Bootstrap AMG. Kailai Xu. July 12, Stanford University

Size: px
Start display at page:

Download "Bootstrap AMG. Kailai Xu. July 12, Stanford University"

Transcription

1 Bootstrap AMG Kailai Xu Stanford University July 12, 2017

2 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction. Coarse grid operators. Fine grid P T P Coarse grid

3 AMG Components Explained Consider two layer AMG to solve Ax = b, which can be easily extended to more layers. The general structure of AMG for one iteration is x x + S(b Ax) x x + PB c P T (b Ax) relaxation correction If we perform relaxation and correction once, the iteration matrix will be (I SA)(I PB c P T A) Smoother. The smoother S is actually pre-conditioner for the relaxation step, for example, modified Jacobi ωd 1. We may perform relaxation step for several times.

4 AMG Components Explained, cont. Prolongation and restriction. Prolongation is also called interpolation in some literatures. We usually define restriction as the conjugate of prolongation, i.e. if the prolongation is P, the restriction will be P T. One way to view AMG is that given the smoother S, or even the sparsity pattern of P, we want to find the best P so that the convergence rate will be optimal. P should work together with S and the grid structure to yield an optimal result. Coarse grid operators. Coarse grid operators is constructed from the prolongation operator. A c = P T AP. On the coarse level, we aim at solving the projected linear system A c x c = P T b which has an approximate inverse(or pre-conditioner) B c A 1 c. Then we lift x c back to the fine space PB c x c.

5 Efficiency of Prolongation According to [1], we have the following remarks on the efficiency of prolongation operator. The notion of strength-of-connection used in the coarsening variables and forming interpolation can be defined from the entries of the system matrix. The eigenvectors with small absolute value eigenvalues are locally smooth in directions of such strong connections. These lowest eigenvectors of the system matrix provide a sufficiently accurate local representation of the other low eigenvectors not effectively treated by the MG relaxation scheme.

6 Bootstrap AMG Bootstrap: not necessarily smart, but try very hard. Bootstrap: (from wiki) a technique of loading a program into a computer by means of a few initial instructions that enable the introduction of the rest of the program from an input device. Bootstrap AMG: We will introduce two bootstrap method here.

7 Computing Prolongation Operator: Least Squares Given the sparsity pattern of P, for example, we may use the weighted sum of the coarse neighbors of every fine grids. v (κ) j fine grid pij coarse grid i We follow the strategy of least squares: for a given set of test vectors {v (1), v (2),..., v (k) } such that the residual is small, or more specifically, algebraically smooth, i.e. Av (i) 0, we want to minimize L(p i ) = for every row p i of P. k κ=1 ω k v (κ) i p ij v (k), j C i j

8 Hierarchy Structure of Multi-grid Method For the multi-grid method, it has a set of prolongation operators P0 1, P2 1,..., PL 1 L 2. We define P l = P0 1 P Pl 1 l, l = 1, 2,..., L 1. Thus the coarse grid operators are naturally defined by A l = Pl T AP l, and we have (x l, x l ) Al = (P l x l, P l x l ) A. Define T l = P T l P l. If A l ω l = λ l T l ω l, we would have Raleigh Quotient of (P l ω l ) = (P lω l, P l ω l ) A (P l ω l, P l ω l ) 2 = λ l

9 Computing Generalized Eigenvalue It is convenient to use ω l s as the test vectors instead of the eigenvalues of A l. It is actually generalized eigenvalue problem. Assume we already have ω l, λ l (there are k e eigenvectors and eigenvalues). Note that A l ω l = λ l T l ω l (P l l 1 )T A l 1 A l l 1 ω l = λ l (P l l 1 )T P l l 1 ω l, and this indicates P l l 1 ω l is an approximation of generalized eigenvectors on level l 1. Thus we can do a relax on the following system (A l 1 λ l 1 T l 1 )ω l 1 = 0, λ l 1 = λ l, for several loops and then update λ l 1 = (A l 1ω l 1, ω l 1 ) (T l 1 ω l 1, ω l 1 ) 2.

