institute of Applied Mathematics c.vuik@tudelft.nl

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations Moshe Israeli Computer Science Department, Technion-Israel Institute of Technology, Technion city, Haifa 32000, ISRAEL Alexander

More information

Introduction to Multigrid Method

Introduction to Multigrid Method Introduction to Multigrid Metod Presented by: Bogojeska Jasmina /08/005 JASS, 005, St. Petersburg 1 Te ultimate upsot of MLAT Te amount of computational work sould be proportional to te amount of real

More information

Adaptive Multigrid for QCD. Lattice University of Regensburg

Adaptive Multigrid for QCD. Lattice University of Regensburg Lattice 2007 University of Regensburg Michael Clark Boston University with J. Brannick, R. Brower, J. Osborn and C. Rebbi -1- Lattice 2007, University of Regensburg Talk Outline Introduction to Multigrid

More information

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value Numerical Analysis of Differential Equations 188 5 Numerical Solution of Elliptic Boundary Value Problems 5 Numerical Solution of Elliptic Boundary Value Problems TU Bergakademie Freiberg, SS 2012 Numerical

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 1: Introduction to Multigrid 2000 Eric de Sturler 1 12/02/09 MG01.prz Basic Iterative Methods (1) Nonlinear equation: f(x) = 0 Rewrite as x = F(x), and iterate x i+1

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

PDEs in Image Processing, Tutorials

PDEs in Image Processing, Tutorials PDEs in Image Processing, Tutorials Markus Grasmair Vienna, Winter Term 2010 2011 Direct Methods Let X be a topological space and R: X R {+ } some functional. following definitions: The mapping R is lower

More information

LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

SOLVING A MINIMIZATION PROBLEM FOR A CLASS OF CONSTRAINED MAXIMUM EIGENVALUE FUNCTION

SOLVING A MINIMIZATION PROBLEM FOR A CLASS OF CONSTRAINED MAXIMUM EIGENVALUE FUNCTION International Journal of Pure and Applied Mathematics Volume 91 No. 3 2014, 291-303 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v91i3.2

More information

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Marcus Sarkis Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro and Daniel

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Multigrid Method for 2D Helmholtz Equation using Higher Order Finite Difference Scheme Accelerated by Krylov Subspace

Multigrid Method for 2D Helmholtz Equation using Higher Order Finite Difference Scheme Accelerated by Krylov Subspace 201, TextRoad Publication ISSN: 2090-27 Journal of Applied Environmental and Biological Sciences www.textroad.com Multigrid Method for 2D Helmholtz Equation using Higher Order Finite Difference Scheme

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Iterative Methods for Ill-Posed Problems

Iterative Methods for Ill-Posed Problems Iterative Methods for Ill-Posed Problems Based on joint work with: Serena Morigi Fiorella Sgallari Andriy Shyshkov Salt Lake City, May, 2007 Outline: Inverse and ill-posed problems Tikhonov regularization

More information

Reduction of Finite Element Models of Complex Mechanical Components

Reduction of Finite Element Models of Complex Mechanical Components Reduction of Finite Element Models of Complex Mechanical Components Håkan Jakobsson Research Assistant hakan.jakobsson@math.umu.se Mats G. Larson Professor Applied Mathematics mats.larson@math.umu.se Department

More information

Finite Difference and Finite Element Methods

Finite Difference and Finite Element Methods Finite Difference and Finite Element Methods Georgy Gimel farb COMPSCI 369 Computational Science 1 / 39 1 Finite Differences Difference Equations 3 Finite Difference Methods: Euler FDMs 4 Finite Element

More information

Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE Constraints

Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE Constraints University of Pennsylvania ScholarlyCommons Departmental Papers (MEAM) Department of Mechanical Engineering & Applied Mechanics 10-16-008 Multigrid Algorithms for Inverse Problems with Linear Parabolic

More information

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Silvia Gazzola Dipartimento di Matematica - Università di Padova January 10, 2012 Seminario ex-studenti 2 Silvia Gazzola

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 1: Introduction to Multigrid 1 12/02/09 MG02.prz Error Smoothing 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Initial Solution=-Error 0 10 20 30 40 50 60 70 80 90 100 DCT:

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

HW4, Math 228A. Multigrid Solver. Fall 2010

HW4, Math 228A. Multigrid Solver. Fall 2010 HW4, Math 228A. Multigrid Solver Date due 11/30/2010 UC Davis, California Fall 2010 Nasser M. Abbasi Fall 2010 Compiled on January 20, 2019 at 4:13am [public] Contents 1 Problem 1 3 1.1 Restriction and

