Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.1/27

Size: px
Start display at page:

Download "Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.1/27"

Transcription

1 Data Break 8: Kriging the Meuse River BIOS 737 Spring 2004 Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.1/27

2 Meuse River: Reminder library(gstat) Data included in gstat library. data(meuse) makes the data available. Soil samples from flood plain of Meuse River, near village of Stein (Belgium). Geostatistical data: locations s and attributes Z(s). Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.2/27

3 Kriging steps Empirical semivariogram. Fit theoretical semivariogram to empirical semivariogram values. Krige with best fitting semivariogram values. Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.3/27

4 What do we have? (Zinc) zinc concentrations (ppm) y x Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.4/27

5 What do we want? (Predictions here). Prediction Grid y x Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.5/27

6 Step 1: Data Gaussian? Recall from Data Break 6, log(zinc) closer to Gaussian than zinc. We will krige the log(zinc) values. (Note: biased prediction of exp(log(zinc)) = zinc, but we ignore this in the example). Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.6/27

7 Step 2: Empirical Semivariogram(s) logzinc.var <- variogram(log(zinc) 1, loc= x+y, data=meuse) plot(logzinc.var$dist, logzinc.var$gamma, xlab="distance", ylab="semivariance") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.7/27

8 Resulting plot 0.6 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.8/27

9 Some other cool plots The variogram cloud consists of the plot of all contrasts Z(s i ) Z(s j ) plotted versus s i s j plot(variogram(log(zinc) 1, loc= x+y, data=meuse, cloud=true)) Also some need interactive commands here... Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.9/27

10 Variogram cloud 3 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.10/27

11 Step 2: Fit Theoretical Semivariograms fit.variogram function in gstat Not entirely clear what optimization rule, based on practical experience rather than theoretical motivation. To get best fitting spherical semivariogram... model.1 <- fit.variogram(logzinc.var, vgm(psill=1,model="sph", range=300,nugget=1)) plot(logzinc.var, model=model.1) title("best Fit Spherical") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.11/27

12 Best spherical Best Fit Spherical 0.6 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.12/27

13 Step 2: Fit Theoretical Semivariograms To get best fitting exponential semivariogram... model.1 <- fit.variogram(logzinc.var, vgm(psill=1,model="exp", range=300,nugget=1)) plot(logzinc.var, model=model.1) title("best Fit Exponential") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.13/27

14 Best Exponential Best Fit Exponential 0.6 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.14/27

15 Step 2: Fit Theoretical Semivariograms To get best fitting Gaussian semivariogram... model.1 <- fit.variogram(logzinc.var, vgm(psill=1,model="gau", range=300,nugget=1)) plot(logzinc.var, model=model.1) title("best Fit Gaussian") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.15/27

16 Best Gaussian Best Fit Gaussian 0.6 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.16/27

17 Step 2: Fit Theoretical Semivariograms To get best fitting Matern semivariogram... model.1 <- fit.variogram(logzinc.var, vgm(psill=1,model="mat", range=300,nugget=1)) plot(logzinc.var, model=model.1) title("best Fit Matern (kappa=0.25)") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.17/27

18 Best Matern (κ = 0.25) Best Fit Matern (kappa=0.5) 0.6 semivariance distance Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.18/27

19 What s best? We ll use the spherical theoretical semivariogram. (Skipping formal AIC or other comparison). What are the best fit values? > model.1 model psill range 1 Nug Sph Nugget: 0.051, Partial sill: 0.591, Range: Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.19/27

20 Kriging # define the theoretical semivariogram m <- vgm(psill=0.591,"sph", range=896.97,nugget=0.051) # ordinary kriging: logzinc.krige <- krige(log(zinc) 1, x+y, model = m, data = meuse, newd = meuse.grid) # make levelplot levelplot(var1.pred x+y, data=logzinc.krige, aspect = mapasp(logzinc.krige), main = "ordinary kriging predictions") Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.20/27