10 Computing Generalized Eigenvalue, cont. The algorithm will look like following steps. Compute the eigenvalues of A L 1 ω (κ) L directly at the coarsest level. = λ (κ) L 1 = λ(κ) L 1 T L 1ω (κ) L 1, κ = 1, 2,..., k e At level l = L 2, L 3,..., 0, relax the following linear system (A l 1 λ l 1 T l 1 )ω l 1 = 0, λ l 1 = λ l, using the scheme ω l 1 ω l 1 S l (A l 1 λ l T l 1 )ω l 1 where S l is a pre-conditioner for A l 1 λ l T l 1.

11 Algorithm Overview The above graph illustrate the ideas of the algorithm. At first, we do not have any information about A l so we use a random set of test vectors to compute P0 1. Then we restrict the test vectors onto coarser grid and can be used to form a new set of test vectors on the coarse grid with relaxation. For example, v (κ) i v (κ) i 1 a ii r (κ) i

12 Yet another Bootstrap algorithm Consider 0 a ii e i + j N i a ij e j (1) Therefore, we intend to compute prolongation weights w ij such that e i = j P i ω ij e j, where P i is the set of C nodes around i. In consideration of (1), we have e i = j P i ω ij e j = 1 a ii Thus we let a ij e j j N i j N i a ij a ii j P i a ij e j j P i a ij = j P i a ij j N i a ω ij = ij, i F, j C a ij a ii j P i j N i a ij j P i a ij a ij a ii e j

13 Reference Achi Brandt, J Brannick, Karsten Kahl, and Irene Livshits. Bootstrap amg. SIAM Journal on Scientific Computing, 33(2): , 2011.

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD Andreas Frommer Collaborators The Dirac operator James Brannick, Penn State University Björn Leder, Humboldt Universität Berlin

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

hypre MG for LQFT Chris Schroeder LLNL - Physics Division

hypre MG for LQFT Chris Schroeder LLNL - Physics Division hypre MG for LQFT Chris Schroeder LLNL - Physics Division This work performed under the auspices of the U.S. Department of Energy by under Contract DE-??? Contributors hypre Team! Rob Falgout (project

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 1: Introduction to Multigrid 1 12/02/09 MG02.prz Error Smoothing 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Initial Solution=-Error 0 10 20 30 40 50 60 70 80 90 100 DCT:

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Adaptive Multigrid for QCD. Lattice University of Regensburg

Adaptive Multigrid for QCD. Lattice University of Regensburg Lattice 2007 University of Regensburg Michael Clark Boston University with J. Brannick, R. Brower, J. Osborn and C. Rebbi -1- Lattice 2007, University of Regensburg Talk Outline Introduction to Multigrid

More information

A Generalized Eigensolver Based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

A Generalized Eigensolver Based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA) NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2007; 07: 6 [Version: 2002/09/8 v.02] A Generalized Eigensolver Based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation

More information

ADAPTIVE ALGEBRAIC MULTIGRID

ADAPTIVE ALGEBRAIC MULTIGRID ADAPTIVE ALGEBRAIC MULTIGRID M. BREZINA, R. FALGOUT, S. MACLACHLAN, T. MANTEUFFEL, S. MCCORMICK, AND J. RUGE Abstract. Efficient numerical simulation of physical processes is constrained by our ability

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

An Algebraic Multigrid Method for Eigenvalue Problems

An Algebraic Multigrid Method for Eigenvalue Problems An Algebraic Multigrid Method for Eigenvalue Problems arxiv:1503.08462v1 [math.na] 29 Mar 2015 Xiaole Han, Yunhui He, Hehu Xie and Chunguang You Abstract An algebraic multigrid method is proposed to solve

More information

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential Title: Multigrid Methods Name: Luke Olson 1 Affil./Addr.: Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 email: lukeo@illinois.edu url: http://www.cs.uiuc.edu/homes/lukeo/

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 68 (2014) 1151 1160 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A GPU

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

Adaptive Algebraic Multigrid for Lattice QCD Computations

Adaptive Algebraic Multigrid for Lattice QCD Computations Adaptive Algebraic Multigrid for Lattice QCD Computations Dissertation zur Erlangung des akademischen Grades eines Doktor der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich C - Mathematik und Naturwissenschaften

