A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

Size: px
Start display at page:

Download "A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS"

Transcription

1 A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics problems arising in biophysics. We compare multigrid methods designed for discontinuous coefficients with domain decomposition methods, including comparisons of standard multigrid methods, algebraic multigrid methods, additive and multiplicative Schwarz domain decomposition methods, and acceleration of multigrid and domain decomposition methods with conjugate gradient methods. As a test problem, we consider a linearization of the Poisson-Boltzmann equation, which describes the electrostatic potential of a large complex biomolecule lying in an ionic solvent. 1. Introduction In recent years, multigrid (MG) and domain decomposition (DD) methods have been used extensively as tools for obtaining approximations to solutions of partial differential equations (see for example the references in [15]). In this paper, we consider MG and DD methods for the numerical solution of the Poisson-Boltzmann equation, which describes the electrostatic potential of a large complex biomolecule lying in an ionic solvent (see for example [3, 14] for an overview). We compare MG methods designed for discontinuous coefficients with DD methods, when applied to a two-dimensional, linearized Poisson-Boltzmann equation. Several approaches are considered, including standard MG methods, algebraic MG methods, additive and multiplicative Schwarz methods, and the acceleration of MG and DD methods with conjugate gradient (CG) methods. 2. Bacground Material The nonlinear Poisson-Boltzmann equation (PBE) for the dimensionless electrostatic potential u(r) = e c φ(r) 1 B T 1 has the form: ( ) 4πe (ɛ(r) u(r)) + κ 2 2 Nm sinh(u(r)) = c z i δ(r r i ), r R, Φ( ) =, B T where φ(r) denotes the electrostatic potential at field position r. The coefficients appearing in the equation are necessarily discontinuous by several orders of magnitude, describing both the molecular surface (ɛ(r)) and an ion-exclusion layer ( κ(r)) i=1 Key words and phrases. Multigrid, Domain Decomposition, PDE, Elliptic, Protein Modeling, Parallelization. The first author was supported in part by the NSF under Cooperative Agreement No. CCR The second author was supported in part by NSF Grant No. NSF ASC RIA.. 1

2 2 MICHAEL HOLST AND FAISAL SAIED around the molecule. The placement and magnitude of atomic charges are represented by the source terms involving the delta-functions. Using nown analytical solutions for special situations, approximate boundary conditions are obtained for a finite domain Ω R containing the molecule and some of the surrounding solvent; the problem is then solved as a finite-boundary problem. A linearized form of the equation is often solved as an approximation to the full nonlinear problem [5, 9, 12]. Damped-inexact-Newton methods combined with algebraic MG methods have been shown to be efficient and robust for the full nonlinear problem [7, 8]. 3. Multigrid Methods Consider a nested sequence of finite-dimensional Hilbert spaces H H H J = H, each with an associated inner-product (, ) inducing the norm = (, ) 1/2. Also associated with each H is an operator A, assumed to be SPD with respect to (, ). The spaces H, which may be finite element function spaces or simply R n (where n = dim(h )), are connected by prolongation operators I 1 L(H, H ), and restriction operators I 1 L(H, H ). It is assumed that the operators satisfy variational conditions: A 1 = I 1 A I 1, I 1 = (I 1 )T. (3.1) These conditions hold naturally in the finite element setting, and are imposed directly in algebraic MG methods. Given B A 1 in the space H, the basic linear method constructed from the preconditioned system BAu = Bf has the form: u n+1 = u n BAu n + Bf = (I BA)u n + Bf. (3.2) Now, given some B, or some procedure for applying B, we can either formulate a linear method using E = I BA, or employ a CG method for BAu = Bf if B is SPD. The recursive formulation of MG methods has been well-nown for more than fifteen years; mathematically equivalent forms of the method involving product error propagators have been recognized and exploited theoretically only very recently. In particular, it can be shown [2, 11] that if the conditions (3.1) hold, then the MG error propagator can be factored as: where: E J = I B J A J = (I T J;J )(I T J;J 1 ) (I T J;1 ), I i = I 1I 1 2 I i+2 i+1 I i+1 i, I i = I i i+1 I i+1 i+2 I 2 1 I 1, I = I, T J;1 = I1 J A 1 1 I1 JA J, T J; = I J R IJ A J, = 2,..., J, where R A 1 is the smoothing operator employed in each space H. We mae this remar simply to stress the similarities between MG methods and certain DD methods discussed in the next section. For problems such as the Poisson-Boltzmann equation, the coefficient discontinuities are complex, and they may not lie on coarse mesh element boundaries as required for accurate finite element approximation (and as required for validity of