21 Prediction levels ordinary kriging predictions y x Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.21/27

22 Kriging Variance ordinary kriging variance y x Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.22/27

23 Prediction levels Prediction (log zinc) Prediction x y Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.23/27

24 Prediction levels (zinc) Prediction (zinc) Prediction x y Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.24/27

25 Kriging variance Kriging variance surface Kr. var x y Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.25/27

26 Notes MSPE highest where fewest observations. Back-transforming to original zinc levels gives idea of prediction, but is no longer BLUP (we lose L and U ). gstat does much more complicated analyses too. Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.26/27

27 Summary of geostatistical methods We ve really only seen the whirlwind tour of the basic elements. Semivariogram. Ordinary kriging. Many other options too. Questions? Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.27/27

28 HW 4 Repeat this analysis for the Smoky Mountain ph data. Should be able to use the data break code to do this. Due April 28, graphs, output. Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.28/27

29 Project 2 Write up results of HW 4 as a report with Introduction, Methods, Results, and Discussion sections. Due May 3, 5pm. Data Break 8: Kriging the Meuse RiverBIOS 737 Spring 2004 p.29/27

Practical 12: Geostatistics

Practical 12: Geostatistics Practical 12: Geostatistics This practical will introduce basic tools for geostatistics in R. You may need first to install and load a few packages. The packages sp and lattice contain useful function

More information

Practical 12: Geostatistics

Practical 12: Geostatistics Practical 12: Geostatistics This practical will introduce basic tools for geostatistics in R. You may need first to install and load a few packages. The packages sp and lattice contain useful function

More information

GRAD6/8104; INES 8090 Spatial Statistic Spring 2017

GRAD6/8104; INES 8090 Spatial Statistic Spring 2017 Lab #4 Semivariogram and Kriging (Due Date: 04/04/2017) PURPOSES 1. Learn to conduct semivariogram analysis and kriging for geostatistical data 2. Learn to use a spatial statistical library, gstat, in

More information

University of California, Los Angeles Department of Statistics

University of California, Los Angeles Department of Statistics University of California, Los Angeles Department of Statistics Statistics C173/C273 Instructor: Nicolas Christou Working with gstat - An example We will use the data from the Meuse (Dutch Maas) river.

More information

University of California, Los Angeles Department of Statistics. Geostatistical data: variogram and kriging

University of California, Los Angeles Department of Statistics. Geostatistical data: variogram and kriging University of California, Los Angeles Department of Statistics Statistics 403 Instructor: Nicolas Christou Geostatistical data: variogram and kriging Let Z(s) and Z(s + h) two random variables at locations

More information

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics,

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics, Chapter 1 Summer School GEOSTAT 2014, Geostatistics, 2014-06-19 sum- http://ifgi.de/graeler Institute for Geoinformatics University of Muenster 1.1 Spatial Data From a purely statistical perspective, spatial

More information

REN R 690 Lab Geostatistics Lab

REN R 690 Lab Geostatistics Lab REN R 690 Lab Geostatistics Lab The objective of this lab is to try out some basic geostatistical tools with R. Geostatistics is used primarily in the resource and environmental areas for estimation, uncertainty

More information

Point patterns. The average number of events (the intensity, (s)) is homogeneous

Point patterns. The average number of events (the intensity, (s)) is homogeneous Point patterns Consider the point process {Z(s) :s 2 D R 2 }.Arealization of this process consists of a pattern (arrangement) of points in D. (D is a random set.) These points are called the events of

More information

Exploring the World of Ordinary Kriging. Dennis J. J. Walvoort. Wageningen University & Research Center Wageningen, The Netherlands

Exploring the World of Ordinary Kriging. Dennis J. J. Walvoort. Wageningen University & Research Center Wageningen, The Netherlands Exploring the World of Ordinary Kriging Wageningen University & Research Center Wageningen, The Netherlands July 2004 (version 0.2) What is? What is it about? Potential Users a computer program for exploring