More information

OPERATOR-BASED INTERPOLATION FOR BOOTSTRAP ALGEBRAIC MULTIGRID

OPERATOR-BASED INTERPOLATION FOR BOOTSTRAP ALGEBRAIC MULTIGRID OPERATOR-BASED INTERPOLATION FOR BOOTSTRAP ALGEBRAIC MULTIGRID T. MANTEUFFEL, S. MCCORMICK, M. PARK, AND J. RUGE Abstract. Bootstrap Algebraic Multigrid (BAMG) is a multigrid-based solver for matrix equations

More information

Markov Chains and Web Ranking: a Multilevel Adaptive Aggregation Method

Markov Chains and Web Ranking: a Multilevel Adaptive Aggregation Method Markov Chains and Web Ranking: a Multilevel Adaptive Aggregation Method Hans De Sterck Department of Applied Mathematics, University of Waterloo Quoc Nguyen; Steve McCormick, John Ruge, Tom Manteuffel

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information

Notes on Multigrid Methods

Notes on Multigrid Methods Notes on Multigrid Metods Qingai Zang April, 17 Motivation of multigrids. Te convergence rates of classical iterative metod depend on te grid spacing, or problem size. In contrast, convergence rates of

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING

MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING H. DE STERCK, THOMAS A. MANTEUFFEL, STEPHEN F. MCCORMICK, QUOC NGUYEN, AND JOHN RUGE Abstract. A multilevel adaptive aggregation

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

A greedy strategy for coarse-grid selection

A greedy strategy for coarse-grid selection A greedy strategy for coarse-grid selection S. MacLachlan Yousef Saad August 3, 2006 Abstract Efficient solution of the very large linear systems that arise in numerical modelling of real-world applications

More information

An efficient multigrid solver based on aggregation

An efficient multigrid solver based on aggregation An efficient multigrid solver based on aggregation Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Graz, July 4, 2012 Co-worker: Artem Napov Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d July 6, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This

More information

Algebraic multigrid and multilevel methods A general introduction. Outline. Algebraic methods: field of application

Algebraic multigrid and multilevel methods A general introduction. Outline. Algebraic methods: field of application Algebraic multigrid and multilevel methods A general introduction Yvan Notay ynotay@ulbacbe Université Libre de Bruxelles Service de Métrologie Nucléaire May 2, 25, Leuven Supported by the Fonds National

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

Introduction to Scientific Computing II Multigrid

Introduction to Scientific Computing II Multigrid Introduction to Scientific Computing II Multigrid Miriam Mehl Slide 5: Relaxation Methods Properties convergence depends on method clear, see exercises and 3), frequency of the error remember eigenvectors

More information

Robust and Adaptive Multigrid Methods: comparing structured and algebraic approaches

Robust and Adaptive Multigrid Methods: comparing structured and algebraic approaches NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 0000; 00:1 25 Published online in Wiley InterScience www.interscience.wiley.com). Robust and Adaptive Multigrid Methods: comparing

More information

ALGEBRAIC MULTILEVEL METHODS FOR GRAPH LAPLACIANS

ALGEBRAIC MULTILEVEL METHODS FOR GRAPH LAPLACIANS The Pennsylvania State University The Graduate School Department of Mathematics ALGEBRAIC MULTILEVEL METHODS FOR GRAPH LAPLACIANS A Dissertation in Mathematics by Yao Chen Submitted in Partial Fulfillment

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS EDMOND CHOW Abstract. Many algebraic multilevel methods for solving linear systems assume that the slowto-converge, or algebraically smooth error

More information

Geometric Multigrid Methods for the Helmholtz equations

Geometric Multigrid Methods for the Helmholtz equations Geometric Multigrid Methods for the Helmholtz equations Ira Livshits Ball State University RICAM, Linz, 4, 6 November 20 Ira Livshits (BSU) - November 20, Linz / 83 Multigrid Methods Aim: To understand

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

An Introduction of Multigrid Methods for Large-Scale Computation

An Introduction of Multigrid Methods for Large-Scale Computation An Introduction of Multigrid Methods for Large-Scale Computation Chin-Tien Wu National Center for Theoretical Sciences National Tsing-Hua University 01/4/005 How Large the Real Simulations Are? Large-scale