More information

Variational Methods in Signal and Image Processing

Variational Methods in Signal and Image Processing Variational Methods in Signal and Image Processing XU WANG Texas A&M University Dept. of Electrical & Computer Eng. College Station, Texas United States xu.wang@tamu.edu ERCHIN SERPEDIN Texas A&M University

More information

On nonlinear adaptivity with heterogeneity

On nonlinear adaptivity with heterogeneity On nonlinear adaptivity with heterogeneity Jed Brown jed@jedbrown.org (CU Boulder) Collaborators: Mark Adams (LBL), Matt Knepley (UChicago), Dave May (ETH), Laetitia Le Pourhiet (UPMC), Ravi Samtaney (KAUST)

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

Review and problem list for Applied Math I

Review and problem list for Applied Math I Review and problem list for Applied Math I (This is a first version of a serious review sheet; it may contain errors and it certainly omits a number of topic which were covered in the course. Let me know

More information

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5.

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5. LINEAR DIFFUSION Erkut Erdem Hacettepe University February 24 th, 2012 CONTENTS 1 Linear Diffusion 1 2 Appendix - The Calculus of Variations 5 References 6 1 LINEAR DIFFUSION The linear diffusion (heat)

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

An Introduction of Multigrid Methods for Large-Scale Computation

An Introduction of Multigrid Methods for Large-Scale Computation An Introduction of Multigrid Methods for Large-Scale Computation Chin-Tien Wu National Center for Theoretical Sciences National Tsing-Hua University 01/4/005 How Large the Real Simulations Are? Large-scale

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC

More information

Image processing and Computer Vision

Image processing and Computer Vision 1 / 1 Image processing and Computer Vision Continuous Optimization and applications to image processing Martin de La Gorce martin.de-la-gorce@enpc.fr February 2015 Optimization 2 / 1 We have a function

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Waveform Relaxation Method with Toeplitz. Operator Splitting. Sigitas Keras. August Department of Applied Mathematics and Theoretical Physics

Waveform Relaxation Method with Toeplitz. Operator Splitting. Sigitas Keras. August Department of Applied Mathematics and Theoretical Physics UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports Waveform Relaxation Method with Toeplitz Operator Splitting Sigitas Keras DAMTP 1995/NA4 August 1995 Department of Applied Mathematics and Theoretical

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013 ADI iterations for general elliptic problems John Strain Mathematics Department UC Berkeley July 2013 1 OVERVIEW Classical alternating direction implicit (ADI) iteration Essentially optimal in simple domains

More information

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods International Scholarly Research Network ISRN Computational Mathematics Volume 212, Article ID 172687, 5 pages doi:1.542/212/172687 Research Article Evaluation of the Capability of the Multigrid Method

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Qingtang Jiang Abstract This paper is about the construction of univariate wavelet bi-frames with each framelet being symmetric.

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania Fast algorithms for the inverse medium problem George Biros University of Pennsylvania Acknowledgments S. Adavani, H. Sundar, S. Rahul (grad students) C. Davatzikos, D. Shen, H. Litt (heart project) Akcelic,

More information

arxiv: v1 [math.oc] 17 Dec 2018

arxiv: v1 [math.oc] 17 Dec 2018 ACCELERATING MULTIGRID OPTIMIZATION VIA SESOP TAO HONG, IRAD YAVNEH AND MICHAEL ZIBULEVSKY arxiv:82.06896v [math.oc] 7 Dec 208 Abstract. A merger of two optimization frameworks is introduced: SEquential

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

Notes on Multigrid Methods

Notes on Multigrid Methods Notes on Multigrid Metods Qingai Zang April, 17 Motivation of multigrids. Te convergence rates of classical iterative metod depend on te grid spacing, or problem size. In contrast, convergence rates of

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy Lecture 3: Function Spaces I Finite Elements Modeling Bruno Lévy Overview 1. Motivations 2. Function Spaces 3. Discretizing a PDE 4. Example: Discretizing the Laplacian 5. Eigenfunctions Spectral Mesh

More information

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators Fabio Camilli ("Sapienza" Università di Roma) joint work with I.Birindelli ("Sapienza") I.Capuzzo Dolcetta ("Sapienza")

More information