More information

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1 (Z i Z j ) 2 / 2 (Z i Zj) 2 / 2 Semivariance y 11/8/2018 Spatial Interpolation & Geostatistics Kriging Step 1 Describe spatial variation with Semivariogram Lag Distance between pairs of points Lag Mean

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 y Kriging Step 1 Describe spatial variation with Semivariogram (Z i Z j ) 2 / 2 Point cloud Map 3

More information

Introduction. Semivariogram Cloud

Introduction. Semivariogram Cloud Introduction Data: set of n attribute measurements {z(s i ), i = 1,, n}, available at n sample locations {s i, i = 1,, n} Objectives: Slide 1 quantify spatial auto-correlation, or attribute dissimilarity

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 15. SPATIAL INTERPOLATION 15.1 Elements of Spatial Interpolation 15.1.1 Control Points 15.1.2 Type of Spatial Interpolation 15.2 Global Methods 15.2.1 Trend Surface Models Box 15.1 A Worked Example

More information

Introduction to applied geostatistics. Short version. Overheads

Introduction to applied geostatistics. Short version. Overheads Introduction to applied geostatistics Short version Overheads Department of Earth Systems Analysis International Institute for Geo-information Science & Earth Observation (ITC)

More information

Gstat: multivariable geostatistics for S

Gstat: multivariable geostatistics for S DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ Gstat: multivariable geostatistics for S Edzer J. Pebesma Dept. of Physical Geography, Utrecht University, P.O.

More information

Gstat: Multivariable Geostatistics for S

Gstat: Multivariable Geostatistics for S New URL: http://www.r-project.org/conferences/dsc-2003/ Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) March 20 22, Vienna, Austria ISSN 1609-395X Kurt Hornik,

More information

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph Spatial analysis Huge topic! Key references Diggle (point patterns); Cressie (everything); Diggle and Ribeiro (geostatistics); Dormann et al (GLMMs for species presence/abundance); Haining; (Pinheiro and

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Spatial Data Mining. Regression and Classification Techniques

Spatial Data Mining. Regression and Classification Techniques Spatial Data Mining Regression and Classification Techniques 1 Spatial Regression and Classisfication Discrete class labels (left) vs. continues quantities (right) measured at locations (2D for geographic

More information

Geostatistics: Kriging

Geostatistics: Kriging Geostatistics: Kriging 8.10.2015 Konetekniikka 1, Otakaari 4, 150 10-12 Rangsima Sunila, D.Sc. Background What is Geostatitics Concepts Variogram: experimental, theoretical Anisotropy, Isotropy Lag, Sill,

More information

Recent Developments in Biostatistics: Space-Time Models. Tuesday: Geostatistics

Recent Developments in Biostatistics: Space-Time Models. Tuesday: Geostatistics Recent Developments in Biostatistics: Space-Time Models Tuesday: Geostatistics Sonja Greven Department of Statistics Ludwig-Maximilians-Universität München (with special thanks to Michael Höhle for some

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

University of California, Los Angeles Department of Statistics. Universal kriging

University of California, Los Angeles Department of Statistics. Universal kriging University of California, Los Angeles Department of Statistics Statistics C173/C273 Instructor: Nicolas Christou Universal kriging The Ordinary Kriging (OK) that was discussed earlier is based on the constant

More information

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003 11. Kriging ACE 492 SA - Spatial Analysis Fall 2003 c 2003 by Luc Anselin, All Rights Reserved 1 Objectives The goal of this lab is to further familiarize yourself with ESRI s Geostatistical Analyst, extending

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Applied geostatistics Exercise 6 Assessing the quality of spatial predictions Geostatistical simulation

Applied geostatistics Exercise 6 Assessing the quality of spatial predictions Geostatistical simulation Applied geostatistics Exercise 6 Assessing the quality of spatial predictions Geostatistical simulation D G Rossiter University of Twente, Faculty of Geo-Information Science & Earth Observation (ITC) June

More information

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI)

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of precipitation and air temperature observations in Belgium Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of meteorological data A variety of hydrologic, ecological,