More information

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator Artur Strebel Bergische Universität Wuppertal August 3, 2016 Joint Work This project is joint work with: Gunnar

More information

K.S. Kang. The multigrid method for an elliptic problem on a rectangular domain with an internal conductiong structure and an inner empty space

K.S. Kang. The multigrid method for an elliptic problem on a rectangular domain with an internal conductiong structure and an inner empty space K.S. Kang The multigrid method for an elliptic problem on a rectangular domain with an internal conductiong structure and an inner empty space IPP 5/128 September, 2011 The multigrid method for an elliptic

More information

Aggregation Algorithms for K-cycle Aggregation Multigrid for Markov Chains

Aggregation Algorithms for K-cycle Aggregation Multigrid for Markov Chains Aggregation Algorithms for K-cycle Aggregation Multigrid for Markov Chains by Manda Winlaw A research paper presented to the University of Waterloo in partial fulfillment of the requirements for the degree

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Bootstrap AMG for Markov Chain Computations

Bootstrap AMG for Markov Chain Computations Bootstrap AMG for Markov Chan Computatons Karsten Kahl Bergsche Unverstät Wuppertal May 27, 200 Outlne Markov Chans Subspace Egenvalue Approxmaton Ingredents of Least Squares Interpolaton Egensolver Bootstrap

More information

THE spectral decomposition of matrices is used in various

THE spectral decomposition of matrices is used in various IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010 1 Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks Dan Kushnir, Meirav Galun, and

More information

Notes for CS542G (Iterative Solvers for Linear Systems)

Notes for CS542G (Iterative Solvers for Linear Systems) Notes for CS542G (Iterative Solvers for Linear Systems) Robert Bridson November 20, 2007 1 The Basics We re now looking at efficient ways to solve the linear system of equations Ax = b where in this course,

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

multigrid, algebraic multigrid, AMG, convergence analysis, preconditioning, ag- gregation Ax = b (1.1)

multigrid, algebraic multigrid, AMG, convergence analysis, preconditioning, ag- gregation Ax = b (1.1) ALGEBRAIC MULTIGRID FOR MODERATE ORDER FINITE ELEMENTS ARTEM NAPOV AND YVAN NOTAY Abstract. We investigate the use of algebraic multigrid (AMG) methods for the solution of large sparse linear systems arising

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

The Fundamentals and Advantages of Multi-grid Techniques

The Fundamentals and Advantages of Multi-grid Techniques Joseph Kovac 18.086 Final Project Spring 2005 Prof. Gilbert Strang The Fundamentals and Advantages of Multi-grid Techniques Introduction The finite difference method represents a highly straightforward

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

On the Development of Implicit Solvers for Time-Dependent Systems

On the Development of Implicit Solvers for Time-Dependent Systems School o something FACULTY School OF OTHER o Computing On the Development o Implicit Solvers or Time-Dependent Systems Peter Jimack School o Computing, University o Leeds In collaboration with: P.H. Gaskell,

More information

3D Space Charge Routines: The Software Package MOEVE and FFT Compared

3D Space Charge Routines: The Software Package MOEVE and FFT Compared 3D Space Charge Routines: The Software Package MOEVE and FFT Compared Gisela Pöplau DESY, Hamburg, December 4, 2007 Overview Algorithms for 3D space charge calculations Properties of FFT and iterative

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Aggregation-based Adaptive Algebraic Multigrid for Sparse Linear Systems. Eran Treister

Aggregation-based Adaptive Algebraic Multigrid for Sparse Linear Systems. Eran Treister Aggregation-based Adaptive Algebraic Multigrid for Sparse Linear Systems Eran Treister Aggregation-based Adaptive Algebraic Multigrid for Sparse Linear Systems Research Thesis In Partial Fulfillment of

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG

MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF THE KINETIC EQUATIONS IN CONDENSING FLOWS SIMON GLAZENBORG CONTENTS Introduction Theory Test case: Nucleation pulse Conclusions & recommendations 2 WHAT IS CONDENSATION

More information

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS

EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC ANALYSIS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK EFFICIENT MULTIGRID BASED SOLVERS FOR ISOGEOMETRIC

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Multigrid Methods for Discretized PDE Problems

Multigrid Methods for Discretized PDE Problems Towards Metods for Discretized PDE Problems Institute for Applied Matematics University of Heidelberg Feb 1-5, 2010 Towards Outline A model problem Solution of very large linear systems Iterative Metods

More information

Algebraic multigrid for moderate order finite elements

Algebraic multigrid for moderate order finite elements Algebraic multigrid for moderate order finite elements Artem Napov and Yvan Notay Service de Métrologie Nucléaire Université Libre de Bruxelles (C.P. 165/84) 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium.