3 MULTIGRID AND DOMAIN DECOMPOSITION METHODS 3 finite element error estimates). MG methods typically perform badly, and even the regularity-free MG convergence theory [2] is invalid. Possible approaches include coefficient averaging methods (cf. [1]) and the explicit enforcement of the conditions (3.1) (cf. [1, 6, 13]). By introducing a symbolic stencil calculus and employing Maple or Mathematica, the conditions (3.1) can be enforced algebraically in an efficient way for certain types of sparse matrices; details may be found for example in [7]. 4. Domain Decomposition Methods DD methods were first proposed by H.A. Schwarz as a theoretical tool for studying elliptic problems on complicated domains, constructed as the union of simple domains. An interesting early reference not often mentioned is [10], containing both analysis and numerical examples, and references to the original wor by Schwarz. Given a domain Ω and coarse triangulation by N regions {Ω } of mesh size H, we refine (several times) to obtain a fine mesh of size h. The regions defined by the initial triangulation Ω are then extended by δ to form the overlapping subdomains Ω. Now, let V and V 0 denote the finite element spaces associated with the h and H triangulation of Ω, respectively. The variational problem in V has the form: Find u V such that a(u, v) = f(v), v V. The form a(, ) is bilinear, symmetric, coercive, and bounded, whereas f( ) is linear and bounded. Therefore, through the Riesz representation theorem we can associate with the above problem an abstract operator equation Au = f, where A is SPD. DD methods can be seen as iterative methods for solving the above operator equation, involving approximate projections of the error onto subspaces of V associated with the overlapping subdomains Ω. To be more specific, let V = H0 1 (Ω ) V, = 1,..., N; it is not difficult to show that V = V V N, where the coarse space V 0 may also be included in the sum. As with MG methods, we denote A as the restriction of the operator A to the space V. Algebraically, it can be shown that A = N T AN, where N is the natural inclusion in R ℸ, and N T is the corresponding projection. In other words, DD methods automatically satisfy the variation conditions (3.1) in the subspaces V, 0. Now, if R A 1, we can define the approximate A-orthogonal projector from V onto V as T = N R N T A. An overlapping DD method can be written as a basic linear method as in equation (3.2), where the multiplicative Schwarz error propagator E is: E = I BA = (I T N )(I T N 1 ) (I T 0 ). The additive Schwarz error propagator E is: E = I BA = I ω(t 0 + T T N ). An additive-multiplicative variant has been proposed in [4], which taes only the coarse space projection an additive term in the following way: E = I BA = (I T N )(I T N 1 ) (I T 1 ) ωt 0. This approach decouples the coarse problem in V 0, allowing it to be solved in parallel with the other subproblems.