More information

Types of Spatial Data

Types of Spatial Data Spatial Data Types of Spatial Data Point pattern Point referenced geostatistical Block referenced Raster / lattice / grid Vector / polygon Point Pattern Data Interested in the location of points, not their

More information

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time Space-time data Observations taken over space and over time Z(s, t): indexed by space, s, and time, t Here, consider geostatistical/time data Z(s, t) exists for all locations and all times May consider

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Relationships between Soil salinity and geopedological units in Saveh plain, Iran

Relationships between Soil salinity and geopedological units in Saveh plain, Iran Available online at www.scholarsresearchlibrary.com Annals of Biological Research, 2012, 3 (5):2292-2296 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-1233 CODEN (USA): ABRNBW Relationships

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT

COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT Cahyono Susetyo Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia Gedung PWK, Kampus ITS,

More information

Analysing Spatial Data in R: Worked example: geostatistics

Analysing Spatial Data in R: Worked example: geostatistics Analysing Spatial Data in R: Worked example: geostatistics Roger Bivand Department of Economics Norwegian School of Economics and Business Administration Bergen, Norway 17 April 2007 Worked example: geostatistics

More information

Spatial Data Analysis in Archaeology Anthropology 589b. Kriging Artifact Density Surfaces in ArcGIS

Spatial Data Analysis in Archaeology Anthropology 589b. Kriging Artifact Density Surfaces in ArcGIS Spatial Data Analysis in Archaeology Anthropology 589b Fraser D. Neiman University of Virginia 2.19.07 Spring 2007 Kriging Artifact Density Surfaces in ArcGIS 1. The ingredients. -A data file -- in.dbf

More information

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17 What s for today All about Variogram Nugget effect Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, 2012 1 / 17 What is the variogram? Let us consider a stationary (or isotropic) random field Z

More information

Spatial Analysis II. Spatial data analysis Spatial analysis and inference

Spatial Analysis II. Spatial data analysis Spatial analysis and inference Spatial Analysis II Spatial data analysis Spatial analysis and inference Roadmap Spatial Analysis I Outline: What is spatial analysis? Spatial Joins Step 1: Analysis of attributes Step 2: Preparing for

More information

A robust statistically based approach to estimating the probability of contamination occurring between sampling locations

A robust statistically based approach to estimating the probability of contamination occurring between sampling locations A robust statistically based approach to estimating the probability of contamination occurring between sampling locations Peter Beck Principal Environmental Scientist Image placeholder Image placeholder

More information

University of California, Los Angeles Department of Statistics. Effect of variogram parameters on kriging weights

University of California, Los Angeles Department of Statistics. Effect of variogram parameters on kriging weights University of California, Los Angeles Department of Statistics Statistics C173/C273 Instructor: Nicolas Christou Effect of variogram parameters on kriging weights We will explore in this document how the

More information

5. Geostatistics JEAN-MICHEL FLOCH INSEE. Abstract

5. Geostatistics JEAN-MICHEL FLOCH INSEE. Abstract 5. Geostatistics JEAN-MICHEL FLOCH INSEE 5.1 Random functions 114 5.1.1 Definitions.............................................. 114 5.1.2 Stationarity............................................. 115

More information

Interpolation {x,y} Data with Suavity. Peter K. Ott Forest Analysis & Inventory Branch BC Ministry of FLNRO Victoria, BC

Interpolation {x,y} Data with Suavity. Peter K. Ott Forest Analysis & Inventory Branch BC Ministry of FLNRO Victoria, BC Interpolation {x,y} Data with Suavity Peter K. Ott Forest Analysis & Inventory Branch BC Ministry of FLNRO Victoria, BC Peter.Ott@gov.bc.ca 1 The Goal Given a set of points: x i, y i, i = 1,2,, n find

More information

A kernel indicator variogram and its application to groundwater pollution

A kernel indicator variogram and its application to groundwater pollution Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS101) p.1514 A kernel indicator variogram and its application to groundwater pollution data Menezes, Raquel University