More information

Multigrid and Multilevel Preconditioners for Computational Photography

Multigrid and Multilevel Preconditioners for Computational Photography Multigrid and Multilevel Preconditioners for Computational Photography Dilip Krishnan Department of Computer Science New York University dilip@cs.nyu.edu Richard Szeliski Interactive Visual Media Group

More information

Introduction to Multigrid Method

Introduction to Multigrid Method Introduction to Multigrid Metod Presented by: Bogojeska Jasmina /08/005 JASS, 005, St. Petersburg 1 Te ultimate upsot of MLAT Te amount of computational work sould be proportional to te amount of real

More information

Robust multigrid methods for nonsmooth coecient elliptic linear systems

Robust multigrid methods for nonsmooth coecient elliptic linear systems Journal of Computational and Applied Mathematics 123 (2000) 323 352 www.elsevier.nl/locate/cam Robust multigrid methods for nonsmooth coecient elliptic linear systems Tony F. Chan a; ; 1, W.L. Wan b; 2

More information

6. Multigrid & Krylov Methods. June 1, 2010

6. Multigrid & Krylov Methods. June 1, 2010 June 1, 2010 Scientific Computing II, Tobias Weinzierl page 1 of 27 Outline of This Session A recapitulation of iterative schemes Lots of advertisement Multigrid Ingredients Multigrid Analysis Scientific

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation Capter Grid Transfer Remark. Contents of tis capter. Consider a grid wit grid size and te corresponding linear system of equations A u = f. Te summary given in Section 3. leads to te idea tat tere migt

More information

1.10 Matrix Representation of Graphs

1.10 Matrix Representation of Graphs 42 Basic Concepts of Graphs 1.10 Matrix Representation of Graphs Definitions: In this section, we introduce two kinds of matrix representations of a graph, that is, the adjacency matrix and incidence matrix

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

Math 577 Assignment 7

Math 577 Assignment 7 Math 577 Assignment 7 Thanks for Yu Cao 1. Solution. The linear system being solved is Ax = 0, where A is a (n 1 (n 1 matrix such that 2 1 1 2 1 A =......... 1 2 1 1 2 and x = (U 1, U 2,, U n 1. By the

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

MATH 1553-C MIDTERM EXAMINATION 3

MATH 1553-C MIDTERM EXAMINATION 3 MATH 553-C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem

More information

arxiv: v2 [math.na] 16 Nov 2016

arxiv: v2 [math.na] 16 Nov 2016 BOOTSTRAP MULTIGRID FOR THE SHIFTED LAPLACE-BELTRAMI EIGENVALUE PROBLEM JAMES BRANNICK AND SHUHAO CAO arxiv:1511.07042v2 [math.na] 16 Nov 2016 Abstract. This paper introduces bootstrap two-grid and multigrid

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 1: Introduction to Multigrid 2000 Eric de Sturler 1 12/02/09 MG01.prz Basic Iterative Methods (1) Nonlinear equation: f(x) = 0 Rewrite as x = F(x), and iterate x i+1

More information

Multigrid solvers for equations arising in implicit MHD simulations

Multigrid solvers for equations arising in implicit MHD simulations Multigrid solvers for equations arising in implicit MHD simulations smoothing Finest Grid Mark F. Adams Department of Applied Physics & Applied Mathematics Columbia University Ravi Samtaney PPPL Achi Brandt

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Algebraic Multigrid Methods for the Oseen Problem

Algebraic Multigrid Methods for the Oseen Problem Algebraic Multigrid Methods for the Oseen Problem Markus Wabro Joint work with: Walter Zulehner, Linz www.numa.uni-linz.ac.at This work has been supported by the Austrian Science Foundation Fonds zur Förderung

More information