4 4 MICHAEL HOLST AND FAISAL SAIED Table 1. Various multigrid and domain decomposition methods. Method MG M A AM CGMG CGM CGA CGAM MGG CGMGG Description FEM-based MG, weighted Jacobi smoothing multiplicative Schwarz additive Schwarz (with a damping parameter) multiplicative Schwarz with additive coarse term CG preconditioned with MG CG preconditioned with M CG preconditioned with A CG preconditioned with AM Algebraic MG, weighted Jacobi smoothing CG preconditioned with algebraic MG 5. An empirical comparison of MG and DD for a 2D PBE We now compare several MG and DD methods for a two-dimensional, linearized Poisson-Boltzmann equation. The numerical solution proceeds as follows for two test problems. In each case, we begin with a simple triangular molecule with three point charges. In the first case, we force the molecule surface to align with the coarsest mesh in the MG methods, and to align with the non-overlapped subdomains in the DD methods. In the second case, the discontinuities do not align with the coarsest mesh or the subdomain boundaries (the non-aligned case). Beginning with an initial mesh size H, we uniformly refine the mesh five times, yielding a mesh of size h. Subdomains are then given a small overlap (one fine mesh triangle, δ = h ). Piecewise linear finite elements are used to discretize the problem in all subdomains for the DD methods, and on all levels for the MG methods; the DD methods employ a coarse space. Figure 1 shows the initial triangulation and a sample overlapped subdomain, and a sample solution. Table 1 gives a ey to the remaining figures. Figure 2 shows the performance of the methods, as a function of CPU time on a SPARC 10, for the aligned problem. The MG methods appear to be the most efficient methods; however, it should be noted that inexact subdomain solvers often lead to improved DD solve times (we employed a sparse direct method). Also, when viewed as error reduction per iteration rather than time in Figure 3, multiplicative Schwarz and multigrid have striingly similar behavior. The non-aligned case is illustrated in Figure 4. As expected, the standard MG method fails when the conditions (3.1) are strongly violated. The DD methods remain robust for this problem, whereas the algebraic MG methods appear to be the most efficient. However, note that setup time for the algebraic MG methods (although negligible for this problem) can be quite substantial for some problems. 6. Summary and Conclusions Convergence theorems for MG and DD methods, applicable in the presence of discontinuous coefficients, rely heavily on the conditions (3.1). Although additional assumptions must be employed to prove that the convergence rate is independent of

5 MULTIGRID AND DOMAIN DECOMPOSITION METHODS 5 the meshsize, number of levels, or number of subdomains, very general proofs (although with no rate information) can be given using essentially only (3.1), demonstrating the robustness of this approach. While the conditions (3.1) are enforced for the algebraic MG methods, they also hold automatically for DD methods, independent of the location of discontinuities in the coefficients. This is not true for the coarse space, which is identical to the MG coarse grid problem; the DD methods appearing in the plots here include a coarse space, but do not explicitly enforce the conditions (3.1) for the coarse problem. If the discontinuities were made worse, the DD methods presented here might also have difficulty with the non-aligned case. MG and DD methods are comparable sequentially for two-dimensional electrostatics problems. DD methods seem to be naturally more robust, although MG can be made robust and efficient by enforcing the conditions (3.1) explicitly. While the MG methods were generally more efficient, the DD methods offer advantages, such as ease of implementation, as well as parallel implementations.

6 6 MICHAEL HOLST AND FAISAL SAIED Figure 1. An overlapping subdomain and a sample solution Multigrid and Domain Decomposition: Problem A-norm of the Error A AM CGMG MG CGM CGAM CGA M CPU Seconds Figure 2. CPU seconds for Case 1.

7 MULTIGRID AND DOMAIN DECOMPOSITION METHODS Multigrid and Domain Decomposition: Problem A-norm of the Error A AM CGMG CGM CGAM CGA MG M Iterations Figure 3. Iterations for Case MG Multigrid and Domain Decomposition: Problem 2 A-norm of the Error A AM CGMGG CGMG MGG CGM CGAM CGA M CPU Seconds Figure 4. CPU seconds for Case 2.