More information

7 Geostatistics. Figure 7.1 Focus of geostatistics

7 Geostatistics. Figure 7.1 Focus of geostatistics 7 Geostatistics 7.1 Introduction Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that are linked to spatial coordinates. To describe the spatial variation

More information

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Hatice Çitakoğlu 1, Murat Çobaner 1, Tefaruk Haktanir 1, 1 Department of Civil Engineering, Erciyes University, Kayseri,

More information

Scientific registration nº 2293 Symposium nº 17 Presentation : poster. VIEIRA R. Sisney 1, TABOADA Teresa 2, PAZ Antonio 2

Scientific registration nº 2293 Symposium nº 17 Presentation : poster. VIEIRA R. Sisney 1, TABOADA Teresa 2, PAZ Antonio 2 Scientific registration nº 2293 Symposium nº 17 Presentation : poster An assessment of heavy metal variability in a one hectare plot under natural vegetation in a serpentine area Evaluation de la variabilité

More information

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN: Index Akaike information criterion (AIC) 105, 290 analysis of variance 35, 44, 127 132 angular transformation 22 anisotropy 59, 99 affine or geometric 59, 100 101 anisotropy ratio 101 exploring and displaying

More information

GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, March 2017

GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, March 2017 GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, 2-23 March 207 Spatial Distribution of Organic Matter Content in Plough Layer of Balikh Flood Plain Soils Northeastern of Syria Hussam H. M. Husein

More information

PAPER 206 APPLIED STATISTICS

PAPER 206 APPLIED STATISTICS MATHEMATICAL TRIPOS Part III Thursday, 1 June, 2017 9:00 am to 12:00 pm PAPER 206 APPLIED STATISTICS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal weight.

More information

Umeå University Sara Sjöstedt-de Luna Time series analysis and spatial statistics

Umeå University Sara Sjöstedt-de Luna Time series analysis and spatial statistics Umeå University 01-05-5 Sara Sjöstedt-de Luna Time series analysis and spatial statistics Laboration in ArcGIS Geostatistical Analyst These exercises are aiming at helping you understand ArcGIS Geostatistical

More information

Report on Kriging in Interpolation

Report on Kriging in Interpolation Tabor Reedy ENVS421 3/12/15 Report on Kriging in Interpolation In this project I explored use of the geostatistical analyst extension and toolbar in the process of creating an interpolated surface through

More information

CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS

CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS JANA SVOBODOVÁ, PAVEL TUČEK* Jana Svobodová, Pavel Tuček: Creation of DEM by kriging method and evaluation of the results. Geomorphologia

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

An Introduction to Pattern Statistics

An Introduction to Pattern Statistics An Introduction to Pattern Statistics Nearest Neighbors The CSR hypothesis Clark/Evans and modification Cuzick and Edwards and controls All events k function Weighted k function Comparative k functions

More information

Spatial analysis of a designed experiment. Uniformity trials. Blocking

Spatial analysis of a designed experiment. Uniformity trials. Blocking Spatial analysis of a designed experiment RA Fisher s 3 principles of experimental design randomization unbiased estimate of treatment effect replication unbiased estimate of error variance blocking =

More information

A Geostatistical Approach to Predict the Average Annual Rainfall of Bangladesh

A Geostatistical Approach to Predict the Average Annual Rainfall of Bangladesh Journal of Data Science 14(2016), 149-166 A Geostatistical Approach to Predict the Average Annual Rainfall of Bangladesh Mohammad Samsul Alam 1 and Syed Shahadat Hossain 1 1 Institute of Statistical Research

More information

Spatial-Temporal Modeling of Active Layer Thickness

Spatial-Temporal Modeling of Active Layer Thickness Spatial-Temporal Modeling of Active Layer Thickness Qian Chen Advisor : Dr. Tatiyana Apanasovich Department of Statistics The George Washington University Abstract The objective of this study is to provide

More information

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University An Introduction to Spatial Statistics Chunfeng Huang Department of Statistics, Indiana University Microwave Sounding Unit (MSU) Anomalies (Monthly): 1979-2006. Iron Ore (Cressie, 1986) Raw percent data

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information

ROeS Seminar, November

ROeS Seminar, November IASC Introduction: Spatial Interpolation Estimation at a certain location Geostatistische Modelle für Fließgewässer e.g. Air pollutant concentrations were measured at different locations. What is the concentration

More information

Application and evaluation of universal kriging for optimal contouring of groundwater levels

Application and evaluation of universal kriging for optimal contouring of groundwater levels Application and evaluation of universal kriging for optimal contouring of groundwater levels B V N P Kambhammettu 1,, Praveena Allena 2, and JamesPKing 1, 1 Civil Engineering Department, New Mexico State

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Geostatistical Analyst for Deciding Optimal Interpolation Strategies for Delineating Compact Zones

Geostatistical Analyst for Deciding Optimal Interpolation Strategies for Delineating Compact Zones International Journal of Geosciences, 2011, 2, 585-596 doi:10.4236/ijg.2011.24061 Published Online November 2011 (http://www.scirp.org/journal/ijg) 585 Geostatistical Analyst for Deciding Optimal Interpolation

More information

Optimizing Sampling Schemes for Mapping and Dredging Polluted Sediment Layers

Optimizing Sampling Schemes for Mapping and Dredging Polluted Sediment Layers This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Optimizing Sampling Schemes for Mapping and Dredging Polluted

More information

Lecture 5 Geostatistics

Lecture 5 Geostatistics Lecture 5 Geostatistics Lecture Outline Spatial Estimation Spatial Interpolation Spatial Prediction Sampling Spatial Interpolation Methods Spatial Prediction Methods Interpolating Raster Surfaces with

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Modellierung dynamischer und räumlicher Prozesse

Modellierung dynamischer und räumlicher Prozesse Modellierung dynamischer und räumlicher Prozesse Edzer J. Pebesma edzer.pebesma@uni-muenster.de http://ifgi.uni-muenster.de/~epebe_01/ 16 October 2007 Edzer J. Pebesma ifgi, Universität Münster, 1 Course

More information

Optimal Interpolation

Optimal Interpolation Optimal Interpolation Optimal Interpolation and/or kriging consist in determining the BEST LINEAR ESTIMATE in the least square sense for locations xi where you have no measurements: Example 1: Collected

More information

An Introduction to Spatial Autocorrelation and Kriging

An Introduction to Spatial Autocorrelation and Kriging An Introduction to Spatial Autocorrelation and Kriging Matt Robinson and Sebastian Dietrich RenR 690 Spring 2016 Tobler and Spatial Relationships Tobler s 1 st Law of Geography: Everything is related to

More information

Comparison of rainfall distribution method

Comparison of rainfall distribution method Team 6 Comparison of rainfall distribution method In this section different methods of rainfall distribution are compared. METEO-France is the French meteorological agency, a public administrative institution

More information

Correcting Variogram Reproduction of P-Field Simulation

Correcting Variogram Reproduction of P-Field Simulation Correcting Variogram Reproduction of P-Field Simulation Julián M. Ortiz (jmo1@ualberta.ca) Department of Civil & Environmental Engineering University of Alberta Abstract Probability field simulation is

More information

The ProbForecastGOP Package

The ProbForecastGOP Package The ProbForecastGOP Package April 24, 2006 Title Probabilistic Weather Field Forecast using the GOP method Version 1.3 Author Yulia Gel, Adrian E. Raftery, Tilmann Gneiting, Veronica J. Berrocal Description

More information

Evaluation of spatial heterogeneity for the design and layout of experimental sites

Evaluation of spatial heterogeneity for the design and layout of experimental sites Establisment of a long term experiment into tillage and traffic management. Part two: Evaluation of spatial heterogeneity for the design and layout of experimental sites Koloman Kristof 1,2, Emily K. Smith