8 8 MICHAEL HOLST AND FAISAL SAIED References 1. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid method for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput. 2 (1981), no. 4, J. H. Bramble, J. E. Pascia, J. Wang, and J. Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp. 57 (1991), J. M. Briggs and J. A. McCammon, Computation unravels mysteries of molecular biophysics, Computers in Physics 6 (1990), no. 3, X.-C. Cai, An optimal two-level overlapping domain decomposition method for elliptic problems in two and three dimensions, Tech. Report (In Preparation), Dept. of Mathematics, University of Kentucy, Lexington, M. E. Davis and J. A. McCammon, Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods, J. Comput. Chem. 10 (1989), no. 3, J. E. Dendy, Jr., Two multigrid methods for three-dimensional problems with discontinous and anisotropic coefficients, SIAM J. Sci. Statist. Comput. 8 (1987), no. 2, M. Holst, The Poisson-Boltzmann equation: An analysis and multilevel numerical solution, Tech. Report (In Preparation), CRPC, Department of Applied Mathematics, California Institute of Technology, M. Holst, R. Kozac, F. Saied, and S. Subramaniam, Treatment of electrostatic effects in proteins: Multigrid-based-Newton iterative method for solution of the full nonlinear Poisson- Boltzmann equation, Proteins: Structure, Function, and Genetics 18 (1994), no. 3, M. Holst and F. Saied, Multigrid solution of the Poisson-Boltzmann equation, J. Comput. Chem. 14 (1993), no. 1, L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, P. Noordhoff, Ltd, Groningen, The Nederlands, S. F. McCormic and J. W. Ruge, Unigrid for multigrid simulation, Math. Comp. 41 (1983), no. 163, A. Nicholls and B. Honig, A rapid finite difference algorithm, utilizing successive overrelaxation to solve the Poisson-Boltzmann equation, J. Comput. Chem. 12 (1991), no. 4, J. W. Ruge and K. Stüben, Algebraic multigrid, Multigrid Methods (S. McCormic, ed.), SIAM, 1987, pp K. A. Sharp and B. Honig, Electrostatic interactions in macromolecules: Theory and applications, Annu. Rev. Biophys. Biophys. Chem. 19 (1990), J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review 34 (1992), no. 4, Department of Applied Mathematics and CRPC, California Institute of Technology , Pasadena, CA address: holst@ama.caltech.edu Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL address: saied@cs.uiuc.edu

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

Numerical Solution of the Nonlinear Poisson-Boltzmann Equation: Developing More Robust and Efficient Methods

Numerical Solution of the Nonlinear Poisson-Boltzmann Equation: Developing More Robust and Efficient Methods Numerical Solution of the Nonlinear Poisson-Boltzmann Equation: Developing More Robust and Efficient Methods Michael J. Holst Department of Applied Mathematics and CRPC California Institute of Technology

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

10.6 ITERATIVE METHODS FOR DISCRETIZED LINEAR EQUATIONS

10.6 ITERATIVE METHODS FOR DISCRETIZED LINEAR EQUATIONS 10.6 ITERATIVE METHODS FOR DISCRETIZED LINEAR EQUATIONS 769 EXERCISES 10.5.1 Use Taylor expansion (Theorem 10.1.2) to give a proof of Theorem 10.5.3. 10.5.2 Give an alternative to Theorem 10.5.3 when F

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Sanjay K Khattri Abstract We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems Effectiveness

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential Title: Multigrid Methods Name: Luke Olson 1 Affil./Addr.: Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 email: lukeo@illinois.edu url: http://www.cs.uiuc.edu/homes/lukeo/

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

An Algebraic Multigrid Method for Eigenvalue Problems

An Algebraic Multigrid Method for Eigenvalue Problems An Algebraic Multigrid Method for Eigenvalue Problems arxiv:1503.08462v1 [math.na] 29 Mar 2015 Xiaole Han, Yunhui He, Hehu Xie and Chunguang You Abstract An algebraic multigrid method is proposed to solve

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems Efficient smoothers for all-at-once multigrid methods for Poisson and Stoes control problems Stefan Taacs stefan.taacs@numa.uni-linz.ac.at, WWW home page: http://www.numa.uni-linz.ac.at/~stefant/j3362/

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA. strongly elliptic equations discretized by the nite element methods.

XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA. strongly elliptic equations discretized by the nite element methods. Contemporary Mathematics Volume 00, 0000 Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA Abstract. In this paper, we study several overlapping

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

Overlapping Domain Decomposition and Multigrid Methods for Inverse Problems

Overlapping Domain Decomposition and Multigrid Methods for Inverse Problems Contemporary Mathematics Volume 8, 998 B -88-988--35- Overlapping Domain Decomposition and Multigrid Methods for Inverse Problems Xue-Cheng Tai, Johnny Frøyen, Magne S. Espedal, and Tony F. Chan. Introduction