More information

Mapping of Mn and Pb as Effect of Landfill Pollutant based on Ordinary Kriging Interpolation

Mapping of Mn and Pb as Effect of Landfill Pollutant based on Ordinary Kriging Interpolation American Journal of Environmental Sciences Hypotheses Mapping of Mn and Pb as Effect of Landfill Pollutant based on Ordinary Kriging Interpolation 1 Rokhana Dwi Bekti, 1 Kris Suryowati and 2 Heruna Tanty

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Soil Moisture Modeling using Geostatistical Techniques at the O Neal Ecological Reserve, Idaho

Soil Moisture Modeling using Geostatistical Techniques at the O Neal Ecological Reserve, Idaho Final Report: Forecasting Rangeland Condition with GIS in Southeastern Idaho Soil Moisture Modeling using Geostatistical Techniques at the O Neal Ecological Reserve, Idaho Jacob T. Tibbitts, Idaho State

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Traps for the Unwary Subsurface Geoscientist

Traps for the Unwary Subsurface Geoscientist Traps for the Unwary Subsurface Geoscientist ashley.francis@sorviodvnvm.co.uk http://www.sorviodvnvm.co.uk Presented at SEG Development & Production Forum, 24-29 th June 2001, Taos, New Mexico, USA 24-29

More information

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA)

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) Fluvial Variography: Characterizing Spatial Dependence on Stream Networks Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) March 5, 2015 Stream network data Flow Legend o 4.40-5.80

More information

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data Sue Welham Rothamsted Research Harpenden UK AL5 2JQ December 1, 2008 1 We will start by reviewing the principles

More information

Improving Spatial Data Interoperability

Improving Spatial Data Interoperability Improving Spatial Data Interoperability A Framework for Geostatistical Support-To To-Support Interpolation Michael F. Goodchild, Phaedon C. Kyriakidis, Philipp Schneider, Matt Rice, Qingfeng Guan, Jordan

More information

BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS

BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS Srinivasan R and Venkatesan P Dept. of Statistics, National Institute for Research Tuberculosis, (Indian Council of Medical Research),

More information

Chapter 4 - Spatial processes R packages and software Lecture notes

Chapter 4 - Spatial processes R packages and software Lecture notes TK4150 - Intro 1 Chapter 4 - Spatial processes R packages and software Lecture notes Odd Kolbjørnsen and Geir Storvik February 13, 2017 STK4150 - Intro 2 Last time General set up for Kriging type problems

More information

SPATIAL VARIABILITY MAPPING OF N-VALUE OF SOILS OF MUMBAI CITY USING ARCGIS

SPATIAL VARIABILITY MAPPING OF N-VALUE OF SOILS OF MUMBAI CITY USING ARCGIS SPATIAL VARIABILITY MAPPING OF N-VALUE OF SOILS OF MUMBAI CITY USING ARCGIS RESHMA RASKAR - PHULE 1, KSHITIJA NADGOUDA 2 1 Assistant Professor, Department of Civil Engineering, Sardar Patel College of

More information

Practicum : Spatial Regression

Practicum : Spatial Regression : Alexandra M. Schmidt Instituto de Matemática UFRJ - www.dme.ufrj.br/ alex 2014 Búzios, RJ, www.dme.ufrj.br Exploratory (Spatial) Data Analysis 1. Non-spatial summaries Numerical summaries: Mean, median,

More information

Simulating Spatial Distributions, Variability and Uncertainty of Soil Arsenic by Geostatistical Simulations in Geographic Information Systems

Simulating Spatial Distributions, Variability and Uncertainty of Soil Arsenic by Geostatistical Simulations in Geographic Information Systems Open Environmental Sciences, 2008, 2, 26-33 26 Open Access Simulating Spatial Distributions, Variability and Uncertainty of Soil Arsenic by Geostatistical Simulations in Geographic Information Systems

More information

GEOSTATISTICAL ANALYSIS FOR SPATIAL EVALUATION OF LIQUEFACTION POTENTIAL IN SAITAMA CITY

GEOSTATISTICAL ANALYSIS FOR SPATIAL EVALUATION OF LIQUEFACTION POTENTIAL IN SAITAMA CITY Technical Note LOWLAND TECHNOLOGY INTERNATIONAL Vol. 14, No. 1, 45-51, June 2012 International Association of Lowland Technology (IALT), ISSN 1344-9656 GEOSTATISTICAL ANALYSIS FOR SPATIAL EVALUATION OF

More information

An anisotropic Matérn spatial covariance model: REML estimation and properties

An anisotropic Matérn spatial covariance model: REML estimation and properties An anisotropic Matérn spatial covariance model: REML estimation and properties Kathryn Anne Haskard Doctor of Philosophy November 2007 Supervisors: Arūnas Verbyla and Brian Cullis THE UNIVERSITY OF ADELAIDE

More information

Optimization Design of Groundwater Level Monitoring Network Based on the Geo-Statistics Chen Jing

Optimization Design of Groundwater Level Monitoring Network Based on the Geo-Statistics Chen Jing nd International Conference on Science and Social Research (ICSSR 03) Optimization Design of Groundwater Level Monitoring etwork Based on the Geo-Statistics Chen Jing School of Earth Science & Engineering,

More information

Multivariate Geostatistics

Multivariate Geostatistics Hans Wackernagel Multivariate Geostatistics An Introduction with Applications Third, completely revised edition with 117 Figures and 7 Tables Springer Contents 1 Introduction A From Statistics to Geostatistics

More information

Influence of parameter estimation uncertainty in Kriging: Part 2 Test and case study applications

Influence of parameter estimation uncertainty in Kriging: Part 2 Test and case study applications Hydrology and Earth System Influence Sciences, of 5(), parameter 5 3 estimation (1) uncertainty EGS in Kriging: Part Test and case study applications Influence of parameter estimation uncertainty in Kriging:

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Spatial Interpolation of Mean Yearly Precipitation using Universal Kriging

Spatial Interpolation of Mean Yearly Precipitation using Universal Kriging Developments in Statistics Andrej Mrvar and Anuška Ferligoj (Editors) Metodološki zvezki, 17, Ljubljana: FDV, 22 Spatial Interpolation of Mean Yearly Precipitation using Universal Kriging Damijana Kastelec

More information

Lecture 9: Introduction to Kriging

Lecture 9: Introduction to Kriging Lecture 9: Introduction to Kriging Math 586 Beginning remarks Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a set of observations of some variable(s) of

More information

GEOSTATISTICS. Dr. Spyros Fountas

GEOSTATISTICS. Dr. Spyros Fountas GEOSTATISTICS Dr. Spyros Fountas Northing (m) 140550 140450 140350 Trent field Disturbed area Andover 140250 Panholes 436950 437050 437150 437250 437350 Easting (m) Trent Field Westover Farm (Blackmore,

More information

Is there still room for new developments in geostatistics?

Is there still room for new developments in geostatistics? Is there still room for new developments in geostatistics? Jean-Paul Chilès MINES ParisTech, Fontainebleau, France, IAMG 34th IGC, Brisbane, 8 August 2012 Matheron: books and monographs 1962-1963: Treatise

More information

Assessing the covariance function in geostatistics

Assessing the covariance function in geostatistics Statistics & Probability Letters 52 (2001) 199 206 Assessing the covariance function in geostatistics Ana F. Militino, M. Dolores Ugarte Departamento de Estadstica e Investigacion Operativa, Universidad

More information

Lab #3 Background Material Quantifying Point and Gradient Patterns

Lab #3 Background Material Quantifying Point and Gradient Patterns Lab #3 Background Material Quantifying Point and Gradient Patterns Dispersion metrics Dispersion indices that measure the degree of non-randomness Plot-based metrics Distance-based metrics First-order

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information