More information

A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC PROBLEMS

A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC PROBLEMS MATHEMATICS OF COMPUTATION Volume 73, Number 246, Pages 525 539 S 0025-5718(03)01566-7 Article electronically published on July 14, 2003 A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Marcus Sarkis Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro and Daniel

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

THE ADAPTIVE MULTILEVEL FINITE ELEMENT SOLUTION OF THE POISSON-BOLTZMANN EQUATION ON MASSIVELY PARALLEL COMPUTERS

THE ADAPTIVE MULTILEVEL FINITE ELEMENT SOLUTION OF THE POISSON-BOLTZMANN EQUATION ON MASSIVELY PARALLEL COMPUTERS THE ADAPTIVE MULTILEVEL FINITE ELEMENT SOLUTION OF THE POISSON-BOLTZMANN EQUATION ON MASSIVELY PARALLEL COMPUTERS NATHAN A. BAKER, DAVID SEPT, MICHAEL J. HOLST, AND J. ANDREW MCCAMMON Abstract. Using new

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Qiya Hu 1, Shi Shu 2 and Junxian Wang 3 Abstract In this paper we propose a substructuring

More information

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS LONG CHEN In this chapter we discuss iterative methods for solving the finite element discretization of semi-linear elliptic equations of the form: find

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Long Chen 1, Ricardo H. Nochetto 2, and Chen-Song Zhang 3 1 Department of Mathematics, University of California at Irvine. chenlong@math.uci.edu

More information

ANALYSIS AND COMPARISON OF GEOMETRIC AND ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS

ANALYSIS AND COMPARISON OF GEOMETRIC AND ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS ANALYSIS AND COMPARISON OF GEOMETRIC AND ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS CHIN-TIEN WU AND HOWARD C. ELMAN Abstract. The discrete convection-diffusion equations obtained from streamline

More information

AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS. Gérard MEURANT CEA

AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS. Gérard MEURANT CEA Marrakech Jan 2003 AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS Gérard MEURANT CEA Introduction Domain decomposition is a divide and conquer technique Natural framework to introduce parallelism in the

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 00:1 6 [Version: 2000/07/27 v1.0] Nonlinear Additive Schwarz Preconditioners and Application in Computational Fluid

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC

More information

Bootstrap AMG. Kailai Xu. July 12, Stanford University

Bootstrap AMG. Kailai Xu. July 12, Stanford University Bootstrap AMG Kailai Xu Stanford University July 12, 2017 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction.

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH

MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH Abstract. A multigrid preconditioning scheme for solving the Ciarlet-Raviart mixed method equations for the biharmonic Dirichlet

More information

Conjugate Gradients: Idea

Conjugate Gradients: Idea Overview Steepest Descent often takes steps in the same direction as earlier steps Wouldn t it be better every time we take a step to get it exactly right the first time? Again, in general we choose a

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 12-10 Fast linear solver for pressure computation in layered domains P. van Slingerland and C. Vuik ISSN 1389-6520 Reports of the Department of Applied Mathematical

More information

1. Introduction. In this paper, we shall design and analyze finite element approximations. q i δ i in R d,d=2, 3,

1. Introduction. In this paper, we shall design and analyze finite element approximations. q i δ i in R d,d=2, 3, SIAM J. NUMER. ANAL. Vol. 45, No. 6, pp. 2298 2320 c 2007 Society for Industrial and Applied Mathematics THE FINITE ELEMENT APPROXIMATION OF THE NONLINEAR POISSON BOLTZMANN EQUATION LONG CHEN, MICHAEL

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

arxiv: v2 [math.na] 17 Jun 2010

arxiv: v2 [math.na] 17 Jun 2010 Numerische Mathematik manuscript No. (will be inserted by the editor) Local Multilevel Preconditioners for Elliptic Equations with Jump Coefficients on Bisection Grids Long Chen 1, Michael Holst 2, Jinchao

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

A Line search Multigrid Method for Large-Scale Nonlinear Optimization

A Line search Multigrid Method for Large-Scale Nonlinear Optimization A Line search Multigrid Method for Large-Scale Nonlinear Optimization Zaiwen Wen Donald Goldfarb Department of Industrial Engineering and Operations Research Columbia University 2008 Siam Conference on

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

ROB STEVENSON (\non-overlapping") errors in each subspace, that is, the errors that are not contained in the subspaces corresponding to coarser levels

ROB STEVENSON (\non-overlapping) errors in each subspace, that is, the errors that are not contained in the subspaces corresponding to coarser levels Report No. 9533, University of Nijmegen. Submitted to Numer. Math. A ROBUST HIERARCHICAL BASIS PRECONDITIONER ON GENERAL MESHES ROB STEVENSON Abstract. In this paper, we introduce a multi-level direct

More information

MULTIGRID METHODS FOR NEARLY SINGULAR LINEAR EQUATIONS AND EIGENVALUE PROBLEMS

MULTIGRID METHODS FOR NEARLY SINGULAR LINEAR EQUATIONS AND EIGENVALUE PROBLEMS SIAM J. NUMER. ANAL. c 997 Society for Industrial and Applied Mathematics Vol. 34, No., pp. 78 200, February 997 008 MULTIGRID METHODS FOR NEARLY SINGULAR LINEAR EQUATIONS AND EIGENVALUE PROBLEMS ZHIQIANG

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu Multigrid Method ZHONG-CI SHI Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China Joint work: Xuejun Xu Outline Introduction Standard Cascadic Multigrid method(cmg) Economical

More information

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR.

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. ANDREA BONITO AND JOSEPH E. PASCIAK Abstract. We design and analyze variational and non-variational multigrid algorithms

More information

33 RASHO: A Restricted Additive Schwarz Preconditioner with Harmonic Overlap

33 RASHO: A Restricted Additive Schwarz Preconditioner with Harmonic Overlap Thirteenth International Conference on Domain Decomposition ethods Editors: N. Debit,.Garbey, R. Hoppe, J. Périaux, D. Keyes, Y. Kuznetsov c 001 DD.org 33 RASHO: A Restricted Additive Schwarz Preconditioner

More information

Preconditioning in H(div) and Applications

Preconditioning in H(div) and Applications 1 Preconditioning in H(div) and Applications Douglas N. Arnold 1, Ricard S. Falk 2 and Ragnar Winter 3 4 Abstract. Summarizing te work of [AFW97], we sow ow to construct preconditioners using domain decomposition

More information

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems Pasqua D Ambra, Alfredo Buttari, Daniela Di Serafino, Salvatore Filippone, Simone Gentile,

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS Sergey Korotov BCAM Basque Center for Applied Mathematics http://www.bcamath.org 1 The presentation is based on my collaboration with several

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

On the interplay between discretization and preconditioning of Krylov subspace methods

On the interplay between discretization and preconditioning of Krylov subspace methods On the interplay between discretization and preconditioning of Krylov subspace methods Josef Málek and Zdeněk Strakoš Nečas Center for Mathematical Modeling Charles University in Prague and Czech Academy

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method PRECONDITIONED CONJUGATE GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEMS WITH CONTROL AND STATE CONSTRAINTS ROLAND HERZOG AND EKKEHARD SACHS Abstract. Optimality systems and their linearizations arising in

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

arxiv: v1 [math.na] 6 Nov 2017

arxiv: v1 [math.na] 6 Nov 2017 Efficient boundary corrected Strang splitting Lukas Einkemmer Martina Moccaldi Alexander Ostermann arxiv:1711.02193v1 [math.na] 6 Nov 2017 Version of November 6, 2017 Abstract Strang splitting is a well

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

3D Space Charge Routines: The Software Package MOEVE and FFT Compared

3D Space Charge Routines: The Software Package MOEVE and FFT Compared 3D Space Charge Routines: The Software Package MOEVE and FFT Compared Gisela Pöplau DESY, Hamburg, December 4, 2007 Overview Algorithms for 3D space charge calculations Properties of FFT and iterative

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

arxiv: v1 [math.na] 14 May 2016

arxiv: v1 [math.na] 14 May 2016 NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD V. DOLEAN, M.J. GANDER, W. KHERIJI, F. KWOK, AND R. MASSON arxiv:65.449v [math.na] 4 May 6 Abstract. For

More information